用户名: 密码: 验证码:
钛合金焊接接头疲劳损伤模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空科技的飞速发展,要求提供推重比越来越高的航空动力。上世纪以来,整体焊接叶盘已在新研制的航空发动机上应用。目前,航空发动机整体焊接叶盘应用中尚存在的问题之一是焊接结构疲劳寿命的预测问题。本课题以航空发动机压气机叶盘常用材料钛合金(TC11)电子束焊构件为研究对象,对焊接接头的疲劳破坏行为,基于损伤力学理论分析其疲劳损伤演化规律,应用现代数学的新概念——分形几何学理论,建立宏观参量与细观损伤特征相联系的疲劳损伤模型,研究疲劳断口分维数测量方法以及分形损伤变量与疲劳寿命之间的关系,建立焊接接头疲劳损伤分形演化方程。对焊接结构疲劳寿命的预测有重要理论意义和实际应用价值。其创新点主要有:
     1.采用分形维数定义了结构疲劳分形损伤变量,根据疲劳裂纹的分形扩展特点,建立了宏细观统一的结构疲劳损伤分形演化模型。该模型既反映了损伤细观结构的特性,又便于宏观参量的分析和研究
     2.根据疲劳试验结果,获得了TC11钛合金焊接接头的疲劳特性,即最大加载应变与疲劳寿命的关系曲线。根据疲劳断口分维数的测量结果,获得了TC11钛合金焊接接头断口分维数与其疲劳寿命的关系曲线,以及断口分维数与最大加载应变之间的关系曲线,给出了进一步疲劳寿命预测的方法。
     3.根据结构疲劳损伤分形演化模型,通过对TC11钛合金焊接试件的疲劳试验和疲劳断口分维数测量,得到了宏观损伤变量和分形损伤变量与疲劳寿命的关系,建立了TC11钛合金焊接接头的疲劳损伤演化方程。给出了进一步疲劳损伤量预测的方法。
     4.金属疲劳断口分维数测量方法的研究是目前材料性能分析研究中的前沿课题。研究表明:放大倍数和测量码尺的选择因材料结构而异,对测量结果影响很大。本文应用数据处理技术研究了疲劳断口分维数测量中电镜放大倍数及测量码尺的选择问题,改进了二次电子线扫描分维数处理方法,并成功地应用于钛合金焊接接头断口分维数的测量,得到了有价值的分维数测量参数的选择范围,对进一步的研究具有重要意义。
     本文研究表明:采用分维数定义损伤变量,建立结构的宏细观疲劳损伤演化模型,尤其是对于TC11钛合金这样的高强度材料结构,损伤量变化不易宏观测量,可以通过断口分维数与结构寿命关系的研究,有效地反映疲劳损伤过程。因此,它是一种研究焊接结构疲劳损伤过程的新途径。本文的研究结果,对航空发动机整体焊接叶盘疲劳寿命的预测具有重要意义和应用参考价值。
With the rapid development of aero science, it requires the aero engine ratio of traction to weight is higher and higher. Since last century, whole welded blisc has been applied in aero engine new developed. Nowadays, it is still one of the problems of welded structure life forecasting in aero engine whole welded blisc application. Taking Ti alloy TC11 electron beam welded work-piece as research object, which is the conventional material of aero engine compressor blisc, the fatigue damage evolution law of fatigue damage action in the area of welded joint based on damage mechanics theory is analysed, and fatigue damage model, which macro-parameter and micro-damage characteristics are related, with fractal geometry-a new conception of modern mathematics is set up in this paper. It tries to research the measuring method of fatigue fracture fractal dimension and the relationship of fractal damage variable with fatigue life. It also sets up the welded joint fatigue damage fractal evolution equation. For weld stru
    cture fatigue life forecasting, it has important theory meanings and practical applying value. The innovations are following aspects:
    1. According to fractal propagation characteristics of fatigue crack, it defines structure fatigue fractal damage variables and sets up the structure fatigue damage fractal evolution mode which macro and micro are consistent. The mode not only reflects damage microstructure traits, but also makes it easy to analyze and research macro parameters.
    2. According to the result of fatigue experiment, it gets fatigue traits of Ti alloy TC11, which is the relationship curve of the maximum loading strain range with fatigue life. According to the measuring result of fatigue fracture fractal dimension, it gets the relationship curve of Ti alloy TC11 welded joint fracture fractal dimension with loading strain range, and the method of fatigue life forecasting fatherly.
    3. According to the model of structure fatigue damage fractal evolution, the relation between macro-damage variable, fractal damage variable and fatigue life can be found, and the fatigue damage evolution equation of Ti alloy TC11 welded joint can be built, and the method of more forecast fatigue damage is given.
    4. The research of metal fatigue fractal dimension measuring is in the study of material
    
    
    characteristic analyzing. It demonstrates: the selection of magnifying multiple and measuring size are different to material structure, and the measured result is greatly influenced. The selections of electron microscope magnifying multiple and measuring size in fatigue fracture fractal measure are studied in this paper, and the improved treatment of secondary electron lines scanning fractal dimension, is applied successfully to the measuring of Ti alloy welded joint fracture fractal dimension and the valuable selective range of fractal dimension measuring parameter is got, which is very important to further research.
    Using fractal dimension defining damage variable and building macro and micro-fatigue damage evolution model of structure are suggested in this paper. The variety of damage which is not easy macro-measured to Ti alloy TC11 whose material structure is high intensity can reflect fatigue damage process effectively by studying the relation between fracture and structure life. So, it is the new method of researching welded structure fatigue damage process. The obtained result is very important to the life forecasting of welded blisc of aero engine, and has appliance reference to the future.
引文
[1] 陈光.整体叶盘在国外航空发动机中的应用.航空发动机.1999(1):1~6,44
    [2] 王俊杨.我国飞机结构抗疲劳断裂设计技术研究概况.结构强度研究,1997(2):1~7
    [3] Hongoh et al. Fracture mechanics Assessment of EB-Welded Blisked Rotors. Canadian Aeronautics and Space Journal, 1990,36(1)
    [4] J A M Pinho da Cruz, J D M Costa et al. Fatigue life prediction in AlMgSi lap joint weldments. Int. J. Fatigue. 2000. 22(7): 601~610
    [5] 勒征漠,杨雷.“八五”重大基金项目研究进展报道——“材料损伤、断裂机理和宏观力学理论”子课题.力学进展,1996,20(4):558~562
    [6] 勒征漠,杨雷.“八五”重大基金项目研究进展报道——“材料损伤、断裂机理和宏观力学理论”子课题.力学进展,1997,27(1);122~130
    [7] 赵少汴,王保忠.抗疲劳设计.机械工业出版社,1997
    [8] 徐灏,疲劳强度.高等教育出版社,1988
    [9] Chaboche J L. Continuum damage mechanics: Present state and future trends. Nucl Eng. Design. 1987, 105:19~33
    [10] Kachanov L M. Introduction to Continuum Damage Mechanics. Martinus Nijhoff Publishers. Dordrecht. The Netherlands, 1986
    [11] 余寿文,冯西桥.第三届国际细观力学会议简介.力学进展.2000,30(4):627~629
    [12] Lemaitre J. How to use damage mechanics. Nuclear Engng and Design. 80, 1984
    [13] 左建政.GH150高温合金及其焊接结构的疲劳损伤寿命预测.西安交通大学博士论文,1996
    [14] Curaey T.R.Fatigue of Welded Structures, Cambridge University Press,2nd ed. 1979
    [15] Radag D.Design and Analysis of Fatigue Resistant Welded Strucyures,Woodhead Publishing Ltd. Abington, Combridge. 1990
    [16] Wabg T.J.Micro-and macroscopic damage and fracture behaviour of welding coarse grained heat affected zone of a low alloy steel:mechanisms and modelling,Engng.Fract.Mech.. 1993,45(6):799~812
    [17] Wang T.J.A continuum damage model for ductile fracture of weld heat affected
    
    zone,Engng.Fract.Mech.,1991,40(6): 1075~1082
    [18] 程光旭.焊接接头的疲劳损伤与断裂研究及一种新的损伤变量.西安交通大学博士学位论文.1993.4
    [19] Wang J.L,Lou Z.W, Ming X,Zuo J.Z.A DOF expanding method for connecting solid and shell elements,Communications Numer.meth.Engng. 1996
    [20] 林鸿溢,李映雪.分形论…奇异性探索.北京:北京理工大学出版社.1982
    [21] 曾文曲.刘世耀等译,肯尼思.法尔称内[英]著.分形几何——数学基础及其应用.沈阳:东北工学出版社,1988
    [22] 谢和平,张永平.分形几何——数学基础与应用.重庆:重庆大学出版社,1991
    [23] Pande C.S.and Richards L.E.et al.Fractal characterization of fractured surfaces. Acta Metall. 1987,35(7): 1633~1637
    [24] Mandelbrot B.B,Passoja D.E.and Paullay A.J.Fractal character of fracture surfaces of metals,Nature .1984,308:721-722
    [25] 董聪,杨庆雄等.疲劳断口分维测量若干问题的探讨.西北工业大学学报.1994,12(11):514~517
    [26] 卢春生.断面分形研究中的几个问题.力学进展.1996.26G0):353~361
    [27] Coster M.and Cherrnant J.L.Recent developmems in quantitative fractograpy,lntemationl Metals Reviews, 1983,28(4):228~249
    [28] He,,man H.J.Fractal cractal creaks in a kinetic fracture model.Physica D,1989,38:192
    [29] Zhang S.Z.and lung Q.W.Fractal dimension and fracture toughness.J. Phys. D:Apply Physics. 1989,22:790~793
    [30] Termonia Y.and Meakin P.Formation of fractal creaks in a kinetic fracture model.Nature. 1986,320:429~431
    [31] Long Q.Y.Li S.Q.and Lung C.W.Studies on the fractal dimension of a fracture surface formed by slow s tablecrack propagation.Apply Physical. 1991,21:602~607
    [32] 陈道伦,王中光等.双相钢疲劳断口的分形分析.材料科学进展.1989,3(2):115~120
    [33] 穆在勤,龙期威.金属断裂表面的分形(fractal)与断裂韧性.金属学报.1993,24(2):142~145
    [34] 谢和平.脆性材料中的分形损伤.机械强度.1995,17(2):75~82
    [35] 苏辉,张玉贵等.金属断口的分形分析.金属学报.1989,25(6):A466~A468
    [36] 江来蛛.催蓖.应用分形几何研究钢的冲击韧性与易切削参数的相关性.金属学报.1992,28(1):A27~A33
    
    
    [37] 李学良,林建新.易切削钢冲击断口分维的随机分形.金属学报.1994,30(8):A38l~A384
    [38] 陈浩,潘春旭等.焊接断口分形测量方法研究初探.武汉交通科技大学学报.1999,23(3):259~262
    [39] 肖林,固海澄.zr及Zr——4合金的循环耗散能、分形维数与疲劳寿命的关系.金属学报.1998,34(7):705~712
    [40] 易成,沈世钊.分形理论在工程材料疲劳、断裂性能研究中的应用.哈尔滨建筑大学学报.1999,32(5):11~15
    [41] Mandlbrot B B.Fractal:Form, Chance and Dimension.San Francisco:Freeman.1977
    [42] 陈颐、陈凌.分形几何学.地震出版社,1998,7
    [43] 张济忠.分形.北京:清华大学出版社.1995.8
    [44] 龙期威.金属中的分形与复杂性.上海科学技术出版社.1999.9
    [45] Mandlbrot B B.The Fractal Geometry of Nature. San Francisco:Freeman.1982
    [46] Underwood E.E and Chakrabortty, Fractography and materials science,ASTM STP733,1981 ;337-354
    [47] Milman VY, Stelmashenko NA.Blumenfeld R.Progress in Materials Science.Oxford:Pergamon, 1994 ;38:425
    [48] 华中理工大学编.分形理论及其应用(二).武汉:华中理工大学出版社.1991;106
    [49] Pande C.S,Richards L.Rand Smith S.Fractal characteristics of fractured surfaces,J.Material Science Letters.1987;6:295—297
    [50] 卢春生.断面分形研究中的几个问题.力学进展.1996,26(30):353-361
    [51] 穆在勤,龙期威.断口分维测试方法及一些问题.物理测试.1992;4:29-36
    [52] Mu Z.Q and Lung C W et al.Permeter-maximum diameter method for measuring the fractal dimension of fractured surface.Physical Review B. 1993 ;48(10):7679-7681
    [53] Underwood E.E and Chakrabortty, Fractography and materials of fractured syrfaces,J.Material Science Letters. 1987;6:295-297
    [54] Underwood E.E and Banerji K. Fractals in fractography.Material Science and Engineeing. 1986;80(1): 1
    [55] 陈世朴,王永瑞.金属电子显微分析.北京:机械工业出版社.1982:170
    [56] Huang Z H,Tian J F and Wang Z G. Analysis of fractal characteristics of fractured surfaces by secondary electron line scanning.Material Science and Engineering. 1989;A118:19-24
    [57] Huang Z H,Tian J F and Wang Z G. Study of irregular surfaces by secondary
    
    electron line scanning,Material Science and Engineering, 1990.A 129:L1-L4
    [58] Li X W and Tian J F et al.Quantitative characterization of fracture surface roughness using secondary electron line scanning method. J.Materials Science letters. 1996:15:2137-2140
    [59] 肖林,顾海澄等.鋯-4合金高温疲劳断口分形特征二次电子线扫描法研究.稀有金属材料与工程.1995;24(2):22-26
    [60] 周善民,胡小波.拉伸断口表面分形.分析测试学报.1994:13(50):83-85
    [61] 余寿文.冯西桥.损伤力学.清华大学出版社.1987.12
    [62] 王军.损伤力学的理论与应用.科学出版社.1999.4
    [63] ChabocheJL.力学进展.1989,19(1),pp.130
    [64] Guang-xu Cheng, Zhi-wen Lou. A new damage variable for low-cycle fatigue of metallic materials. Engng. Fract. Mech. 1994, 48(2):281-287
    [65] Kachanov LM. Introduction to Continuum Damage Mechanics. The Netherlands:Martinus Nijhoff Dordrecht, 1986
    [66] 杨光松.损伤力学与复合材料损伤.国防工业出版社.1995.3
    [67] 谢和平,鞠杨.分维数空间中的损伤力学初探.力学学报,1999;31(3):300-310
    [68] 左建政.GH150高温合金及其焊接结构的疲劳损伤与寿命预测,博士学位论文。西安交通大学出版社.1996
    [69] Digwa T, Tpkaji K,Ohya K. The Effect of Microstructure and Fracture surface Roughness of Fatigue Crack Propagation in a Ti-6Al-4V Alloy. Fatigue Engng Mater. Struct, 1993; 16(9):973-982
    [70] Suresh S. Crack Deflection: Implication for the Growth of Long and short Fatigue Cracks, Metall. Trans, 1983: 14A: 2375-2385
    [71] Xie H.Fractals in Rock Mechanics Rotterclam: A.A.Balkema publishers, Chapters 13-14
    [72] 余天庆,钱济成.损伤理论及其应用.国防工业出版社.1993.10
    [73] Mingzhe Shi, Mingwen Jiang. An inverstignation on the ductile damage evolution law of high-cycle fatigue. Engng. Fract. Mech. 1990, 40(3):393-397
    [74] Tiejun Wang, Zhiwen Lou. A continue damage modle for weld heat affected zone under low cycle fatigue,Engng.Fract.Mech. 1990,37(4):825-829
    [75] 楼志文.损伤力学基础.西安交通大学出版社.1991.9
    [76] 谢和平,鞠杨.经典损伤定义中的“弹性模量法”探讨.力学实践,1997:19(2)
    [77] Kage M,Miller K J, Smith RA . Fatigue Crack Initiation and Propagation in a low-Carbon Steel of Two Different Crain Size. Fatigue Tract, Engng Hater. Struct,
    
    1992;15(8):763-774
    [78] 谢和平,黄约军.分形裂纹扩展对材料疲劳行为的影响.机械强度.1996,18(1):1-5
    [79] 卢春生,白以龙.材料损伤断裂中的分形行为.力学进展.1990;20(4):468-477
    [80] Panagiotopoulos PD.Fractal geometry in solids and structures. Inter J Solids. Struct, 1992;29:2159-2175
    [81] Mingzhe Shi. An investigation on the ductile damage evolution law of high cycle fatigue. Engng Fract Mech. 1993;46(3):393-397
    [82] Guang-xu Cheng, Jian-zheng Zuo. Continue damage model of low-cycle fatigue and fatigue damage analysis of welded joint, Engng Fract Mech. 1996;55(1):155-161
    [83] X.CHEN and Q. GAO and X.F.SUN, Low-cycle fatigue under Non-proportional loading. Fatigue Fract. Engng. Mater. Struct, 1996,19(7):839-854
    [84] June wang . A continuum damage mechanics model for low-cycle fatigue of metals, Engng Fract Mech, 1992,41(3):437-441
    [85] 北京航空材料研究所.材料数据手册.中国航空发动机总公司
    [86] GB2656—81.焊缝金属和焊接接头疲劳试验法.国家标准总局.
    [87] 高镇同.疲劳性能测试.国防工业出版社.1980.1
    [88] GB2975—82.钢材力学及工艺性能试验取样规定.国家标准总局.
    [89] GB2649-81.焊接接头机械性能试验取样法.国家标准总局.1982-01-1
    [90] GB3075-82.金属轴向疲劳试验方法.国家标准总局.1982-05-10
    [91] 赵名洋.应变疲劳分析手册.科学出版社.1987
    [92] S.R.斯旺森.疲劳试验.上海科学技术出版社.1982.6
    [93] X. Chen, Q. Gao and X.F. Sun. Low-cycle fatigue under non-proportional loading. Fract. Engng. Mater. Struct. 1996,19(7):839~854.
    [94] J.Y.Yungand EV.Lawrence.Analytical and graphical aids for the fatigue design of weldments.Fatigue Fract.Mater.Struct.1995,8(3)223-241
    [95] 陈家权,谢里阳,徐灏.15MnVN钢焊接接头疲劳性能的试验研究.机械强度.1998,20(1):75~76,79
    [96] Frost N E,Denton K.The fatigue strength of butt-welded joints in low-alby structural steels.British welding Journal, 1967,14(4): 157~163
    [97] Verreman Y, Nie B.Short crack growth and coalescence along the toe of a manual fillet weld.Fract.engng mater.strut.,1991.14(2/3):337-349
    [98] 聂北刚.焊疲劳裂纹的“萌芽”.机械强度.1998.20(2):108-111,141
    [99] Wahab M A Fatigue life estimation of welded structures Ph D thesis,canada:The
    
    Univ of Alberta, 1984
    [100] 徐灏.疲劳强度.高等教育出版社.1988.9
    [101] 吕涛,杨晓华等.2Crl3钢低周疲劳损伤演变规律研究.机械强度.1999,21(2):118~121
    [102] Chaboche J L,Lensne P M. A non-liner continuous fatigue damage model.Fatigue Fract.engng.Mater.Struct., 1988,11 (1): 1~17
    [103] Wang T J,Lou Z W.A continuous damage model for weld heat affected zone under low cycle fatigue loading,Engng.Fmct.mechs. 1990,37(4):825~829
    [104] 马红征,黄汉良等.Ti-31合金的低周疲劳性能研究.稀有金属材料与工程.1997,26(1):28~30
    [105] 陆毅中.工程断裂力学.西安交通大学出版社.1987.3
    [106] 上海交通大学.金属断口分析.国防工业出版社.1979.7
    [107] 中国机械工程学会.疲劳失效分析.机械工业出版社.1987.10
    [108] 李亚国,刘海林.TCll钛合金疲劳性能及其断口特征.稀有金属.1998.22(4):264~269)
    [109] 业成.分形论定量金相技术及其在热壁加氢反应器中的应用.南京化工大学博士论文.2001.5
    [110] Li X .W. and Tian J.F.et al. Quantitative analysis of fracture surface by roughness using secondary electron line scanning method, J.Materials Science letters, 1996,15:2137-2140
    [111] 李小武,天继半等.断口表面粗糙度的定量分析.金属学报,1995,31(37):B311~B316
    [112] Huang Z.H., TianJ.EandWangZ.G., study of irregular surfaces by secondary electron line scanning, Material Science and Engineering, 1900, A129:LI-L4
    [113] 谢和平,张永平等,分形几何——数学基础与应用。重庆:重庆大学出版社.1991
    [114] Danskardt R.H.etal. Acta Metall.Mater 1990;38:143
    [115] Wang Z.G.etal.Scripta Metall 1988;22:823
    [116] 董连科.分形理论及其应用.沈阳:辽宁科学技术出版社,1991
    [117] 陈浩,潘春旭.焊缝断口分形测量方法研究初探.武汉交通科技大学学报.1999;23(3):259~262.
    [118] 张红宝,许详.用扩张变换法测量金属断裂表面的分形维数.南方钢铁.1995;(1):19~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700