用户名: 密码: 验证码:
东川稀矿山式铜矿地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀矿山式铜矿是指赋存在昆阳群因民组地层中的铜铁矿床,其大地构造背景属于元古代裂谷带,大陆裂谷是超大型铜等多金属矿形成和分布的有利环境,在裂谷下部常发育异常地幔和岩浆源,裂谷空间上的多层次性使矿床具有明显垂向分带特征,其演化时间的长期性、脉动性和继承性便于多期成矿作用相互叠加、矿质的高度聚集。稀矿山式铜矿以落雪矿区稀矿山矿段最为典型,主要分布在因民落雪大乔地—稀矿山、滥山、磨子山,滥泥坪6—4巷、白锡腊和拖布卡地区。该类矿床广布于康滇地轴南段东川、武定—罗茨、元江、易门狮子山、金沙江南岸的花生坪、红门厂等地,已知中型铜矿床1处(稀矿山)、中型铁矿床2处(鹅头厂、笔架山)、小型铜(铁)矿床多处,上世纪90年代易门狮子山该类矿床的发现,表明该类矿床在东川-易门具找矿潜在远景。
     本文通过对东川矿区稀矿山式铜矿的常量元素、微量元素、包裹体、同位素及同位素定年等地球化学研究,获得以下认识:
     1.东川矿区地层(包括其下覆基底)和晋宁期碱基性岩中Cu等成矿元素背景值较高,且在蚀变过程中均能析出Cu等成矿元素。矿床中Cu等成矿物质来源复杂,以深源为主,部分来源于地层(因民组紫色层和落雪组白云岩)及基底地层;矿区内的退色蚀变作用可能是混合流体碱质交代改造作用的结果,对铜矿形成影响明显,是铜矿化的标志;
     2.该类矿床成矿流体属于中高温、中高盐度、高密度Na~+(K~+)Ca~(2+)—SO_4~(2-)(Cl~-)型,以深部岩浆水为主,混有大量海水和变质水。矿床中发现了富N_2包裹体,可能是矿床形成时,深大断裂活动、碱基性岩浆带来地球深部(上地幔和下地壳)物质并形成的成矿流体,在氧化-去挥发分作用过程中所形成;
     3.铁矿体被铜矿体包围,铁矿石被铜矿细脉穿插,说明铜矿化的形成晚于铁矿化。黄铜矿单矿物的Re-Os同位素年龄研究表明其成矿年龄为826±230Ma,接近矿区碱基性岩年龄,与昆阳裂谷内其它类型铜矿成矿时代相当,均属于晋宁—澄江期;
     4.东川矿区晋宁-澄江期碱基性岩侵入活动明显,常作为因民组复杂角砾岩胶结物和岩脉(体)产出,多分布于深大断裂及其派生的次级构造附近,明显受南北向小江深大断裂走滑运动引起的右行旋扭及其派生构造控制,与“落因破碎带”和“铜矿分布”较吻合,均为“Z”字形。表明东川矿区铜矿形成与深大断裂及其派生次级构造和晋宁—澄江期碱基性岩侵入活动关系密切;
     5.昆阳裂谷内的多数铜矿同位素成矿年龄多集中在9.0亿~6.5亿年之间,属于晋宁-澄江期,与Rodina大陆裂解时限相当。表明裂谷内铜矿床的形成可能与Rodinia大陆裂解有关。
     因此,总结东川稀矿山式铜矿成矿模式为沉积(Fe、Cu)—热液叠加(Cu)改造:
     晋宁-澄江期,小江深大断裂发生走滑运动,在东川矿区造成右行旋扭及其派生构造,形成“Z”字形落因破碎带,同时来自深源(下地壳或上地幔)碱基性岩浆侵入,不仅带来了大量Cu等成矿物质,更重要的是提供了热源,促使地层水(落雪组白云岩和因民组紫色层)循环,与富碱(Na和K)岩浆水混合,形成富碱中高温高盐度流体。因民组紫色层与其底部角砾岩接触带,具有较高的空隙度和渗透率,有利于成矿流体的运移和成矿。在这种混合流体作用下,地层中Cu等成矿物质析出,叠加改造了初始铜矿化,最终形成稀矿山式铜矿。
Xikuangshan Type Copper Ore Deposit named those Fe-Cu deposits hosted in Yinmin Formation, Kunyang group, which located in Kunyang rift valley and the edge of southwest yangzi platform. The best example is Xikuangshan allotment, Luoxue ore area, Dongchuan, Yunnan. The type deposit spread in south Kunyang rift valley, include Dongchuan, Wuding-Luoci, Yuanjiang, Yimen, Huashengping, Hongmenchang and so on. 90's it was found in shizishan, yimen, indicated that the type deposit is well explorative prospect in Dongchuan-yinmen.
    By sum up the data of trace elements, isotopic elements, fluid inclusions and minerogenetic age et al., the following new knowledge are acquired:
    a) The Cu background of stratum and Jinningian alkali basite is abnormal high, which could be liberated from those rocks during alteration. Cu et al. minerogenetic elements, which main came from magmatic rock, some from stratum (Yinmin Formation and Luoxue Formation) and its basement rocks. Discolorative alteration, the mark of Cu mineralization, is the result of alkali fluid metasomated stratum rocks.
    b) Ore-forming fluid belong to Na+ (K+) Ca2+-SO42- (CD type fluid of middle-high temperature, salinity, and high density. It was consist of magmatic water came from deep source, some seawater and metamorphic water. N2 -rich inclusions were first founded in ore area; it may form by upper mantle or lower crust material during oxidation-devolatilization reactions.
    c) Copper ore body surrounded iron ore body; Iron ore were interpenetrated by copper ore stringer vein, which indicated that copper form late than iron. Metallogeneti age is 826± 230Ma, similar with the age of alkali basite and age of other copper deposit in Dongchuan ore area, which belong to Jinningian.
    d) The invasion of Jinningian-chengjiangian alkali basite were unambiguous, the distribution of those rocks form 'Z' in shape, which similar with Luoyin fracture zone and the distribution of copper deposit. It shows that copper deposits were controlled by discordogenic fault and its derived sub-structure, and there are relationship between copper deposit and Jinningian-chengjiangian alkali basite.
    e) Most of minerogenetic age of copper deposit, which located in Kunyang rift valley, belongs to Jinningian-chengjiangian (between 900-650Ma), similar with the time limit of breaking- up of Rodinia. It indicates there are close relationship between the forming of copper deposit in Kunyang rift valley and the breaking-up of Rodinia.
    The minerogenetic model of Xikuangshan type copper deposit can be concluded that: In Jinningian-chengjiangian, the activity of Xiaojiang discordogenic fault form dextrorotation sub-structure in Dongchuan ore area. Luoyin fracture zone were formed ('Z' in shape). Alkali basite, which came from upper mantle or lower crust, invaded through those structure, which not only bring Cu et al mineralizing elements, but also the most important is that thermal energy. It cycled the formation water (Yinmin Fonnation and Luoxue Formation), and form alkali-rich, middle-high temperature and salinity fluid mixed with alkali-rich magmatic water. There were high rate of percolation and well voidage in the contact zone between Yinmin purple stratum and Yinmin rubblerocks, which is in favor of the transposition and mineralization of minerogenetic fluids. Cu et al minerogenetic elements were liberated from stratum by the affection of the mixed fluid, overprinted and alternated the original mineralization, and form Xikuangshan type copper deposit.
引文
别风雷等,现代海底多金属硫化物矿床,成都理工学院学报,2000,27(4总100):335-342
    布朗,以沉积岩为容矿岩石的世界级层状铜矿的特征、成因概念和控矿因索,国外地质科技,1997,(5):21-26
    常向阳,朱柄泉,孙大钟等,东川铜矿床同位素地球化学研究:Ⅰ.地层年代与铅同位素化探应用,地球化学,1997,26(2):32-38
    陈国达,裂谷构造研究现状一斑,国外地质,1985,(4)
    陈和生,东川矿区隐伏铜矿床(体)地质特征和找矿前景分析,西南矿产地质,1989,3(2):48-54
    陈和生,东川辉长岩型铜矿地质特征及其找矿意义,云南地质,1998,17(1):73-80
    陈好寿,冉崇英.康滇地轴铜矿床同位素地球化学.北京:地质出版社.1992
    陈守武,贾伟光,韩仲文,中国两种VHMS型银矿的基本特征,贵金属地质,1998,7(1):20~31
    陈天佑,东川矿区前寒武系昆阳群因民组下伏地层层位的探讨,西南矿产地质,1990,4(3):28-32
    陈天佑,东川铜矿:二轮找矿及预测,西南矿产地质,1992,(1):72-79
    陈天佑,东川地区昆阳群地层层序研究的评述及今后工作建议,云南地质,1993,12(1):126-129
    从柏林,岩浆活动与火成岩组合,北京.地质出版社,1979
    戴恒贵,康滇地区昆阳群和会理群地层、构造及找矿靶区研究,云南地质,1997,16(1):1-39
    D.K.Bailey,1983,裂谷的化学和热演化,地质地球化学,1985,(8)
    大本洋.海底破火山口:火山成因块状硫化物矿床形成的一个关键.国外地质科技.1980(3)
    菲拉托夫.火山-沉积建造黄铁矿型多金属矿床的典型模式(矿床模式专辑)续篇.地质矿产部情报研究所,1990
    高名修,大陆裂谷,国外地质,1985,(4)
    高坪仙,对东非铜矿带与中国东川铜矿带某些地质特征对比,国外前寒武纪地质,1996,(2):49-53
    龚琳,何毅特,陈天佑等,云南东川元古宙裂谷型铜矿,冶金工业出版社,1996,48,169~170
    顾连兴,何金祥,胡文喧,徐克勤,陆壳成熟度对干华南块状硫化物矿床的成分效应。地质学报,1997,71(2):161~169
    何国朝,杨成奎,东川裂谷因民期火山—岩浆活动特征,矿产与地质,1997,11(4):236-242
    何明勤,冉崇英.宋焕斌等,东川—易门铜矿床的有机地球化学,有色金属矿产与勘查,1997,6(5):263-267
    何毅特,东川落因铜矿床成因探讨,西南矿产地质,1992,(1):1-8
    何毅特,东川铜矿成矿系列、矿床类型及成矿模式,云南地质,1996,15(4):319-329
    胡维兴、孙大中.中条山早元古代铜矿成矿作用与演化.地质学报,1984(3)
    胡受奚、周顺之.斑岩铜矿的物质来源及区域成矿规律.南京大学学报,1984(4)
    胡受奚,胡文暄,郭继春,张立公,叶瑛,找寻、勘探和评价块状硫化物型铜矿值得注意的几个问题,有色金属矿产与勘查,1995,4(1):15~22
    华仁民,阮惠础,刘燕,黄耀生,东川铜矿的碳、氧同位素地质特征,桂林冶金地质学院学报,1988,8(1):57-61
    华仁民,东川式层状铜矿的沉积—改造成因,矿床地质,1989,8(2):3-12
    华仁民,阮惠础,倪培,东川地区澄江期碱基性火成岩的特征及其与裂谷作用关系的初步研究,南京大学学报(地球科学),1990,(1):85-91
    华仁民,论因民组的若干沉积建造特征,沉积学报,1993,11(1):32-40
    华仁民,东川式层控铜矿中非层状矿体的形成机制初议,地质找矿论丛,1993,8(4):1~8
    黄崇珂,白冶,朱裕生等.中国铜矿(下册).北京:地质出版社.2001
    黄仲权,昆阳群的滑覆构造的控矿作用,云南地质,1996,16(1):40-51
    黄仲权,昆阳群滑塌构造的控矿作用,云南地质,1997,(1):40-51
    加布利娜,大型含铜砂页岩型矿床的形成特点,地质科技动态,1998,(6总414):1~5
    蒋家申,李天福,陈贤胜,滇中元古宙昆阳裂谷系铜矿成矿系列,云南地质,1996,15(2):205-219
    蒋家申,东川地区地质找矿研究问题,云南地质,1998,17(1):46-56
    李朝阳,徐贵忠,胡瑞忠等,中国铜矿主要类型特征及其成矿远景,北京.地质出版社,2000
    李天福,东川矿区“小溜口组”地层特征及与因民组的接触关系,云南地质,1993,12(1):1-11
    李天福,蒋家申,陈贤胜,易门狮子山矿床稀矿山式铁铜矿特征及其找矿意义,有色金属矿产与勘查,1996,5(2):68-74
    李希勒,再论建立康滇地轴区中晚元古代层型剖问题,云南地质,1999,18(1):89-91
    李志群,蒋家申,林文达等,东川式铜矿地球化学研究,云南地质,1994,13(1):23-32
    李志群,中元古界昆阳群因民组铁铜矿的成矿地球化学研究,矿产与地质,1996,10(2):100-107
    李志群,昆阳群因民组铜矿床的成矿地球化学,云南地质,1996,15(2):230-237
    李志伟,浅议“东川式”铜矿床成因,云南地质,1992,11(1):47-51
    李志伟,团敏,钱祥贵,滇中昆阳群地层岩石极低级变质作用特征及构造环境意义,云南地质.2001,20(4):369-375
    
    
    李志伟,钟维敷,田敏,滇中昆阳群刺穿体构造形成机制研究,云南地质,2002,21(3):230-249
    念红,康滇地轴云南段遥感地质特征及找矿方向,云南地质,1998,17(2):145-153
    林文达,李志群,东川澜泥坪矿区的热水沉积岩及其硅质岩铜矿,西南矿产地质.1995.009(001).-50-65
    刘继顺,吴延之,段嘉瑞,东川铜矿田喷流沉积成矿机制,中南工业大学学报,1996,27(1):8-12
    刘晓东,周涛发,块状硫化物地质地球化学特征与形成机理,合肥工业大学学报(自然科学版),1999,22(4):44~47
    刘英俊,曹励明主编,元素地球化学,北京.科学出版社,1984
    Lizasa,K ,海底硅质破火山口中的黑矿型多金属硫化物矿床,海洋地质动态,1999,(4总197):12~13
    罗君烈,云南中元古代早期铜铁矿床的成矿类型,云南地质,1995,14(4):281-290
    罗晓玲,国内外铜矿资源分析,世界有色金属,2000,(4)):4-10
    吕世琨,戴恒贵,康滇地区建立昆阳群(会理群)层序的回顾和重要赋矿层位的发现,云南地质,2001,20(1):1-24
    Lurye,A.M.,含铜砂页岩建造中铜的富集条件,国外矿产地质,1988.(2):8~9,17
    马杏南等,中国大陆壳的早期构造演化,国际交流地质学术论文集(一),北京:地质出版社,1980
    P.J.Murphy,G.Meyer,孙岩晓,大西洋中脊超镁铁质岩中热液硫化物中的金-铜组合,贵金属地质,2000,(3)
    潘水橹等,攀西裂谷火成岩组合的矿物学、岩石学及其与裂谷演化的关系,武汉地质学院学报,1986,Vol.11
    钱荣耀,东川铜矿中黝铜矿族矿物研究,云南冶金,1992,(5):22-26
    邱华宁,孙大钟,朱炳泉等.东川铜矿同位素地球化学研究:Ⅱ.Pb-Pb、40Ar-39Ar法成矿年龄测定.地球化学.1997.26(2):39-45
    邱华宁,孙大钟,朱炳泉等.东川汤丹铜矿床石英真空击碎及其粉末加热40Ar-39Ar年龄谱的含义.地球化学.1998.27(4)335-343
    邱华宁,孙大钟,朱炳泉等.东川铜矿硅质角砾40Ar-39Ar定年探讨.地球化学.2000.29(1):21-27
    邱华宁,J.R.Wijbrans,李献华等.东川式层状铜矿40Ar-39Ar成矿年龄研究:华南地区晋宁-澄江期成矿作用新证据.矿床地质.2002.21(3):129-136
    冉崇英,康滇地轴层控铜矿床的成矿机理,北京.地质出版社,1988
    冉崇英、刘卫华,康滇地轴铜矿床地球化学与矿床层楼结构机理,北京.科学出版社,1993,1-39
    任纪舜,中国大地构造及其演化,1981
    斯克里普琴科,N.S.,砂页岩铜矿床的矿化分带和富集作用,西南矿产地质,1988,2(2总6):59~63
    孙大中,胡维兴.中条山前寒武纪年代构造格架和年代地壳结构.北京:地质出版社,1987
    孙克祥,邓永寿,滇中地区昆阳群中的刺穿构造,云南地质,1998,17(1):31-45
    谭凯旋,中国南方砂页岩铜矿床地球化学和成矿动力学研究(摘要),地质地球化学,1995,(6总220):97~99
    谭凯旋,张哲儒,王中刚,地洼盆地砂岩铜矿床成矿作用的化学动力学和热力学研究,1996,(3)
    谭凯旋,砂岩铜矿地球化学和成矿动力学,北京:地震出版社,1998,163页
    谭凯旋,龚革联,龚文君,李小明,四川盆地西南缘二叠系页岩铜银矿床地质地球化学特征和流体对流成矿机制.大地构造与成矿学,1999,(3)
    唐红松,我国铜镍硫化物矿床的稀土元素地球化学特征,矿产与地质,1998,12(4总66): 225~229
    涂光炽等著,中国层控矿床地球化学,第一卷,北京:科学出版社,1984
    涂光炽等著,中国层控矿床地球化学,第二卷,北京:科学出版社,1987
    涂光炽等著,中国层控矿床地球化学,第三卷,北京:科学出版社,1988
    涂光炽等,中国超大型矿床(Ⅰ),北京:科学出版社,2000:95-117
    涂光炽等,中国超大型矿床(Ⅱ),北京:科学出版社,2003
    王德滋,周新民,火山岩岩石学,北京,科学出版社,1982
    王登红,块状硫化物矿床的地球化学找矿标志,地质科技情报,1994,13(4):81~85
    王登红,铜经济地质评述,地质科技情报,1997,16(2):62-66
    王登红等,与海相火山作用有关的铁-铜-铅-锌矿床成矿系列类型及成因初探,2001,矿床地质.2001,2
    王立本等,安基山和铜山铜(钼)矿床中辉钼矿的铼.锇同位素年龄及其意义,矿物岩石学杂志,1997,(2)
    王林江,东川层控铜矿床的地质地球化学特征,云南地质,1989,8(3、4):231-238
    王中刚,于学元,赵振华等编著,.稀土元素地球化学,北京:科学出版社,1989.76-212
    魏民,姚永慧,大红山式铜铁矿床地球化学找矿模型研究,地球科学.中国地质大学学报,1998,(2)
    邬介人等,海相火山-沉积建造区铜、多金属成矿系列及铁.铜型矿床的勘查前景,地质与勘探,2000,(6)
    吴健民,黄永平,东川落雪式铜矿的含铜“礁—硅岩组合”与海底喷流热液成矿,矿产与地质.1995,9(3):168-173
    吴健民,黄永平,黎功举,扬子地台西缘带大型铜矿床的“叠加裂谷—多源—热水”成矿作用。矿产与地质,1996,10(1):17-21
    吴健民,黄永平,稀矿山式铁铜矿床与奥林匹克坝式铜多金属矿床的对比研究,矿产与地质,1998,12(2):
    
    79-85
    吴懿德,李希勒,云南昆阳群的两种底辟构造,地质学报,1981,(2):105-117
    谢世业,云南东川中元古宙裂谷型铜矿地质、地球化学及成矿模式的研究,矿产与地质,1995,9(3):174-179
    谢世业,黄有德,何国朝,云南东川老山式铜矿地质地球化学特征,有色金属矿产与勘查,1996,5(4):219-226
    肖新建,倪培,论喷流沉积(SEDEX)成矿与沉积.改造成矿之对比,地质找矿论丛,2000,(3)
    熊兴武,候蜀光,薛顺荣等,滇中昆阳群因民组地层学与沉积古地理,武汉:中国地质大学出版社,1995
    徐一仁,张素华,论砂岩铜矿金属矿物分带及其在找矿中的应用,有色金属矿产与勘查,1994,3
    徐一仁,张素华,论地洼构造对砂岩铜矿床的控制作用,大地构造与成矿学,1996,2
    徐有生,东川铜矿的实验地球化学研究及其成困探讨(摘要),地质地球化学.1993.(5).-98-99,103
    薛步高,东川式铜矿伴生组分地质特征,地质与勘探,1995,31(3):31-37
    薛步高,论因民组与东川式层状铜矿的成因联系,云南区域地质,1995,(14):37-46
    薛步高,因民组与东川式层状铜矿的成因联系,云南地质,1996,15(2):220-229
    薛步高,论因民组岩性与矿化特征,西南矿产地质.1997.11(1).-26-34
    薛步高,论东川脉状富铜矿的历史和现实意义,矿产与地质,1997,11(4):217-224
    薛步高,再论易门—元江铜矿区绿汁江组狮山段的层位归属,云南地质,1998,17(1):100-108
    薛步高,从东川铁架山铁矿层位探讨昆阳群层序,云南地质,1999,13(4):469-475
    杨柏林,东川式层控铜矿的岩石反射光谱信息及意义,地质科学,1989,(1):82-87
    杨成奎,研究了东川滥泥坪矿区因民组项部硅质岩成因及其找矿意义,地质找矿论丛,1996,11(3):27-35
    杨应选,李复汉,覃嘉铭.西昌—滇中前寒武系层控铜矿,重庆:重庆出版社.1988
    杨应选,仇定茂,蕨梅英等,西昌—滇中前寒武系层控铜矿,重庆.重庆.出版社,1998
    易门地质勘探队(李静仁),易门地区的紫色角砾岩,西南冶金地质,1978,(3):120-128
    于际民,蒋少涌,伊比利亚型——一种新类型块状硫化物矿床地质地球化学及成因,地质找矿论丛,2000,15(3总59):246~253
    张刚生,李达明,云南东川铜矿田白锡腊铜矿床岩浆岩岩石地球化学特征,矿产与地质,1996,10(4):224-241
    张海祥,王玉荣,梅厚钧,低温条件下有机酸对铁、铜的淋滤实验研究。矿床地质,1997,(1)
    张理刚,稳定同位素在地质科学中的运用,西安.陕西科学技术出版社,1995
    张位及,滇中昆阳群刺穿构造的古岩溶成因,云南地质,2001,(3):308-313
    张学诚,周国华,东川小溜口因民组下伏钠质火山岩系及其成矿作用的初步研究,云南地质, 1988
    张学诚,陈启良,许平等,东川稀矿山火山—喷流沉积含铜铁矿成矿作用初步研究,西南矿产地质,1992,(2): 1-9
    张学诚.周国华,马丽华,东川矿区“小溜口组”的岩石学研究,云南地质,1993,12(1):12-20
    张学诚,康滇裂谷带火山活动及其碱性(钠质)火山岩系列的岩石化学特征,西南矿产地质.1994.(3):57-71
    张学诚,康滇裂谷带火山活动及其碱性(钠质)火山岩系特征,云南地质,1995,14(2):81-98
    赵彻终,刘肇昌,李凡友,会理—东川吉海相火山岩带的特征与形成环境,矿物岩石,1999,19(2):17-24
    赵彻终,刘肇昌,李凡友等,会理—东川坳拉槽对铜多金属成矿的控制,四川地质学报,1999,19(3):215-221
    赵劲松,赵斌,张重泽,云南东川铜矿的紫色泥砂质白云岩有机质萃取铜的实验,大地构造与成矿,1996,20(3):238-245
    朱炳泉,常向阳,邱华宁等,云南前寒武纪基底形成与变质时代及其成矿作用年代学研究,前寒武纪研究进展,2001,24(2):75-82
    朱裕生,全国铜矿的现状和远景分析,第五届全国矿床会议论文集。北京:地质出版社,1993,374-376
    庄汉平,冉祟英,何明勤,卢家烂,刘金钟,楚雄盆地有机质、膏盐与砂岩铜矿生成关系的有机地球化学证据与机理,沉积学报,1996,(3)
    Andersen T, Burke E A J, Neumann E-R, Nitrogen-rich fluid in the upper mantle; fluid inclusions in spunel dunite from Lanzarote, Canary Island. Contrib. Mineral. Petrol. 1995, 120,20-28
    Baur W H, Wlotzka F, Nitrogen. In: Wedepohl, K.H. (ED.), Handbook of Geochemistry. Springer Verlag, Berlin, 1974.
    Bodner R J. A method of calculating fluid inclusion volunes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids, Econ. Geol, 1983,78:535~542
    Bonatti E. Minerallogenesis at Oceanic Spreading Centers. Annual Review of Earth and planetary Sciences, 1975
    Cagatay M N. Hydrothermal alteration associated with volcanogenic massive sulfide deposits:examples from Turkey. Econ. Geol., 1993,88:606-621
    C.Ran, Geochemical data for the Dongchuan-Yimen strata-bound copper deposits, China, Spec. Publs int. Ass. Sediment, 1990, (11) 173-180
    Cronan D.S.Implications of metal dispersion from submarine bydrothermal systems for mineral exploration on mid-oceanic ridges and in island arcs. Nature, 1997,262:567~569
    Crown P W. Mineralization in the McArthur and Nicholson Basin. In Econ. Geol. Of Australia and Papua New Guinea.1 Metals. 1975:327-329
    D.K. Bailey, Continental rifting and alkaline magmatism, in: The Alkaline Rocks, H. Srensen ed., John Wiley &
    
    Sons, New York, 1974
    Govett G J S. Rock Geochemistry in Mineral exploration. Elsevier, 1983,461
    Gulson B L. Assessment of massive sulphide base metal targets using lead isotopes in soils. J. Geochem. Explor., 1984,22(1 ):291~313
    Gwosdz W, Krebs W. Manganese halo surrounding Meggen ore deposit, Germany. Trans. Inst. Min. Met., Sect B, 86, B73-77,1977
    Haussinger H, Okrusch M. Geochemistry of premetamorphic hydrothermal alteration of metasedimenlary rocks associated with the Gorob massive sulfide prospect, Damara Orogen, Namibia. Econ. Geol., 1993,88:72~90
    Herzig P M. A mineralogical, geochemical and thermal profile through the Agrokipia"B" hydrothermal sulfide deposit, Troodos ophiolite complex, Cyprus. In: Friedrich G H and Herzig P M eds. Base Metal Sulfide Deposits in Sedimentary and Volanic Environments. Springer-verlag, 1988,182-215
    H.N.Qiu, J.R.W_(UBRANS) and X.H.Li, Ar-Ar mineralization ages of the Dongchuan-type layered copper deposits,Yunnan,Cbina, Geochimica et Cosmochimica Acta, Goldschmidt 2003 Abstract ,2003, 67(188):A386
    Hua Ren min, Sedirnentation-reworking genesis of Dongchuan type stratiform copper deposit, Chinese journal of geochemistry, 1990,9 ( 3 ) :231-243
    KerkhofA M, van den, Hein U F, The system CO2-Ch4-N2 in fluid inclusion: theoretical modeling and geological applications. PhD Dissertation, Free University press, Amsterdam, 1988
    Large R R. Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models, Econ. Geol,, 1992,87:471~510
    Lavery N G The use of fluorine as a pathfinder for volcanic-hosted massive sulfide ore deposits. J. Geochem. Explor., I985,23(1):35~50
    Lin YE, Yu-ping LIU, Chao-yang Li, Jia-Jun t, iu, Some clue of coupling relationship between Dongchuan copper and the breakup ofRodinia. Goldschmidt 2002 Abstract, G.C.A., V.66(S1):A861
    Norman D L, Kyle P R and Baron, Analysis of trace elements including rare elements in fluids inclusion liquid, Econ. Geol., 1989, 84:162-166
    O'Neil J R, Clayton R N and Mayeda T K, Oxygen isotopie fractionation in divalent metal carbonate, J. Chem. Phys., 1969,51:5547-5558
    Ohomoto H., Systematics of Sulfur and Carbon isotopes in hydrothermal ore deposits, Econ. Geol., 1972, Vol.67:551-578
    Powell C.M.,Li Z.X., McElhinny M.W., et al.. Paleomagnetic constrains on timing of the Neoproterozoic breakup of Rodinia and the Cambrain formation of Gondwana: where is it? J. African Earth Sci., 1993. 23:271-287
    Qiu H.N. et al.,2002,Geochem.J.36 (5) :475-491
    Riverin G, Hodgson C J. Wall-rock alteration at the Millenbach Cu-Zn mine, Noranda, Quebec. Econ.Geol., 1980,75:424~44
    Saeki Y, Date J.Computer application to the alteration date of the dfootwall dacite lava at the Ezuri-Kuroko deposits, Akai prefecture. Min. Geol., 1980,30(4):241~250
    Schutz W, Dulski P, Germann K. Geochemical features of magmatic evolution and ore deposition in the pyrite belt of Southern Spain. In : Friedrich G H and Herzig P M eds. Base Metal Sulfide Deposits in Sedimentary and Volanic Environments. Springer-verlag, 1988
    Shunso lshihara.Geology of Kuroko deposits. The society of Mining Geoloy of Japan, 1974
    Sawkins F.j. Plate Tectonics and Geology.University of Minnesota, 1984
    Spitz G, Darling R. Major and minor element lithogeochemical anomalies surrounding the louvem copper deposit, Vald'or, Quebec Can. J. Earth Sci,, 1978,15:1161~1169
    Takreo Sato. Distribution and Geological Setling of the Kuroko Deposits. Geology of KurokoDeposits, 1975.1-9
    Taylor S R and Mclennan S M, The significance of the rare earths in geochemistry and cosmochemistry, in:Handbook on the physics and chemistry of rare earths, 1998, Vol. 11, edited by K.A. Gschneider and L. Eyring, Elsevier, Amsterdam
    Thurlow J G, Swanson E A, Strong D F. Geology and lithogeochemistry of the Buchans polymetallic sulfide deposits, Newfoundland. Econ. Geol., 1975,70(1): 130~144
    Tom Andersen, Hakon Austrheim, Ernst A. J. Burke and Synnove Elvevold, N_z and CO_2 in deep crustal fluids: evidence from the Caledonides of Norway, Chemical Geology. Volume 108, Issues 1-4, 5 August 1993, Pages 113-132
    T. Andersen, M. J. Whitehouse and E. A. J. Burke; Fluid inclusions in Scourian granulites from the Lewisian complex of NW Scotland: evidence for COn-rich fluid in Late Archaean high-grade metamorphism, Lithos, Volume 40, Issues 2-4, July 1997, Pages 93-104
    Torsvik T.H., Smethurst M.A., Meert J.G, et al.. Continal break-up and collision in the Neoproterozoic and Paleozoic: a tale of Baltica and Laurentia. Earth-sci. Revs.. 1996. 40(3-4):229-258
    Wellmer F M. New genetic and geochemical concepts as guides to mineral exploration. In: Bender F ed. New Paths to Mineral Exploration.Stuttgart,Verlag:1993
    Zhang Y, Zindler A, Distribution and evolution of carbon and nitrogen in Earth, Earth Planet, Sci. Lett. ,1993,117, 331-335

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700