用户名: 密码: 验证码:
氟、氯对热液钨、铜成矿的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿化剂在热液矿床成矿过程中的重要作用一直为人们所关注,矿化剂地球化学行为直接影响成矿元素的富集成矿,不同的矿化剂元素可能对金属成矿具有一定的专属性。本文以著名的江西德兴铜厂超大型斑岩铜矿床和大吉山钨矿床作为研究对象,研究F、Cl与W、Cu成矿的关系。主要的认识如下:
     (1)F在花岗质岩浆中,可以降低岩浆的粘度、密度、固液相线温度、改变熔体结构,而Cl对熔体结构没有多大的影响。F在流体—花岗质熔体相间,绝大多数配分系数小于1.0,趋向于熔体相中配分,D_F随体系中F浓度的升高而增加。Cl在流体—花岗质熔体相间的配分系数均大于1.0,且D_(Cl)随体系中Cl浓度的升高而增大,Cl强烈地趋向富集于流体相中。
     (2)Cu在流体—花岗质熔体作用过程中,铜总趋向于流体相中分布(D_(Cu)都大于1)。特别是在富Cl流体中Cu浓度较高,说明在富含Cl的热液流体能够从共存的熔体中活化迁移出大量的Cu,S的加入D_(Cu)有降低的趋势。钨趋向于熔体相中富集,其配分系数大多小于1.0。
     (3)德兴铜厂花岗闪长斑岩属钙碱性系列岩石属Ⅰ型花岗岩类,具有埃达克岩的特征。岩浆来源于深部,在结晶演化过程中发生了围岩物质的混染,这种高铜含量围岩的混染使成矿物质在岩浆中得到富集,有利于铜的活化、迁移。在铜厂岩体不同的蚀变带中,SiO_2、K_2O、Cu、Mo等从新鲜斑岩甚至弱蚀变带中带出,而在强蚀变带强烈富集,Cl同样有在强蚀变岩石中富集的趋势;而Na_2O、Fe从斑岩体中带出,进入流体相中,流体中大量Fe的存在,有利于铜的沉淀、富集成矿。
     (4)德兴铜厂斑岩体微量元素和稀土元素地球化学特征表明,该岩体发生了流体—熔体作用,分异出来的流体是一种相对富氯的流体,同时成矿流体的流向是从岩体中心向接触带方向流动。
     (5)大吉山花岗岩具有高SiO_2、A/CNK值,显示过铝质特点。黑云母花岗岩是壳源花岗岩但又受到幔源岩浆或幔源流体的影响。随着花岗岩的演化(从Ⅰ→Ⅱ→Ⅲ)SiO_2、K_2O+Na_2O逐渐增加,∑Fe、Al_2O_3、CaO、F含量降低,为成矿提供了大量的矿化剂(F)和沉淀剂(Fe、Ca)。Eu负异常从Ⅰ至Ⅲ阶段花岗岩逐渐加强,表明该岩浆经历了高度的分异演化。
    
     (6)大吉山花岗岩类稀士元素具有“四重效应”配分的特点以及微量元素
    对KJRb、Y/Ho、Zr舰f以及Nb/Ta发生明显分异,暗示在花岗岩岩浆的演化过
    程中,经历了充分的流体一熔体作用,同时分异出大量富含F、W等矿化剂元素
    和成矿元素的热液流体,致使钨矿的形成。大吉山石英脉型钨矿的成矿年龄大约
    在155 Ma。
     (7)通过对成矿流体和花岗质岩石黑云母、白云母中卤素相对逸度的研究
    (109担20/fH。忍l)flu,d、109(/Hr州el)fluid)发现,铜厂斑岩型铜矿床的成矿体系是
    相对富氯体系,而大吉山石英脉型钨矿床成矿体系相对富氟,同时氟可能主要迁
    移W、Sn、Nb、Ta等金属元素。
     (8)结合斑岩型铜矿床成矿流体特征,铜主要以Cl的络合物形式存在和迁
    移,迁移形式主要是CuCI。、cuC12一等。石英脉型钨矿床中,钨主要以钨酸、钨
    酸盐及其离解j衫式存在和迁移,如wo42一、Hwo4’、NaHwo4、Nawo4’等;在高
    度富氟的成矿流体中,钨的氟氧络合物(如wO3F一,woZF42一等)对钨迁移也具有
    重要的作用。
     因此,不同矿化剂类型具有一定的成矿专属性,热液铜矿床主要与Cl、S有
    关,而热液钨矿床大多与F有关。
In recent years, people began to pay attention to the importance of mineralizer in the process of the metal elements ore-forming. Geochemical behaviors of mineralizer affect the metal elements to form deposits to some degree, and different mineralizers have its mineralization speciality to different ore-forming elements. Generally magmatic hydrothermal Cu and Au deposits enrich Cl and S, but W and Sn deposits are rich F systems.
    In this paper, in order to study the relationship between the Cu, W and. Cl, S, F, Tongchang porphyry copper deposit and the Dajishan tungsten deposit are selected as the studying objectives, detailed investigations have been conducted into the geological and geochemical characteristics of the granitic rock, biotite, trace element and REE geochemistry, fluid inclusion geochemistry and the partitioning coefficients of the F, Cl, Cu, W. Based on these data, the following conclusions are drawn:
    (1) Fluorine can reduce the viscosity and density of magma, temperature of solide-liquidus line and change the melt frame, but Cl has little effect on the melt. Chlorine tends to be partitioned into the fluid phase while fluorine shows a strong tendency to the melt phase. Df increases; with the fluorine content increasing, and so does the DCl.
    (2) Between the granitic melts and coexisting aqueous fluids, Cu strongly partitions toward the fluid. In contrast, W strongly partitions toward the melt. In particular Dcu linearly increases with the Cl concentration in,the fluid, indicating that Cl can transport enough copper from the melt or other source bed to form the deposits. But Dcu decreases with the S added in experimental system.
    (3) Tongchang granodiorite porphyry belongs to calc-alkali granite, also has characters of the Adakites. Magma materials coming from the mantle, duritig the fractional crystallization, there exists contamination of the wall-rock. This process was propitious to enrich, activate, transport the copper. In different alteration granodiorite porphyry, SiO2, K2O, Cu, Mo are depleted in the fresh and weakly altered rock, and are enriched in the strongly altered rock, Cl is also enriched in the strongly altered rock. But Na2O and Fe are extracted from the porphyry into the ore-forming fluid, especially the presence of Fe is in favor of Cu deposition.
    (4) The trace elements and REE geochemistry of the Tongchang granodiorite porphyry indicate, there exists the reaction between the porphyry and the hydrothermal fluid. The hydrothermal fluid was Cl-enriched solution, and flowed from the porphyry center to contact zone.
    (5) Dajishan granites have high SiO2 content and high A/CNK, show peraluminous granite characters. Granites belong to S-type granite, but the biotite granite was affected by the mantle or mantle fluid. With the evolution of the granitic complexes, the SiO2 and K2O+Na2O increase, but Fe. Al2O3, CaO and F decrease. It supplied more mineralizer(F) and precipitator(Fe,Ca) for mineralization. Strong negative 8 Eu shows the
    
    
    granites are high evolved granite.
    (6) The tetrad effect of REE and the obvious fractionation between K-Rb, Y-Ho, Zr-Hf, Nb-Ta, and Sr-Eu in the Dajishan granites indicate that, the aqueous fluid pays an important role in the evolution of the granites, as well as indicate that there exist enough interaction between peraluminous melt and aqueous magmatic fluid. Furthermore the fluorine played a very important role in this process.
    (7) By studying of ore-forming fluid and the micas (using the F, Cl contents in micas to calculate the halogen fugacity of the hydrothermal fluid, eg. Log (fH2O/fHCl)fluid and log(fHF/fHCl)fluid), Tongchang porphyry copper deposit system is enriched in chlorine, however Dajishan tungsten deposit system is relatively enriched in fluorine, which transport W, Sn, Nb, Ta , et al.
    (8) According to the characters of the porphyry copper deposits, copper is transported by chlorine, such as CuCl0 and CuCl2. For the tungsten deposits, tungsten
引文
1. 毕献武.西“三江”地区富碱侵入岩及其与铜、金成矿关系地研究.中国科学院地球化学研究所博士论文,1999,1—91.
    2. 陈旭.戎嘉余,Rowley D B等.对华南早古生代板溪洋的质疑.地质论评,1995,41(5):389-398.
    3. 陈培荣,华仁民,章邦桐等.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学(D),2002,32:279~289.
    4. 程海.钨在花岗质熔体相与水热流体相中的分配实验研究.南京大学学报,1988,1:214—217.
    5. 邓晋福,赵海玲,赖绍聪等.白云母/二云母花岗岩形成与陆内俯冲作用.地球科学—中国地质大学学报,1994,19(2):139—147.
    6. 邓晋福,赵海玲,莫宣学等.扬子大陆的陆内俯冲与大陆的缩小—由白云母(二云母)花岗岩推导.高校地质学报,1995,1(1):50—57.
    7. 地矿部南岭项目花岗岩专题组.南岭花岗岩地质及其成因和成矿作用.北京:地质出版社、1989,1—439.
    8. 郭新生,季克俭,黄耀生等.德兴斑岩铜矿成矿热液来源及其演化——花岗闪长斑岩的氧同位素制约.高校地质学报,1999,5(3):260—268.
    9. 胡瑞忠.矿化剂一一热液矿床研究中的薄弱环节.见:全国第四界矿物岩石地球化学学术讨论会论文汇编,北京:地震出版社,1991,73—74.
    10.华仁民,陈培荣,张文兰等.华南中、新生代与花岗岩类有关的成矿系统.中国科学(D辑),2003,33(4):335—343.
    11.洪大卫.华南花岗岩的黑云母和矿物相及其与矿化系列的关系.地质学报,1982,2:149—164.
    12.胡受奚,孙明志,严正富等.与交代蚀变花岗岩有成因联系的钨、锡和稀有亲花岗岩元素矿床有关的一种重要的成矿模式.花岗岩讨论会,1986,346~358.
    13.金章东,朱金初,王银喜等。锶、铷同位素对德兴斑岩铜矿元素迁移的示踪.铀矿地质,2001.17(3):156—161.
    14.金章东.德兴铜厂斑岩铜矿床成矿流体地球化学及演化.南京人学博士论文,1999,1—114.
    15.科萨尔斯.花岗岩类熔体和溶液中稀有元素地球化学的主要特征.袁中信等译,北京:地质出版社,1981,1—83.
    16.李华芹,刘家齐,魏林.热液矿床流体包裹体年代学及其地质应用研究.北京:地质出版社,1993,1—100.
    17.李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学.地球化学,1997,26(2):14—31.
    18.林德松.华南富钽花岗岩矿床.北京:地质出版社,1996,1—147.
    19.刘斌,段光贤.NaCl-H_2O溶液包裹体的密度式和等容式及其应用.矿物学报,1987,7(4):345—352.
    20.刘卫明.全南五里亭花岗岩体的主要特征及成因.南方冶金学院学报,1996,17(2):86—91.
    21.刘卫明,钟盛文.大吉山钨矿床成矿的新认识.矿产与地质.1996,10(6):406—411.
    22.刘英俊,马东升.钨的地球化学.北京:科学出版社,1987.1—232.
    23.刘英俊,曹励明,李兆麟等.元素地球化学.北京:科学出版社,1984,1—517.
    24.卢焕章.高盐度、高温和高成矿金属的岩浆成矿流体—以格拉斯伯格Cu-Au矿为例.岩石
    
    学报,2000.16(4):465—472.
    25.卢焕章,李秉伦,沈崑等.包裹体地球化学.北京:地质出版社,1990,1—242.
    26.卢焕章,施继锡,喻茨枚.华南某矿区成岩成矿温度的研究.地球化学,1974,3:146—156.
    27.马秀娟.大吉山钨矿包裹体地球化学研究,见李荫清等著,流体包裹体在矿床学和岩石学中的应用.北京:北京科学技术出版社,1988,62—112.
    28.孟良义.斑岩铜钼矿床的蚀变与矿化.科学通报,1992,37(23):2162—2164.
    29.彭花明.杨溪岩体中黑云母的特征及其地质意义.岩石矿物学杂志,1997,16(3):271—281.
    30.钱鹏,路建军,姚春亮.德兴斑岩铜矿成矿流体演化与来源的流体包裹体研究.南京大学学报(自然科学).2003,39(3):319—326.
    31.芮宗瑶,黄崇轲,齐国明等.中国斑岩铜(钼)矿床.北京,地质出版社,1984,1—322.
    32.苏文超.扬子地块西南缘卡林型金矿床成矿流体地球化学研究.中国科学院地化所博士论文,2002,1—116.
    33.孙涛,陈培荣,周新民等.南岭东段强过铝质花岗岩中白云母研究.地质论评,2002,48(5):518-525.
    34.孙恭安,史明魁,张宏良等.大吉山花岗岩体岩石学、地球化学及成矿作用的研究.南岭地质矿产科研报告集(2).武汉:武汉中国地质大学出版社,1989,326—361.
    35.谭凯旋,张哲儒,王中刚.地洼盆地砂岩铜矿床成矿作用地化学动力学和热力学研究.大地构造与成矿学,1996,20(3):229—237.
    36.唐群力.硅酸盐熔体—流体共存体系中Cu分配系数的实验研究.中国科学院研究生院硕士学位论文,2003,1—50.
    37.唐仁鲤,罗怀松等.西藏玉龙斑岩铜(钼)矿带地质.北京:地质出版社,1995;1~320.
    38.滕建德.大吉山矿区化垂直带状分布.矿山地质,1990,11(2):13~24.
    39.万嘉敏,钨在热液中的地球化学行为——以湘西西安白钨矿床为例.中国科学院地球化学研究所研究生毕业论文,贵阳,1984,1—169.
    40.王焰,张旗,钱青.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学,2000,35(2):251—256.
    41.王联魁,王慧芬,黄智龙.Li-F花岗岩液态分离的微量元素地球化学标志.岩石学报,2000,16(2):145—152.
    42.王联魁,王慧芬,黄智龙.Li-F花岗岩液态分离的稀土地球化学标志.岩石学报,1999,15(2):170~180.
    43.汪相,W.L.Griffin,王志成等.湖南丫江桥花岗岩中锆石的Hf同位素地球化学.2003,科学通报,48(4):379-382.
    44.王玉荣,顾复,袁自强.Nb、Ta分配系数和水解实验研究及其在成矿作用中的应用.地球化学,1992,1,55—62.
    45.吴利仁,李秉伦.中国东部中生代两人类斑岩型矿床.北京:科学出版社,1991.1~318.
    46.夏宏远,梁书艺.华南钨锡稀有金属花岗岩矿床成因系列.北京:科学出版社,1991,1—182.
    47.夏卫华,章锦统,冯志文等.南岭花岗岩型稀有金属矿床地质.北京:中国地质大学出版社,1989,14—115.
    48.熊小林,朱金初,饶冰.花岗岩—H_2O—HF体系相关系及氟对花岗质熔体结构的影响.地质科学,1997,32(1):1—9.
    49.熊小林,赵振华,朱金初等.钠长花岗岩—H_2O—HF体系中流体/熔体间氟的分配实验研究.地球化学,1998,27(1):66~73.
    50.熊小林,朱金处,饶冰.云母,黄玉中F-OH交换平衡及云母+黄玉组合形成的温度和共存流体组成lg(fH_2O/fHF)的估算.矿物学报,1995,15(4);451—456.
    
    
    51.徐克勤,孙鼐,乇德滋等.华南花岗岩成因与成矿,见:徐克勤,涂光炽主编,花岗岩地质和成矿关系(国际学术会议论文集).南京:江苏科学技术出版社,1986;1—20.
    52.许永胜,张本仁,韩吟文.钨在水流体和硅酸盐熔体相间分配的实验研究.地球化学,1992,3:273—281.
    53.薛君治,自学让,陈武.成因矿物学.武汉:中国地质大学出版社,1991,1—123.
    54.叶瑛.论华南钨矿化花岗岩及有关黑钨矿石英脉和矽卡岩型钨矿床的形成机制.南京大学博士论文,1985:1~154.
    55.冶金部南岭钨矿专题组.华南钨矿.北京:冶金工业出版社,1985,150~157.
    56.张德会.成矿流体中金的沉淀机理研究综述.矿物岩石,1997,7(4):122—129.
    57.张国新,谢越宁,虞福基等.江西大吉山钨矿床不同成矿阶段稳定同位素地球化学.地球学报,1997,18(增刊):197~199.
    58.张辉,刘从强.新疆阿尔泰可可托海3号伟品岩脉磷灰石矿物中稀土元素“四分组效应”及其意义.地球化学,2001,27(1):66—73。
    59.张旗,王焰,钱青等.中国东部燕山期埃达克岩的特征及其构造.成矿意义.岩石学报,2001,17(2):236—244.
    60.张理刚,刘敬秀,陈振胜等.江两德兴铜厂铜矿水—岩体系氢氧同位素演化.地质科学,1996,31(3):250—261.
    61.张宁,夏文臣.华南晚古生代硅质岩时空分布及再扩张残留海海槽演化.地球科学,1998,23(5):480-486.
    62.张玉学.阳储岭斑岩钨钼矿床地质地球化学特征及其成因探讨.地球化学,1982,2:122—132.
    63.赵斌,于声远,吴厚泽等.高温高压实验地球化学.北京:科学出版社,1995,1—248.
    64.赵劲松,赵斌,饶冰.Ta、Nb、W在钠长花岗岩岩浆结晶分异过程中于各相间分配行为的实验研究.科学通报,1996,41(15):1413—1417.
    65.赵振华,增田彰正,M.B.夏巴尼.稀有金属花岗岩的稀土元素四分组效应.地球化学,1992,3:221~233.
    66.赵振华,熊小林,韩小东.花岗岩稀土元素四分组效应形成机理探讨——以千里山和巴尔哲花岗岩为例.中国科学(D辑),1999,29(4):331—338.
    67.中国科学院贵阳地球化学研究所.华南花岗岩类的地球化学.北京:科学出版社,1979,1—421.
    68.周珣若,吴克隆等.漳州I-A型花岗岩.北京:科学出版社,1994,1—148.
    69.周涛发,刘晓东,袁峰等.安徽月山矿田成矿流体中铜、金的迁移形式和沉淀的物理化学条件.岩石学报,2000,16(4):551-58.
    70.朱训等.德兴斑岩铜矿.北京:地质出版社,1983,1—325.
    71. AbdeI-Rahrnan A.M., Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas, Journal of Petrology, 1994, 35:525-541.
    72. Aiderton D.H.M., Pearce J.A. and Potts P.J., Rare earth element mobility during granite alteration: evidence from southwest England, Earth and Planetary Science Letters, 1980,49:149-165.
    73. Anders E. and Grevesse N., Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 1989,53,197-214.
    74. Anderson J.L.. Rowley M.C.. Synkinematic intrusion of peralumious and associated metalumious granitic magmas, Whipple Mountains,California, Can. Mineral.,1981,19:83-101.
    
    
    75. Archibald S.M., Mifdisov A.A., and Williams-Jones A.E.,An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures, Geochimica et Cosmochimica Acta,2002,66(9):1611-1619.
    76. Bai T.B. and Koster van Groos, The distribution of Na, K,Rb,Sr, AI,Ge,Cu, W, Mo,La, and Ce between granitic melts and coexisting aqueous fluids, Geochimiea et Cosmochimica Acta, 1999,63(7/8):1117-1131.
    77. Barbarin B., Genesis of the two main type of peralumilous granitoids, Geology, 1996,24:295-298.
    78. Bau M. and Dulski E,Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib. Mineral. Petrol,1995,119:213-223.
    79. Bau M., Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthahnide tetrad effect, Contrib. Mineral, Petrol., 1996,123:323-333.
    80. Beane,R.E., Biotite stability in the porphyry copper environment.Econ.Geol., 1974,69(2)::241-256.
    81. Bernard A., Symonds R.B., and Rose W.I., Volatile transport and deposition of Mo, W and Re in high temperature magmatic fluids, Applied Geochemistry, 1990,5:317-326.
    82. Borodina N.S., Fershtater G.B., Composition and nature of muscovite in granites. Intern. Geol. Rev., 1988,30:375-381.
    83. Candela P.A. and Holland H.D... The partitioning of copper and molybdenum between silicate melts and aqueous fluids, Geochimica et Cosmochimica Acta,1984,48:373-380.
    84. Candela P. A. Toward a thermodynamic model for the halogens in magmatic systems: An application to melt-vapour-apatite equilibria .Chemical Geology, 1986,57:289-301.
    85. Cerny P., Goad B.E., Hawthorne F.C. et al., Fractionation trends of the Nb- and Ta, bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatitic aureole, Southeastern Manitoba, Am. Mineral. 1986,71,501-517.
    86. Chivas A.R. Geochemical evidence for magmatic fluid in porphyry copper mineralization, Part Ⅰ: Mafic silicates from the Koloula igneous complex, Contrib. Mineral. Petrol., 1981,78:389-403.
    87. Christiansen E.H., Sheridan M.F., Burt D.M., The geology and geochemistry of Cenozoic topaz rhyolite from the westen United State, Geol.Soc.Am, 1986,205:1-81.
    88. Clarke D.B., The mineralogy of peraluminous granites:a review, Can. Mineral.,1981,19:3-17.
    89. Crerar D.A, and Barnes H.L., Ore solution chemistry V. solubilities of chalc.opyrite and chalcocite assemblages in hydrothermal solution at 200 ℃ to 350 ℃, Economic Geology, 1976, 71:772-794.
    90. Dingwell D.B. Knoche ,R., Webb S.L., The effect of F on the density of gaplogranite melt, American Mineralogist, 1993, 78:325 - 330.
    91. Dingwell D.B., Scarfe C.M. and Cronin D.J., The effect of fluorine on viscosities in the system Na_2O-Al_2O_3-SiO_2: Implications for phonolites,trachytes and rhyolites, Am. mineral. 198.5,70:80-87.
    92. Dostal J., Chatterjee A.K., Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic (Nova Scotia,Canada), Chemical Geology, 2000,163: 207—218.
    93. Dupuy C., Liotard J.M. and Dostal J., Zr/Hf fractionation in intraplate basaltic rocks:
    
    Carbonate metasomatism in the mantle source, Geochimica et Cosmochimica Acta, 1992,56:2417-2423..
    94. Foster M.D., Interpretation of the Composition oftrioctahedral Micas, U.S.Geol. Survey Prof. Paper,1960,354-B,
    95. Gerstenberger H., Autometasomatic Rb enrichments in highly evolved granites causing lowered Rb-Sr isochron intercepts. Earth and Planetary Science Letters, 1989,93: 65-75.
    96, Gramaccioli C.M., Diella V., and Demartin F., The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: some examples in minerals, Eur. J. Mineral. 1999,11:983-992.
    97. Green T.H., Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system, Chemical Geology, 1995,120:347-359.
    98. Haas J.L., The effect of salinity on the maximum thermal gradient of a hydtothermal system at hydrostatic pressure, Econ. Geol., 1971,66:940-946.
    99. Haas J.R., Shock E.L., and Sassani D.C., Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures, Geochim. Cosmochim. Acta, 1995,59(21):4329-4350.
    100. Helgeson H.C.Thermochemical calculation from hydrothermal systems at elevated temperatures and pressures .American Journal of science. 1969,267: 729-804.
    101. Hemley J.J., Cygan G.L., and Fein J.B. et al., Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: Ⅰ. Iron-copper-zinc-lead sulfide solubility relations, Econ. Geol, 1992,87(1):1-22.
    102. Hofmann A..W.,Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet.Sci.Lett., 1988, 90:297-314.
    103. Holland H.D., Granite, solutions and base metal deposits, Econ. Geol.,1972,97(3):281-301.
    104. Huang W.L., Wyllie P.J., Melting relations of muscovite to 35 kbars as a model for fusion of metamorphosed subducted oceanic sediments. Contr. Mineral. Petrol.,1973,45:215-230.
    105. Irber W., The lanthanide tetrad edfect and its correlation with K/Rb,Eu/Eu*,Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim. Acta, 1999, 63(3/4):489-508.
    106. Jochum K.P.,Seufer H. M., Spettel B. et al., The solar system abundances of Nb,Ta, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochim. Cosmochim. Acta, 1986,50:1173-1183.
    107. Jahn B.M., Wu F.Y., Capdevila R. et al., Highly evolved juvenile granites with tetrad REE patterns: the Wodule and Baerzhe granites granites from the Great Xing An Mountains in NE China, Lothos, 2001,59:171-198.
    108. Kendrick M.A., Burgess R., Pattrick R.A.D. et al., Fluid inclusion noble gas and halogen ecidence on the origin of Cu-porphyry mineralizing fluids, Geochimica et Cosraochimica Acta,2001,65(16):2651-2668.
    109. Keppler H., Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks, Contrib Mineral Petrol, 1993,114:479 - 488.
    110. Keppler H. and Wyllie P.J., Partitioning of Cu,Sn,Mo,W,U,and Th between melt and aqueous fluid in the systems haplogranite-H_2O-HCI and gapligranite-H_2O-HF, Contrib. Mineral. Petrol., 1991, 109: 139-150.
    
    
    111. Khitarov N.I., Malinin S.P., Lebedev Y.B.et al., The distribution of Zn,Cu,Pb,and Mo between a fluid phase and a silicate melt of granitic composition at high temperatures and pressures, Geochem. Iinternational, 1982, 19:123-136
    112. Kranidiotis P, and Wood S.A., Copper solubility in hydrothermal chloride solutions from 200 to 400℃. Geol.Soc.Amer. 1990,Abstr.Prog.22.157(abstr.).
    113. Landon D., Herving R.L. and Morgan G.B., Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite system: experimental results with Macusani glass at 200Mpa, Contr. Miner. Petrol., 1988,99(3):360-373.
    114. Linnen R.L. and Keppler H., Melt composition, control of Zr/Hf fractionation in magmatic processes, Geochim. Cosmochim. Acta,2002,66(l 8):3293-3301.
    115. Luth R.W., Raman spectroscopic study of the solubility mechanisms of F in glasses in the system CaO-CaF_2-SiO_2, Am. mineral., 1988,73:297-305
    116. Maclean W.H. and Kranidiotiis,1987,Immobile elements as monitors of mass transfer in hydrothermal alteration:Phelps Dodge massive sulfide deposit,Metagami,Quebec.,Econ.Geol.,82(4): 951-962
    117. Manning D.A.C., The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb, Contrib. Mineral Petrol., 1981 ,v76:206-215.
    118. Manning D. A.C. and Henderson P.,The behaviour of tungsten in granitic melt-vapour systems,Coritrib. Mineral. Petrol.,1984, 86:286-293.
    119. Manning D.A.C., Hamilton D.L., Henderson C.M.B., et al., The probable occurrence of interstital Al in hydrous, F-bearing and F-free aluminosilicate melts, Contrib.Mineral. Petrol., 1980,75:257-262.
    120. Michard A., Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Atca, 1989,53:745-750.
    121. Michard A. and Albarede F. The REE content of some hydrothermal fluids. Chemical Geology, 1986,55:51-60.
    122. Miller C.F., Stoddard E.F., and Bradfish L.J. et al., Composition of plutonic muscovite:Genetic implications. Can. Mineral., 1981,19:25-34.
    123. Mountain B.W., and Seward T.M., The hydrosulphide/sulphide complexes of copper(Ⅰ):Experimental determination of stoichiometry and stability at 22℃ and reassessment of high temperature data, Geochimica et Cosmochimica Acta, 1999,63(1): 11-29.
    124. Mountain B.W., and Seward T.M., Hydrosulfide/sulfide complexes of copper(Ⅰ):Experimental confirmation of the stoichiometry and stability of Cu(HS)_2 to elevated temperatures, Geochimica et Cosmochimica Acta,2003,67(16):3005-3014.
    125. Munoz J.L.. Calculation of HF and HCI fugacities from biotite compositions: revised equations,Geol. Soc. Am.,Abstr. 1992,programs 24,A221.
    126. Mysen B.O.,Virgo D. Structure and properties of fluorine-bearing aluminosilicate melts: the system Na_2O-Al_2O_3-SiO_2-F at l atm, Contrib,Mineral petrol. 1985,81:205-220.
    127. Partida E.G., and Levresse G., Fluid inclusion evolution at the La Verde porphyry copper deposit, Michocaln,Mexico, Journal of Geochemical Exploration,2003,78-79:623-626.
    128. Pearce J.A. et al., Trace element discrimination diagrams for the tectonic interpreation of granitic rocks, Journal of Petrology, 1984,25:956-983.
    129. Raimbault L.,, Liu Y. M., Guo Q. T. et al. REE geochemistry of fluorites from tungsten mineralization at Dajishan, Jiangxi Province,China. Geochemistry, 1986,5(1):1~14.
    
    
    130. Richards J.P., Alkalic-type epithermal gold deposits—a reviews,Mineralogical Association of Canada Short Course Series,Mineralogical Society of Canada, 1995,367-400.
    131. Roedder E., The composition of fluid inclusions, U.S. Geoligical survey prof, Paper, 1972,440 JJ. 164.
    132. Roedder E. and Bodnar R.J., Geologic pressure determinations from fluid inclusion studies, Ann. Rev. Earth planet. Sci.,1980,8:263-301.
    133. Rossman G. R.,Weis D. and Wasserburg G. J.,Rb, Sr, Nd and Sm concentrations in quartz, Geochimica et Cosmochimica Acta, 1987,51(9): 2325-2329.
    134. Roycroft P.D., Magmatically zoned muscovite from the two-mica granites of Leinster batholith, scutheast Ireland. Geology, 1991,19:437-440.
    135. Ruaya J.R., Estimation of instability constants of metal chloride complexes in hydrothermal sol utions up to 300℃, Geochimica et Cosmochimica Acta, 1988,52:1983-1996.
    136. Rudnick, R.L., McDonough W.F. and Chappell B.W., Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical charactcristics, Earth Planet.Sci.Lett., 1993,114:463-475.
    137. Sanjian B.,Michard A. and Michard G., Influence of the temperature of CO_2-rich springs on their AI and REE content. Chem. Geol.,1988,68:57-68.
    138. Selby D., Nesbitt B.E., Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization,Yukon,Canada:evaluation of magmatic and hydrothermal fluid chemistry, Chemical Geology, 2000,171 : 77-93.
    139. Seyfried Jr.W.E. and Ding K., The effect of redox on the relative solubility of copper and iron in CI-bearing aqueous fluid at application to subseafloor hydrothermal systems. Geochim. Cosmochim.Acta, 1993,57:1905-1918.
    140. Shu L.S., Sun Y., Wang D.Z.et al., Mesozoic extensional tectonics in the Wugongshan area, South China. Science in China (Series D), 1998, 41(6): 601-608i
    141. Sylvester P.J., Post-collisional strongly peralumious granites. Lithos, 1998,45:29-44.
    142. Speer J.A., Micas in igeous rocks, In: Bailey et al., ed. Mica. Mineralogical Society of America, 1984,299-355.
    143. Srivastava P.K., and Sinha A.K., Geochemical characterization of tungsten-bearing granites from Rajasthan,lndia.Journal of Geochemical Exploration, 1997,60:173-184.
    144. Stollery G., Chlorine in intrusives: a possible prospecting tool, Econ.Geol., 1971,66:361-367.
    145. Taylor S.R. and Wclennan S.M., The continental crust: its composition and evolution. Oxford, UK, Blackwell,1985,1-312.
    146. TitleyS.R.,BeaneR.E.,Porphyrycopperdeposits.Econ.Geol., 1981 (75thAnniversary),214-269.
    147. Var'yash L.N., Cu( Ⅰ ) complexing in NaCl solution at 300~C and 350~C, Geochem. Intl. 1992,29:84-92.
    148. Var'yash L.N. and Rekharskiy V.l., Behavior of Cu( Ⅰ ) in chloride solutions. Geochem Intl., 1981,18:61-67.
    149. Webster J. D. Fluid-interaction involving Cl-rich granites:Experimental study fom 2 to 8 kbar. Geochimica et Cosmochimica Acta, 1992,56:659-678.
    150. Webster J. D. Water solubility and chlorine partitiong in Cl-rich granitcsystems: Effects of melt composition at 2 kbar and 800℃Geochimica et Cosmochimica Acta, 1992,56:679-687.
    
    
    151. Webster J. D., Partitioning of F between H_2O and CO_2 fluids and topaz rhyolite melt, Contrib. Mineral. Petrol., 1990, 104:424-438.
    152. Webster J. D, Holloway J.R. Experimental constrains on the partitioning of CI between topaz rhyolite melt and H_2O and H_2O+CO_2 fluids: New implications granitic differentiation and ore deposition. Geocbimica el Cosmochimica Acta, 1988,52:2 091-2 105
    153. Wones D.P. and Eugster H.E, Stability of biotite: experiment,, theory, and application, The American Mineralogist, 1965, 50:1228-1272.
    154. Wood S. A.,Experimental determination of the solubility of WO_3(s)and the thermodynamic properties of H_2WO_4(aq) in the range 300-600℃ at 1 kbar: Calculation of scheelite solubility, Geochimica et Cosmochimaca Acta,1992,56:1827-1836.
    155. Wood S.A.,Vlassopoulos D., Experimental determination of the hydrothermal solubility and speciation of tungsten at 500℃ and 1 kbar. Geochimica et Cosmochimaca Acta, 1989,53:303-312.
    156. Wood S.A., and Samson I.M., The hydrothermal geochemistry of tungsten in granitoid environments: Ⅰ. Relative solubilities of ferberite and scheelite as a function ofT, P, PH, and m_(NaCl), Economic Geology,2000,95:143-182.
    157. Wyllie P.J., Crustal anatexis: An experimental review.Tectonophysics, 1977,43:41-71.
    158. Wyllie P.J. and Tuttle O.F., Experimental investigation of silicate systems connaining two volatile components. Part Ⅱ. The effects of NH_3 and HF in addition to water on the melting temperatures of granite and albite. Am. J. Sci. 1961,159:128-143.
    159. Xiao Z.F., Gammons C.H. and Willams-Jones A.E., Experimental study of copper( Ⅰ ) chloride complexing in hydrothermal solutions at 40 to 300℃ and saturated water vapor pressure, Geochimica et Cosmochimica Acta, 1998,62(17):2949-2964.
    160. Yin J.W., Kim S.J., Lee H.K., ltaya T.et al. K-Ar ages of plutonism and mineralization at the Shizhuyuan W-Sn-Bi-Mo deposit, Hunan Province, China. Journal of Asian Earth Sciences,2002,20:151~155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700