用户名: 密码: 验证码:
强震成组活动及其相互影响的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于地震孕震过程,早期的研究大多侧重于震源模型和理论,围绕地震孕育发生过程中,震源及其邻近地区应力场、应变场的时空动态演化来研讨其长、中、短、临各阶段的现象与机理,而较少涉及各地震之间相互关系的研究。然而,地震活动的事实表明,强震不是孤立事件,它们之间有密切的关系,某些强震组是同一个孕震过程的产物。20世纪90年代以来,科学家们开始注重强震之间相互作用的研究。地震间相互作用、相互影响是构成地震活动复杂性的一个重要因素。
     本文试图从现象到理论,研究强震的成组孕育、成组活动特征,特别是针对川滇这一特定地区,应用地质构造和深部地球物理的最新研究成果,建立三维有限元模型,研究强震成组活动的机制,为地震分析预测研究搭建一个有一定理论基础的平台,探索地震物理预测的一些途径,这正是本论文的初衷。
     首先,以中国大陆地区历史地震记录为统计样本,对大陆地震在时间和空间上的分布特征进行统计,表明,无论是把我国陆区作为一个整体来研究,还是把我国陆区分为东西两区来研究,乃至取某一个地区的区域地震活动性来研究,大陆地震活动在时间和空间上呈成组性丛集活动特征,即中国大陆强震成组活动的特性具有鲜明的客观性。
     然后,本文采取了一种比较简便的方法—At值扫描方法,对地震间的关联特性进行半定量的研究,计算地震应变释放在区域强震扰动发生前后的变化。通过空间扫描图象描述大范围的响应情况,分别对中国大陆的华北地区、西南地区和西北地区强震前后地震活动进行了分析。表明:某次强震活动可以引起某些孕震区的加载,介质非线性应变积累加速,使处于高应力状态的震源失稳提前进入不稳定状态,后续强震提前发生,即强震之间存在着时间、空间上的关联性。
     之后,本文针对强震频发的川滇地区,进行了较为深入的研究。应用Okata的应力触发理论,对川滇地区强震相互触发、地震成组活动进行较系统的分析研究。统计结果表明:大约50%地震均发生在前一次地震的库仑破裂应力变化正值区,30%发生在应力变化负值区,20%发生在正负交界区。
     在上述研究基础上,本文对地震成组活动及其相互影响进行了有限元数字模拟研究。首先,针对青藏构造地块,尝试建立了应力演化和地震活动二维有限元模型。将有限元理论模型应用于某一实际地区,研究应力演化、应力调整与强震成组孕育、成组活动的关系,对青藏构造地块强震间相互关联特征进行初步模拟。表明,可以用有限元方法模拟计算强震的应力调整和影响作用,并确定应力增强区,为下一次强震发生的地点判定提供依据。
     然后,根据近年来国家重点基础研究规划项目“中国强震机理与预测”等取得的川滇地区地质构造活动和深部地球物理等的最新成果,建立了川滇地区四层三维有限元模型。模型划分较细,包括了各种性质的断裂带,如:甘孜—玉树断裂带、鲜水河断裂带、岷江断裂带、龙门山断裂带、金沙江断裂带、小金河断裂带、安宁河断裂带、则木河断裂带、小江断裂带、楚雄—建水断裂带、红河断裂带、小金河-丽江、龙陵—澜沧断裂带等。又根据近年来取得的最新的震源机制解和GPS测量资料为约束条件,确定了模型的边界条件,分别计算了川滇地区的背景应力场、断层蠕动产生的应力场和强震触发的应力场,重点对川滇地区1988-1996年动态库仑破裂应力变化进行了模拟计算,研究了前面地震对后续地震的触发影响。结果表明:1988-1996川滇地区的几次强震中,1989年的巴塘强震群发生在1988年澜沧-耿马地震后的库仑破裂应力变化正值区,1995年的
    
    武定地震发生在库仑破裂应力变化止负值交界区,1996年的丽江地震发生在库仑破裂应力变化正
    值区。这说明,前面强震对一后续地震有相当的影响,后续地震大多发生在前面强震所引发的库仑
    破裂应力变化正值区,显示出先发地震对后续地震有一定的触发作用。强震往往是在较高的应力
    背景卜相互作用、相互影响的,进而呈现为带有时空丛集性的成组活动图像。
     最后,本文又从强震发生前后的前兆异常变化特征等方面对上述模型进行了实际检验,表明
    模型与实际地震活动特征相一致,模型模拟结果对前兆异常机理研究有一定的士旨导作用。
     通过以上研究可以认为,成组孕育、成组活动是中国大陆强地震孕育、活动的基本特征。既
    然地震前的各种异常反映的是强震孕震过程,并且大多数强震是成组孕育的,那么在各种异常中
    就有可能存在地震组异常,这对日常判断、识别前兆异常,提高地震预测水平有实际应用意义。
     本论文对川滇地区初步搭建了一个地震分析预测研究的三维有限元数值模拟平台,尽管还有
    许多待完善之处,但本文的研究方向是有益的,对将数值模拟研究应用于实际地震预测有理论上
    的启迪意义,对地震从经验预测向物理预测发展有一定的借鉴作用。
The previous researches on the seismogenic process emphasized particularly on single earthquake source model and theory, and studied the phenomena and mechanisms of long term medium term and short-term earthquake preparation process according to its temporal and spatial dynamic evolvement of stress field and strain field in earthquake source and its neighboring area. However, the facts of seismic activities show that strong earthquakes aren't isolated each other, they have consanguineous relationship. Some of strong group earthquakes are the outcome of the same seismogenic process. Scientists have put emphasis on interaction of strong earthquakes since 1990's. The interaction and influence of earthquakes each other is one of an important factor, which is also of the complexity of seismic activities.
    In the article, from phenomenon to theory, we have studied the characteristics of strong group seismogenic earthquakes and group activities and tried setting up 3D finite element model and studied the mechanism of strong earthquakes group activities, particularly, aiming at Sichuan-Yunnan special region, applying the latest research result of geologic structure and deep physical geography. It is only the original intention to set up a theoretical basal platform for earthquake analysis and prediction and to search for some ways for physical prediction.
    First, let us take the history record of activities of the earthquakes on the mainland as the sample of statistics to analyze the distribution characteristics of the mainland earthquakes in both time and space. It shows that no matter we take the mainland as a whole to study, or take the mainland as two sections(the east and the west), even take the activities of the earthquakes in a certain region to study, the mainland activities occur in cluster in both time and space. That is to say there is a clear objectivity in the characteristic of the activities of the strong mainland earthquakes-group activity.
    Then, a simple way that is At-value scanning method is adopted to make a semi-quantitative research on the correlative characteristics of inter-earthquakes and to calculate the change of the strain release before and after region strong earthquakes occurred. Through the large range responding condition described by spatial scanning image, we have analyzed the seismic activities before and after strong earthquakes in north of China, southwest region and northwest region. Analysis of a great many data shows that some strong earthquake will arouse seismogenic zone loading and bring the increase of stress, accelerate accumulation of nonlinear strain of medium. It will make the earthquake source rupture of high stress status in unsteadiness in advance, which resulting the proceeding earthquake occur in advance. So strong earthquakes is associated in time and space.
    
    
    
    Then, we have made a further research for Sichuan-Yunan district. Based on the Okata theory of stress triggering, we make a systemic analysis on the triggering each other of strong earthquakes and group activities of earthquake. The statistical result shows that about 50 percent of earthquakes occurred in the positive area of coulomb rupture stress of the preceding earthquake. 30 percent of earthquake occurs in the negative area and20 percent of them occurred in the boundary area.
    Based on above research, the 3D finite element research on mathematic modeling research has been carried out for group activities and interaction of earthquakes. First, We try setting up 2D finite element model of stress evolvement and seismic activities for tectonic blocks of Qinghai-Tibet Platean. Study the relationship of stress evolvement, adjustment and group seismogenic activities of strong earthquakes and make a preliminary modeling the interaction characteristic between strong earthquakes in tectonic blocks of Qinghai-Tibet Platean.The research shows that we can simulate and calculate the function of adjustment and influence of stress by the way of finite element, and determine the increasi
引文
丁国瑜,卢演俦,1986,对我国现代板内运动状态的初步讨论,科学通报,31(18)
    万永革,吴忠良,周公威等,2000,几次复杂地震中不同破裂事件之间的“应力触发”问题,地震学报,22(6),568—576
    马宗晋,1980,华北地壳的多应力集中点场与地震,地震地质,2(1),39-47
    马杏垣主编.1986.中国岩石圈动力学图集.北京:中国地图出版社,68
    马杏垣,1989,中国岩石圈动力学地图集,中国地图出版社
    王妙月,张美根,底青云,等.1999.地震孕育、发生、发展动态过程模拟系统.地震学报,21(1),65—69
    王椿镛,Mooney W D,王溪莉等.2002.川滇地区地壳上地幔三维速度结构研究.地震学报,24(1),1~16
    中国地震局预测预防司,1998,《大陆地震预报的方法和理论—中国“八五”地震预报研究进展》,400—416
    邓起东,张裕明,许桂林,范福田,1979,中国构造应力场特征及其与板块构造运动的关系,地震地质,1(1):17-21
    刘蒲雄,1983,华北成串强震整体孕育过程的探讨,地震科学研究,Vol.4,30-37
    刘桂萍,傅征祥.2000.1976年7月28日唐山7.8级地震触发的区域地震活动和静应力场变化.地震学报,22(1),17—26
    孙加林、陆远忠、刘蒲雄,1995,《地震活动性图像演化在短临跟踪预报中的应用研究》,85-04-01-02课题报告
    许忠淮,汪素云,黄雨蕊等.1989.由大量的地震资料推断我国大陆构造应力场。地球物理学报,32(6):636—647
    许忠淮,汪素云,黄雨蕊,1987,由多个小震推断的青甘和川滇地区地壳应力场的方向研究,地球物理学报,30(5),476-486
    朱元清、石耀霖,1991,地震活动性研究中的非线性动力学模型,地球物理学报,34(1),20-31
    李钦祖、于新昌等,1980,华北地区大地震的成组活动特点,地震科学研究,N0.1,1-9
    李钦祖、于利民、王吉易,1993,中国大陆强地震的成组活动和概率预报,中国科学(B辑),23(5),519-526
    李钦祖、于利民、王吉易,1994,成组地震是中国大陆强地震的一个基本特点,地震学报,16(1),11-7
    李晓玲、汪志亮、余素荣,1996,澜沧—耿马等强震迁移活动与地电前兆场时空关系,地震,16(3),296-302
    李丽,张国民,石耀霖.1999.孔隙流体作用对地震活动影响的计算机模型研究.地震学报,21(1),75—82
    李永林,高旭.2000.中国西部及邻区强震迁移规律与喜马拉亚弧关系研究.地震,20(3):37—42
    李延兴,胡新康,赵承坤,1998.等.GPS跟踪站观测的初步结果所揭示的板内及板缘地壳水平运
    
    动.地壳形变与地震,18(2):29—34
    李坪,汪良谋,1977,云南川西地区地震地质基本特征的探讨,西南地区地震地质及烈度区划探讨,地震出版社
    汪素云,陈培善.1980.中国及邻区现代构造应力场的数值模拟.地球物理学报,23(1):35—45
    张国民、傅征祥,1985,华北强震的时间分布特征及其物理解释,地球物理学报,28(6),569-578
    张秋文博士学位论文,1999,《大陆强震复发模型与断裂间相互作用研究及其在地震预测中的应用》
    张国民,1987,中国大陆强震的韵律性特征,地震地质,9(2),27-37
    张国民主编,1999,《1998年张北6.2级地震》,地震出版社
    张国民、李丽、焦明若,1999,张北6.2级地震与强震成组活动,地震,19(2),107-117
    张国民、耿鲁明、石耀霖,1993,中国大陆强震轮回活动的计算机模型研究,中国地震,9(1),20-32
    张祖胜,1990,应用大地形变测量资料估计我国大陆地震区近几十年的地震趋势,国家地震局分析预报中心编,中国地震大趋势研究,地震出版社,50—65
    张祖胜、尤晓清,1995,地形变梯度与未来强震危险区的研究,辽宁省地震局编,发展中的地震科学研究,地震出版社,39—45
    张国民,傅征祥.1985.西南强震的时间分布特点及其物理解释.地球物理学报,28(8),569—578.
    张东宁,高龙生.1989,东亚地区应力场的三维数值模拟.中国地震,5(4):24—33
    张文佑,1986,中国及邻区海陆大地构造,科学出版社。
    陈惠开著,王兆明、田福庸等译,1988,《线性网络与系统》,电子工业出版社,451-489
    陈化然,刘文兵.2001.中国大陆强震之间时空关联特征研究及其初步应用.地震,Vo1.21,No.3,25-31
    陈运泰,林邦慧,林中洋,等.1975.根据地面形变的观测研究1966年邢台地震的震源过程.地球物理学报,18(3),164—181
    陈运泰,黄立人,林邦慧,等.1979.用大地测量资料反演的1975年唐山地震的位错模式.地球物理学报,22(3),201—217
    国家地震局《一九七六年唐山地震》编辑组,1982,《一九七六年唐山地震》,地震出版社
    罗灼礼,1979,印度板块向北顶撞作用与我国西部及其邻区现代构造应力场和地震活动特性的讨论,西北地震学报,1(4):11-21
    茂木清夫,《日本的地震预报》,庄灿涛等译,地震出版社,1986
    周硕愚,张跃刚,丁国瑜等.1998.依据GPS数据建立中国大陆板内块体现时运动模型的初步研究.地震学报,20(4):347—355
    施行觉、Wang C。Y.,1986,水的扩散与断层的粘滑,中国地震,2(3),14-20
    赵根模.1981.我国板内大地震之间的一种联系——诱发作用.地震研究,第4卷,第3期,253-263
    赵根模,姚兰予.1995.东亚大陆的地震迁移(一)——从西太平洋海沟到中国大陆内部的巨震及火山活动迁移.地震学报.第17卷,第4期,440-447
    赵根模,刘喜兰.1987.“诱发前震”的物理机制和前兆意义.中国地震,第3卷,增刊,60-65
    耿鲁明,石耀霖,张国民.1993.地震活动的简化模型研究.地震,13(1),68—75
    钱洪,沈均礼,黄进,田小嘉,1980,西南地区近代构造应力场和地壳运动特征的实验研究,地
    
    震研究,1(3):60-67
    特科特D.L.、舒伯特G.,1982,《地球动力学》(韩贝传等译,李继亮、李文范校),科学出版社,1986,341-343
    崔效锋,谢富仁,1999,利用震源机制解对中国西南及邻区进行应力分区的初步研究,地震学报,21(5):513-522
    郭自强、施行觉、王其允,1989,水对岩石粘滑特征的影响,地球物理学报,V01.32,Supp.Ⅰ,307-311
    梅世蓉,车时.1993.我国现代构造应力场方向与大小的数字模拟及其与地震活动的关系.梅世蓉.地震科学研究论文选集.北京:地震出版社,428—447
    梅世蓉,1997。华北北部强震前测震学主要异常及其机理的初步解释,地震短临预报理论与方法,地震出版社,495-504.
    梅世蓉、冯德益、张国民、朱岳清、高旭、张肇诚著,1993,《中国地震预报概论》,地震出版社
    程万正,刁桂苓,吕弋培等,2002,川滇地块的震源力学机制、运动速率和活动方式,(973报告)
    傅容珊,徐耀民,黄建华,等.2000.印度与欧亚板块碰撞的数值模拟和现代中国大陆形变.地震学报,22(1),1—7
    傅容珊,李力刚,黄建华,等.1998.青藏高原隆升过程三维模式的动力学模拟.北京,科学出版社,596—610
    臧绍先,吴忠良,宁杰远,等.1992.中国周边板块的相互作用及对中国应力场的影响——Ⅱ.印度板块的影响.地球物理学报,34(4):428—440
    阚荣举,1977,我国西南地区现代构造应力场与现代构造活动特征的探讨,地球物理学报,20(2):96-107
    阚荣举,1980,西南地区现代构造应力场与板内强震活动,地震研究,3(3):45-59
    鄢家全,1979,中国及邻区现代构造应力场的区域特征,地震学报,1(1):9-24
    监凯维奇.1985.有限元法.北京:科学出版社,717—800
    Burridge R. and Knopoff L., 1967, Model and theoretical seismicity, BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, Vol. 57,341-371
    Byerlee D.J.,1978, Friction of Rocks, PURE AND APPLIED GEOPHYSICS, Vol. 116,615-626
    Brown S.R., Scholz C.H. and Rundle J.B, 1991, A simplified spring-block model of earthquakes, GEOPHYSICAL RESEARCH KETTERS, Vo1.18, No. 2, 215-218
    Brune J.N., Henyey T.L. and Roy R.F., 1969, Heat Flows, stress and rate of slip along the San Andreas fault, California, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 74, 3821-3827
    Byerlee J., 1990, Friction, overpressure and fault normal compression, GEOPHYSICAL RESEARCH LETTERS, Vol. 17, 2109-2112
    Brace W.F. and Byerlee J.D., 1996, Stick-slip as a mechanism for earthquakes, SCIENCE, Vo1.153, 990-992
    Bernard P., Pinettes P., Hatzidimitriou P.M., Scordilis E.M. and et al, 1997, From precursors to prediction: a few recent cases form Greece, Geophys. J. Jnt., Vol. 131, 485-494
    Blanpied M.L., Lockner D..A and Byerlee J.D., 1992, An earthquake mechanism based on rapid sealing of faults, NATURE, Vol. 35, 8574-8578
    
    
    Bak P, Tang C. 1989. Earthquakes as self-organized critical phenomena. JGR, 92: 331—334
    Ben-Zion Y, Rice J R. 1993. Earthquake Failure Sequences along a celluar fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions. JGR, 98(B8): 14109—14131
    Burrige R, Knopoff L. 1967. Model and theoretical seismicity. Bull. Seis. Soc. Am., , 57:341—371
    Carlson J. M. and Langer J.S., 1989, Mechanical model of an earthquake fault, PHYSICAL REVIEW A, Vol. 40, 6470-6484
    Cao T. and Aki K., 1984, Seismicity simulation with a mass-spring model and a displacement hardening-softening friction law, PAGEOPH, Vol. 122, 10-23
    Cao T. and Aki K., 1986, Seismicity simulation with a rate and state dependent friction law, PAGEOPH, Vol. 124, 487-513
    Chen K., Bak P. and Obukhov S.P., 1991, Self-organized criticality in a crack-block model of earthquakes, GEOPHYSICAL RESEARCH LETTERS, Vol. 77, 3771-3781
    Cohen S., 1977, Computer simulation of earthquakes, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 82, 3781-3796
    Dieterich J.H., 1981, Constitutive properties of faults with simulated gouge, in Mechanical Behavior of Crustal Rocks, (edited by N.L. Carter,, M. Friedman. J .M. Logan and D.W. Stearns), Monograph 24, American Geophysics Union, 103-120
    Dieterich J.H., 1972, Time dependenct friction as a possible mechanism for after shocks, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 77, 3771-3781
    Freed A M, Lin Jian. 1998. Time-dependent changes in failure stress following thrust earthquakes. J Geophys Res, 103(B10): 24393—24409
    Gu J.C., Rice J.R., Ruian A.L. and Tse S.T., 1984, Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction, JOURNAL OF MECHANICS AND PHYSICS OF SOLIDS, 167-196
    Gu Y. and Wong T-F., 1991, Effects of loading velocity, stiffness and inertia on the dynamics of a single degree of freedom spring-slider system, JOURNAL OF GEOPHYSICAL RESEARCH, 96(B13),21677-21691
    Huang J. and Turcotte D.L., 1990, Are earthquakes an example of deterministic chaos? GEOPHYSICAL RESEARCH LETTERS, 17(3),223-226
    Hainzl S., Zoller G. and Kurths J., 1999, Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes, JOURNAL OF GEOPHYSICAL RESEARCH, 104(B4), 7243-7253
    Hickerman S.H., 1991, Sress in the lithosphere and the strength of active faults, REVIEW OF GEOPHYSICS, SUPPLEMENT, 759-775
    Hamilton T. and McCloskey J., 1998, PURE AND APPLIED GEOPHYSICS, Vol.152, 23-35
    Henderson J. R. and Maillot B., 1997, The influence of fluid flow in fault zones on patterns of seismicity: A numerical inwestigation, JOURNAL OF GEOPHYSICAL RESEARCH, 102(B2), 2915-2924
    
    
    Harris, R. A., 1998. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res. 103, pp. 24347-24358.
    Harris R A. 1998. Introduction to special section: stress triggers, stress shadows and implications for seismic hazard. JGR, 103(B10): 24347—24358
    Harris R A. 1998. Introduction to special section: stress triggers, stress shadows and implications for seismic hazard. JGR, 103(B10): 24347—24358.
    Ishida T., Chen Q. and Mizuta Y., 1997, Effect of injected water on hydraulic fracturing deduced from acoustic emission monitoring, PURE AND APPLIED GEOPHYSICS, Vol. 150, 627-646
    Knopoff L., Landoni J.A. and Abinante M.S, 1992, Dynamic model of an earthquake fault with localization, PHYSICAL REVIEW A, 46(12), 7445-7449
    Knopoff L., 1996, A selective phenomenology of the seismicity of Southern California, Proc. Natl. Acad. Sci. USA, Vol. 93, 3756-3763
    Knopoff L., 1996, The organization of seismicity on fault networks, Proc. Natl. Acad. Sci. USA, Vol. 93, 3830-3837
    Knopoff L., Levshia t., Keilis-Borok V.I. and Mattoni C., 1996, Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California, JOURNAL OF GEOPHYSICAL RESEARCH, 101(B3), 5779-5796
    Kanamori, H., 1981. The Nature of seismicity patterns before large earthquakes, Earthquake Prediction, Academic Press, Tokyo. An international Review, edited by D. W. Simpson and P. G. Richards, p.1-19. AGU. Washington, D. C..
    Lachenbruch A.H. and Mcgarr A., 1990, Stress and heat flow in The San Andreas Fault System, U.S.G.S. Prof. Paper, 15(15), 261-277
    Mikumo T. and Miyatake T., 1983, Numerical modeling of space and time variations of seismic activity before major earthquakes, Geophys. J.R. astr. Soc., Vol. 74, 559-583
    Madariaga R., Olsen K. and Archuleta R., 1998, Modeling dynamic rupture in a 3D earthquake fault model, BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 88(5), 1182-1197
    Mount V.S. and Suppe J., 1987, State of stress near the San Anfreas Fault: Implication for wrench tectonics, GEOLOGY, Vol. 15, 1143-1146
    Mogi K. 1977. Seismic activity and earthquake prediction. In proceedings of the symposium on earthquake prediction research, 203—314.
    Mora P, Place D, Abe S, Weatherly D. 1999. The lattice solid model: towards a realistic simulation model for earthquake micro-physics and the development of a virtual laboratory for the earthquake cycle. In APEC Cooperation for Earthquake Simulation (ACES): lst ACES workshop proceedings. P. Mora (editor), 121—131.
    Molnar. p. and Tapponnier .p.,1975, Cenozoic tectonics of Asia: effects of a continental collision, Science, Vol. 189,419-426
    Nrir J., Jacques E., Bekri S., Sdler P.M., Tapponnier P. and King G.V.P., 1997, Fluid flow triggered migration of events in the 1989 Dobi earthquakes sequence of Central Afar, GEOPHYSICAL RESEARCH LETTERS, 24(18), 2335-2338
    Niu. Z.R and Chen D.M. 1991, Period-doubling bifurcation and chaotic phenomena in a single
    
    
    degree of freedom friction elastic system with two state variable friction law, Paper presented at U4, the 19th IUGG, Vienna
    Nussbaum J. and Ruina A., 1987, A two degree-of-freedom earthquake model with static/dynamic friction, GAGEOPH, Vol. 125, 629-656
    Okada Y. Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Amer, 1992,82:1018-1040
    Oppenheimer D.H., Reasonberg P..A and Simpson R.W., 1988, Fault plane solutions for the 1984 Mrogan Hill, California, earthquake sequence: Evidence for the state of stress on the Calaveras fault, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 93, 9007-9026
    Ruina A., 1983, Slip instability and state variable friction laws, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 88, 10359-10370
    Rice J.R. and Tse S.T., 1986, Dynamic motion of a single degree freedom system following a rate and state dependent friction law, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 91, 521-530
    Rundle J.B. and Jackson D., 1977, Numerical simulation of earthquake sequences, BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, Vol. 67, 1363-1377
    Robnson R. and Benites R., 1995, Synthetic seismicity models of multiple interacting faults, JOURNAL OF GEOPHYSICAL RESEARCH, 100(B9), 18229-18238
    Rice J.R., 1992, Fault stress states, pore pressure distribution and the weakness of the San Andreas fault, in EARTHQUAKE MECHANICS AND TRANSPORT PROPERTIES OF ROCKS, London, Academic Press, 475-503
    Rundle J B, Henyey T, Minster J B, 1999. General earthquake model. In APEC Cooperation for Earthquake Simulation (ACES): ist ACES workshop proceedings. P. Mora (editor), 281—289.
    Senatorski P., 1995, Dyanmics of a zone of four parallel faults: A deterministic model, JOURNAL OF GEOPHYSICAL RESEARCH, 100(B12), 24111-24120
    Schmittbuhl J., Vilotte J.-P., Roux S., 1996, A dissipation-based analysis of an earthquake fault model, JOURNAL OF GEOPHYSICAL RESEARCH, 101(B12), 27741-27764
    Stein R.S., Barka A.A. and Doeterich J.H., 1997, Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, Geoghys. J. Jnt. 128, 594-604
    Sornette D., Knopoff L.,Kagan Y. and vanneste C., 1996, Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes, JOURNAL OF GEOPHYSICAL RESEARCH, 101(66), 13883-3893
    Steacy S.J., McCloskey J., Bean C.J. and Ren J., 1996, GEOPHYSICAL RESEARCH LETTERS, 23(4), 383-386
    Stein R S, King G C P, et al. 1994. Stress triggering of the 1994 M=6.7 Northridge, California, earthquake by its predecessors. Science, 265:1432—1435
    Tapponnier.p. and Molnar. p.,1976, Slip-line field theory and large scale continental tectonics, Nature, 264-319
    Tapponnier.p. and Molnar. p.,1977, Active faulting and tectonics of China, J.G.R.,82(20),P. 2905-2930

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700