用户名: 密码: 验证码:
中国大陆板内构造运动的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近半个世纪以来,国内外许多地球科学家为了解释青藏高原的形成和演化及动力学过程,进行了大量的野外考察与观测,开展了地质学、地球物理学、地震学研究以及数值模拟和实验研究,特别是空间测地技术(GPS)的应用,观测到了中国大陆地壳现今运动的空间分布,这些观测结果为进一步研究青藏高原地区对中国大陆其它块体的相互作用提供了重要的约束条件。
     本文在前人研究的基础上,根据青藏高原和中国大陆岩石层结构的已有研究结果,在地壳运动速度场和最大水平主压应力方向观测结果的约束下,对板块相互作用对中国大陆岩石层地球动力学过程的影响进行了研究,主要讨论板块互相作用下中国大陆岩石层板内构造运动的动力学机制。
     研究内容:(1)建立了中国大陆岩石层粘弹性物理模型;(2).在GPS观测结果和震源机制解研究结果的约束下,讨论了中国大陆岩石层运动的动力学机制;(3).建立了青藏高原地壳非均匀运动在中国大陆岩石层内产生扰动速度场和应力场的模型并进行了数值模拟,讨论了青藏高原地区地壳内弹性应变能释放和积累对华北地区各岩石层的影响;(4).探索性的研究了扰动场与强震活动的关系;(5).研究了华北地区深部断裂的非均匀活动与地壳形变异常的关系。
     研究思路方法:在中国大陆岩石层数值模型中,采用三维Maxwell粘弹体。模型参数以中国大陆岩石层结构特征为基础,并考虑了岩石流变参数的可变范围。为了便于研究和讨论,本文设计了两种具有典型意义的模型,并将计算结果与已有研究结果进行对比,注重研究以下问题:(1).中国大陆岩石层流变特性与板块边界作用强度的关系;(2).不同流变强度模型中最大水平主压应力随深度分布情况的相对变化;(3).分析在不同边界条件下,中国大陆板内的相互作用和与青藏高原的关系。
     为了探讨扰动场的特点,对青藏高原地区地壳百年尺度内非均匀运动在中国大陆产生扰动作用进行了研究,从岩石层之间相互影响和相互作用的角度,探讨青藏高原地区地壳运动的非均匀性对其深部岩石层传递板块相互作用力的扰动和对中国大陆其它块体的影响;同时,探讨该扰动场与中国西部地区强震活动与华北地区强震活动相关性之间的关系。
     主要成果及创新性:本文的主要意义在于,基于中国大陆模型,探讨了岩石流变强度与板块运动的关系,分别分析了板块相互作用和青藏高原形成后高原本身的重力作用对中国大陆岩石层的影响过程,给出了青藏高原地区地壳短时期内非均匀运动在中国大陆产生扰动场的结果,探讨了华北地区深部岩石层的动力来源,首次从深部断裂加速蠕滑的角度探讨邢台地震前地壳形变的物理机制。本文的主要结果是:
     (1)在现有观测资料的约束下,印度板块、太平洋板块和菲律宾板块对中国大陆板块的作用强度之比是4:1.25:1;板块边界的碰撞作用在模型坚硬层内形成较高的最大水平主压应力,青藏高原重力势等垂直向作用在青藏高原地壳内的软弱层形成较高的最大水平主压应力,这种垂直向作用力,在青藏高原南部地区向北推挤的过程中遇到了强烈的阻挡,使得高原周围其它地区增加对中国大陆其它块体的推挤作用。
     (2)深、浅部岩石层不同的水平最大主压应力和速度场表明,两个模型中水平最大主压应力沿深度的不同分布是边界作用强度变化的主要原因,但各个板块的作用强度之比保持不
    
    中国地震局地球物理研究所博士论文
    变。
     (3)青藏高原地区地壳非均匀活动在中国大陆岩石层引起扰动场的研究结果表明,在
    保持板块边界作用强度不变的情况下,青藏高原地区岩石层上部地壳运动的增强,增加了其
    岩石层下部的向前推挤,同时也增加了对其它块体的推挤作用,以上地慢盖层内最大水平主
    压应力的扰动值为例,华北地区比青藏高原南部地区小一个量级。从扰动场大小的空间分布
    来看,青藏高原地区的每一轮强震活动并不都能在华北地区引起一轮强震活动。该结果可以
    描述华北地区与青藏高原地区强震活动时序的内在规律,从岩石层相互作用的角度,可以得
    到华北地区强地震活动滞后青藏高原强地震活动约80年。
     (4)本文给出的扰动作用可以同时影响华北地区整个岩石层。邢台地震前深部断裂存在非
    均匀活动的研究结果表明,深部断裂沿水平方向加速蠕滑时,可以在地壳内形成水平最大剪
    应力扰动值高速集中区,水平最大剪应力扰动值增加的速度是深部断裂不加速蠕滑时的几百
    倍;模型表面垂直位移与邢台地震前地表面垂直位移变化趋势一致,根据其上升和下降的年
    速率推断邢台地震前深部断裂沿水平方向加速蠕滑量为1米左右。深部断裂的加速蠕滑导致
    了岩石层下层内的能量向中上部地壳内快速转移,加速了强震在该区的孕育过程。邢台地震
    前存在深部断裂沿水平方向加速活动的结论,符合邢台地震前地壳形变异常的观测结果,合
    理地给出了邢台强震后期可能的地球动力过程。
In the past fifty years, for the purpose of understanding the form and evolvement of Tibetan Plateau and their geodynamic process, many geoscientists in China and overseas have making a lot of field investigations and observations, doing many geognosy, geophysics, seismology researches, and developing some numerical computations and laboratorial researches. All of the results, especially the GPS observation data, make it possible for us to probe the geodynamic driving mechanism of continental lithosphere in China by the India-Eurasia collision.
    Under the restricts of the observation results of the horizon principal stress direction and the GPS data, and on the base of former researches about the lithosphere structures of Tibetan Plateau and other part of the mainland of China, we mainly study the geodynamic process and the geodynamic driving mechanism of continental lithosphere in China by plates collision.
    The main contents are: 1) establishing the physical model of continent lithosphere for numerical computation, 2) under the restricts of the observation result of the horizon principal stress direction and the GPS data, probing into the long term geodynamic driving mechanism of continental lithosphere in China, 3) establishing new model for computing the disturbing stress field in China, which is caused by the uneven activity of crust movement in Tibetan Plateau, 4)by using the spatial distribution of disturbing stress field to explain the strong earthquake activity relation between in Tibetan Plateau and in North China area,5) taking Xingtai strong earthquake in 1966 as example to understand the relation between the speedup activity of deep-seated fault in upper mantle and the vertical deformation on the earth's surface .
    In the computation model, the medium of lithosphere is treated as Maxwell medium. The physical parameters of the model accorded with the lithosphere structures, and the viscosity coefficient has an alterable range. Two different models are adopted in the paper. Model I is that the material of the upper mantle in lithosphere has lower viscosity coefficient, Model II is that the material of the upper mantle in lithosphere has higher viscosity coefficient. By comparing the different results calculated from different model and different boundary condition, we explore the connection between the intensity of plate driving force and the viscosity coefficient of model, and the characteristic of long term geodynamic driving mechanism of continental lithosphere in different layers, and the different behavior of the India-Eurasia collision and the additional forces in vertical direction which included geopotential of Tibetan Plateau landform, buoyancy of heat convection in upper mantle.
    The strong earthquake activity in China not only relates with the background stress field but also with the disturbing stress field. A new model for calculating this disturb is present, and the disturbing stress, caused by the speedup or quietude of crustal movement in Tibetan Plateau are given. On the base of these results calculated from the model, the geodynamics process of the strong earthquake brewing correlation between in Tibetan Plateau and in North China is discussed.
    The main purpose of this paper is to probe into the driving mechanism to China continent by continental collision and by geopotential of Tibetan Plateau landform from the viewpoint of geodynamics process, to present a new model to calculate the disturbing stress, and to explain the possible mechanism of crustal deformation before Large Earthquake in Xingtai in 1966. The main conclusions are as follows.
    1) When the horizon principal stress direction, and the velocity of crust movement calculated from the two three-dimensional Maxwell viscoelastic models are generally good agreement with
    
    
    results from seismology study and geodetic in china continent and its vicinity, the intensity ratio of driving force to China continental lithosphere from India plate, pacific plate and Philippine plate is 4:1.25:1. The behaviors of the India-Eurasia coll
引文
[1] A.M.约翰逊著.1983.地质学中的物理过程.北京:科学出版社.
    [2] B.B别洛乌索夫.1983.地球构造圈.北京:地震出版社.
    [3] O.C.盐凯维奇(英)著.1985.有限元法,上、下册.北京:科学出版社.
    [3] 陈墨香等.1988.华北地热.北京:科学出版社.
    [4] 车用太,鱼金子,高维安.1997.唐山地震前兆场形成与演化的坚固体膨胀—热物质涌落(DR)模式.地震监测预报的新思路与新方法。地震出版社,p10—23.
    [5] 丁国瑜主编.1991.中国岩石圈动力学概论.北京:地震出版社,p123-141.
    [6] 丁国瑜.2000.中国地震活动的新构造背景.地震分析预报技术骨干培训教材(上),p1-80.
    [7] 邓起东,张维歧,汪一鹏,等.1987.海原断裂带和1920年海原地震断层的基本特征及其形成机制.现代地壳运动研究(1),北京:地震出版社,p9-25.
    [8] 丁志峰,何正勤,孙为国.1999.青藏高原东部及其边缘地区的地壳上地幔三维速度结构.地球物理学报,Vol.42(2):197-204.
    [9] D.L.特科特,G.舒伯特.1986.地球动力学.地震出版社.
    [10] 古学进,张东宁,曾融生.1994.地幔岩浆上涌时地壳的应力与变形数值模拟.中国固体地球物理学展,海洋出版社,p209—222.
    [11] 傅征祥.1997.中国大陆地震活动性力学研究.地震出版社.
    [12] 傅容珊,徐耀民,黄建华等.2000.青藏高原挤压隆升过程的数值模拟.地球物理学报,Vol.43(3):345-355.
    [13] 方剑,许厚泽.1997.青藏高原及其临区岩石层三维密度结构.地球物理学报,vol.40(5):660-666.
    [14] 顾梦林,刘保金,赵成斌等.2000.邢台地区深浅构造耦合关系的探测研究和几个值得思考的问题.地震学报,Vol.22(4):385-393.
    [15] 郭增建.1985.立交模式及其在地震预报中的应用.西北地震学报,Vol.7(1):94-101.
    [16] 国家地震局分析预报中心编.1990.中国地震大形势预测研究.北京:地震出版社.
    [17] 国家地震局地质所,宁夏回族自治区地震局.1990.海原活动断裂带.北京:地震出版社.
    [18] 国家地震局《鄂尔多斯周缘活动断裂系》课题组.1988.鄂尔多斯周缘活动断裂系.北京:地震出版社.
    [19] 国家地震局《深部探测成果》编写组.1986.中国地壳上地幔地球物理探测成果.北京:地震出版社.
    [20] 姜枚,吕庆田,史大年等.1996.用天然地震探测青藏高原中部地壳、上地幔结构.地球物理学报,Vol.39(4):470-481.
    [21] 孔祥儒,王谦身,熊绍柏.1996.西藏高原西部综合地球物理与岩石圈结构研究.中国科学(D),Vol.26(4)
    [22] 李廷栋.1995.青藏高原隆升的过程和机制.地球学报,1:1-9.
    [23] 刘建中,中国地震.1992.缅甸弧的俯冲作用及川滇断块的地震地质特征.中国地震,Vol.8(1),1-10.
    [24] 刘福田,曲克信,吴华,等.1986.华北地区的地震层析成象.地球物理学报,Vol.29(5):442-449.
    [25] 刘国栋,王椿镛、张先康,等.1995.地壳上地幔结构和板内强震孕育物理模型、三维数
    
    值定量模型与潜在震源区预测研究.“八五”重点项目(85-907-02-04)二级课题报告.
    [26] 刘增乾,徐宪,潘桂棠,等.1990.青藏高原大地构造与形成演化.北京:地质出版社.
    [27] 马宗晋,傅征祥,张郢珍等.1982.1966~1976年中国九大地震.北京:地震出版社.
    [28] 马宗晋,蒋铭.1987.中国的强震期和强震幕.中国地震,Vol3(1):47-51.
    [29] 马宗晋,张家声,汪一鹏.1998.青藏高原三维变形运动学的时段划分和新构造分区.地质学报,Vol.72(3):211-227.
    [30] 梅世蓉,等.1999.板内强震孕育模式的深入研究,中国地震局“九五“科技攻关项目(95-04-03-01-01)课题报告.
    [31] 梅世蓉,薛艳,宋治平.1997.华北地区强震前地震活动长期演变过程的共性.地震出版社,1-12.
    [32] 梅世蓉,丁韫玉,宋治平.1997.华北地区强震前测震学的主要异常及其机理的初步解释.地震出版社,495—504.
    [33] 梅世蓉,胡长和,朱传镇,等.1982.一九七六年唐山地震.北京:地震出版社.
    [34] 梅世蓉,冯德益.1993.中国地震预报概论.北京:地震出版社.
    [35] 石耀霖.2000.地震研究中的一些地球动力学问题.地震分析预报技术骨干培训教材(上),60-80.
    [36] 石耀霖.2001.关于应力触发和应力影概念在地震预报中应用的一些思考.地震,Vol.27(3):1-6.
    [37] 石耀霖.2000.地壳地幔流变形对比的论.中国地震学会第八次学术大会论文摘要,中国地震学会,地震出版社,p232.
    [38] 史大年,姜枚,马开义等.1999.阿尔金断裂带地壳和上地幔结构的P波层析成像.地球物理学报,Vol.42(3):340-350.
    [39] 宋治平,尹祥础,陈学忠.1998.包体模型应力集中的定量研究.地震研究,Vol.21(3):247-255.
    [40] 宋惠珍,黄立人,华祥文.1990.地壳应力场综合研究.石油工业出版社.
    [41] 孙若昧,赵燕来,梅世蓉.1993.渤海及其邻区的地震层析成像.地球物理学报,Vol.36(1):44-54.
    [42] 滕吉文,王国正,刘道红,等.1975.华北平原中部地区深部构造背景及邢台地震.地球物理学报,Vol.18(3):196-207.
    [43] 滕吉文,张中杰,王光杰,等.1999.喜马拉雅碰撞造山带的深层动力过程与陆—陆碰撞新模型.地球物理学报,Vol.42(4):481-493.
    [44] 滕吉文,张中杰,杨顶辉等.1996.青藏高原地体划分的地球物理标志研究.地球物理学报,Vol.39(5):629-640.
    [45] 王椿镛,张先康,林中洋,等.1994.束鹿断陷盆地及其邻近的地壳结构特征.地震学报,Vol.16(4):472—479.
    [46] 王椿镛,林中洋,陈学波.1995.青海门源—福建宁德地学断面综合地球物理研究.地球物理学报,Vol.38(5):590-598.
    [47] 汪素云,许忠淮.1980.中国及邻区现代构造应力场的数值模拟.地球物理学报,Vol.23(1)34-45.
    [48] 汪素云,许忠淮,俞言祥,等.1996.中国及其临区周围板块作用力的研究.地球物理学报.Vol.39(6):764-771.
    
    
    [49] 王新华.1987.热源与地震发生的关系及电阻率前兆机理的研究.博士论文,国家地震局地球物理研究所.
    [50] 王彬,许昭永,赵晋明.含硬包体试样在破裂孕育过程中波速场的变化.地震研究,Vol.21,No.3,256-260.
    [51] 王绳祖,张四昌,田勤俭,等.2000.大陆动力学—网状塑性流动与多级构造变形.北京:地震出版社.
    [52] 王泽民,陈俊勇,庞尚益,等.2001.珠峰地区及青藏高原地壳垂直运动特征研究.现代地壳运动与地球动力学研究.北京:地震出版社,p36-43.
    [53] 吴云,帅平,周硕愚,等.1999.用GPS观测结果对中国大陆及邻区现今地壳运动和形变的初步探讨.地震学报,Vol.21(5):545-553.
    [54] 谢富仁,张世民,舒塞兵,等.1999.青藏高原北缘及东缘地壳动力学演化特征.第30界国际地质大会论文集,第5卷,地震出版社,p30-40.
    [55] 胥颐,刘副田,刘建华,等.2001.中国西部大陆碰撞带的深部特征及其动力学意义.地球物理学报,Vol.44(1):40-46.
    [56] 许忠淮,阎明,赵仲和.1983.由多个小地震推断的华北地区构造应力场的方向.地震学报,Vol.5(3):268-279.
    [57] 肖兰喜,朱元清,张少泉,等.1999.邢台震区深部构造与强震孕育关系的探讨。地震学报,Vol.21(6):597-607.
    [58] 杨国华,谢觉民,韩月萍.2001.华北主要构造单元及边界带现今水平变形与运动机制.地球物理学报,Vol.44(5):645-652.
    [59] 杨振宇,Jean Besse,孙知明,等.1998.印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化.地质学报,Vol.72(2):112-125.
    [60] 叶洪,陈国光,郝重淘,等.1999.中国大陆地震构造及现今地球动力学若干问题.第30界国际地质大会论文集,第5卷,地震出版社,p18-29.
    [61] 尹京苑,梅世蓉.1998.地壳应力状态及其在三维计算中的意义.地震,Vol.18(3):226-232.
    [62] 尹祥础著.1985.固体力学.北京:地震出版社,1-512.
    [63] 曾融生,朱露培,何正勤,等.1991.华北盆地强震的震源模型兼论强震和盆地的成因.地球物理学报,Vol.34(3):288-300.
    [64] 曾融生,丁志峰,吴庆举.2000.喜马拉雅及南藏的地壳俯冲带——地震学证据.地球物理学报,Vol.43(6):780-796.
    [65] 曾融生,丁志峰,吴庆举.1998.喜马拉雅—祁连山地壳构造与大陆—大陆碰撞过程.地球物理学报,Vol.41(1):49-60.
    [66] 曾融生.2001.地球动力学的某些关键问题.中国地球物理学会年刊,p2.
    [67] 钟大赉,丁林.1996.青藏高原的隆起过程及其机制探讨.中国科学(D),Vol.26(4):289-295.
    [68] 朱元清,石耀霖.1991地震活动性研究中的非线性动力学模型,地球物理学报,Vol.34(1):20-31.
    [69] 朱元清.1990.青藏高原岩石圈动力学与地热结构、热演化关系的研究,博士毕业论文.
    [70] 张东宁,许忠淮.1999.中国大陆地壳应变能密度年变化图像与强震活动关系的初步探讨.地震,Vol.19(1):26-32.
    
    
    [71] 张东宁,许忠淮.1999.中国大陆岩石层动力学数值模型的边界条件.地震学报,Vol.21(2):133-139.
    [72] 张东宁,曾融生.1995.冀中凹陷滑脱构造的数值模拟.地震学报,Vol.17(4):414-421.
    [73] 张国民,傅征祥.1985.华北强震的时间分布及物理解释.地球物理学报,vol.28(6)569-578.
    [74] 张国民.1996.地震预报与地震预测(讲座).地震地磁观测与研究,Vol.17(3):21-55.
    [75] 张培震,王琪.2001.中国大陆现今地壳运动和构造变形—速度场与活动板块,现代地壳运动与地球动力学研究.北京:地震出版社,p21-35.
    [76] 张全德,张燕平,李国智,等.青藏高原亚板块近期垂直形变运动的状态.现代地壳运动与地球动力学研究.北京:地震出版社,p44-53
    [77] 臧绍先.1989.中国周边板块的相互作用及其对中国应力场的影响.八十年代地球物理学进展,学术书刊出板社.
    [78] 赵文津,K.D.Nelson,徐中信,等.1997.雅鲁藏布江缝合带的双陆内俯冲构造与部分熔融层特征—INDEPTH项目结果的初步综合.地球物理学报,vol.40(3):325-334.
    [79] 赵文津,K.D.Nelson,车敬凯,等.1996.深反射地震揭示喜马拉雅地区地壳上地幔的复杂结构.地球物理学报,Vol.39(5):615-628.
    [80] 郑斯华.1999.青藏高原地震的震源机制和震源参数研究—地震矩张量和CMT解分析—.活断层研究.
    [81] 郑斯华,铃木次郎.1992.西藏高原及其周围地区地震的地震矩张量及震源参数的尺度关系.地震学报,Vol12(4):423-434.
    [82] 郑斯华.1995.青藏高原地震的震源深度及其构造意义.中国地震,Vol11(2):99-106.
    [83] 周民都,吕太乙,张元生,等.2000.青藏高原东北缘地质构造背景及地壳结构研究.地震学报,vol22(6):643-652.
    [84] Argrand. E.. 1924. in Comptes Rendus, Congres Geologique International,the proceedings of the 13th international G-eological congress(Liege, Belgium), vol. 1,p171.
    [85] Avouac J. P. and Tapponnier P.. 1993. Kinematic model of active deformation in central Asia. Geophys. Res. lett.,20:895-898.
    [86] Bird.P.. 1989. New finite element techniques for modelmg deformation histories of continental with stratified temperature-dependent reology. J.Geophys.Res.94,B4,3967-3990.
    [87] Bird.P. and K.Piper. 1980. Plane -stress fmite -element models of tectonic flow in southern California. Phys. Earth planet. Inter., Vol.21,158-175.
    [88] Brace W. F. and Kohlstedt D.L.. 1980. Limits on lithospheric stress imposed by laboratory experiment. J. Geophys.Res.,74: 6248-6252.
    [89] Burchfiel B. C.,Z.Chen, Y.Liu, and L.H.Royden. 1996. Tectonics of the Longmen Shah and adjacent regions. Int. Geol. Rev., 37,661-735.
    [90] Chen Z.,B.C.Burchfiel, Y. Liu, et al. GPS measurement from eastern Tibet and their implication for India/Eurasia intracontinental deformation. J. Geophys Res.,105,16215-16227.
    [91] Charles A. W. and Randall M. R. 1991. A Rheologically layered three-dimensional model of the San Andreas fault in central and Southern California. J. Geophys. Res, 96, B10,16597-16623.
    [92] Das s.,J. Boatwright and C.H. Scholz(Editors). 1986. Earthquake source mechanics. Geophysical Monograph 37, Maurice Ewing, vol.6, AGU.
    [93] Dewey J. F., and Burke. K. C. A.. 1973. Tibetan Variscan and Precambrian reactivation: Products of
    
    continental collision. J. Geol., 81, 683-693.
    [94] England, P., and G. Housemen. 1986. Finite strain calculations of continental deformation, 2, Comparison with the India-Asia collision zone. J. Geophys. Res.,91,3664-3676.
    [95] England, P., and G. Housemen. 1988. The mechanics of the Tibetan plateau, Tectonics evolution of the Himalayas and Tibet. Edited by shackleton R. M. et al., The Royal Society, London, p301-319.
    [96] Feng Shen, Leigh, H. R., B. C. Burchfiel. 2001. Large-scale crustal deformation of the Tibet Plateau. J. Geophys. Res., Vol. 106, No B4, 6793-6816.
    [97] Fielding E. J. 1996. Tibet uplift and erosion. Tectonophysics, 260: 55-84
    [98] Gutenberg, B.and C.F.Richter. 1954. Seismicity of the Earth and associated phenomena. Princeton University Press.
    [99] Gregory Houseman, Philip England. 1986. Finite strain calculations of continental deformation 1. Method ang general results for convergent zones. Journal of geophysical research vol 91, No. B3 3651-3663.
    [100] Gordon R. B.. 1965. Diffusion creep in the Earth's mantle. J. Geophys.Res.,70,2413-2418.
    [101] Gordon R. B.. 1967. Thermally activated progresses in the earth: Creep and seismic attenuation. Geophys. J.,14,33-43.
    [102] Haskell.N.A.. 1935. The motion of a viscous fluid under a surface load. Physics, 6, 265-269
    [103] H. J. Melosh and Arthur raefsky. 1980. the dynamical origin of subduetion zone topography. Geophys. J. R. astr. Soc. 60, 333-354.
    [104] Harrison T. M.,Copeland P.,Kidd W.S.,et al.. 1992. Raising Tibet. Science, 255:1663-1670.
    [105] Houseman G. A., D.P.McKenzie, and P. molnar. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental covergent belts. J. Geophys. Res. 86, 6115-6132.
    [106] Jay Melosh. 1977. Shear stress on the base of a lithospheric plate. Pageoph,Vol. 115,429-438.
    [107] J. C. Savage. 2000. Viscoelastic coupling model for the earthquake cycle driven from below. J. Geophys. Res, Vol. 105, No.B11,25525-25532.
    [108] J. P. Avouac and P.Tapponnier. 1993. Active thrusting and folding along the northern Tien Shan and late cenozoic rotation of the Tarim relative to Dzungaria ang Kazakhstan. j geophys.res vol.98,No.B4,6755-6804.
    [109] King, RW., F. Shen, B.C.Burchfiel, et al.. 1997. Geodetic measurement of crustal motion in southwest China. Geology, 25, 1279-1282.
    [110] Kasahara. K.. 1981. Earthquake Mechanics. Cambridge University Press, London.
    [111] Mogi K.. 1985. Earthquake prediction. Academic Press, Japan, INC.
    [112] Mian Liu, Youqing Yang, Seth stein, et al.. Crustal shortening m the Andes: Why do GPS raters differ from geological rates? Geophysical Researchletters, Vol. 27, No. 18 3005-3008.
    [113] Molnar P., and Chen,W.P.. 1983. Focal depths and fault plane solutions of earthquakes under the Tibetan Plateau.. J. Geophysics.Res.,88,B2,1180-1196.
    [114] Molnar P. and Tapponnier P.. 1981. A possible dependence of tectonic strength on the age of the crust in Asia. Earth Planet. Sci. Let., vol. 52: 107-44.
    [115] Molnar P.. 1992. Brace-Goetze strength profiles, the partitioning of strike-slip and thrust
    
    faulting at zones of oblique convergence and the stress-heat flow paradox of the San Andreas fault, in Fault Mechanics and Transport Properties of Rock, Academic Press, p435-459.
    [116] Molnar P.. 1993. Mantle Dynamics, uplift of the Tibetan Plateau and the Indian Monsoon. Reviews of Geophysics, 31357-396.
    [117] Molnar P. and Gipson J. M.. 1996. A bound on the theology of eontinentsl lithosphere using very long baseline interferometry: the velocity of south China with respect to Eurasia. J. Geophys Res, 101: 545-553 .
    [118] M.B.Kanchi, D.R.J. Owen and O.C.Zienkiewicz. 1975. An implicit scheme for finite element solution of problems of visco plasticity and creep, C/R/252/75, Univ. Coll. of Swansea.
    [119] Melson H. J.. 1980. Rheology of the earth: Theory and observation, in Physics of the Earth's interior, edited by A. M. Dziewonski and E. Boschi, North-holland, New York, p318-335.
    [120] Ohnaka M.. 1983. Acoustic emission during creep of brittle rock. Int. J. Rock Mech. Min. Sci., Vol. 20, No.3.
    [121] Peltzer G. and Tapponnier P.. 1988. formation and evolution of strike —slip faults, rifts, and basins during India-Asia collision: An experiment approach. J. Geophys. Res., 93: 15085-15117,
    [122] Phinney et al.. 1989. A national Program for research in continental dynamics(CD/2020). DOSECC Inc. and IRIS Consortium.
    [123] Powell C. M. and Conaghan P. J.. 1973. Plata tectonics and the Himalayas. Earth Planet, Sci. Lett, Vol 20: 1-12.
    [124] Ranalli G. 1991. Regional variations in lithosphere rheology from heat flow observation, in Cermak V, and Ryback L, eds. Terrestrial heat flow and lithosphere structure, Springer-Verlag, Berlin, 1-22.
    [125] Ranalli G. 1997. Rheology of the lithosphere in space and time, in By Burg J P and Ford M, eds. Orogeny through time, Geological Society Special Publication, 121, 19-37.
    [126] Royden L.. 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. J. Geophys. Res.,101,17679-17705.
    [127] Royden L. H.,B.C.Burchfiel, R. W. King, et al.. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276: 788-790.
    [128] Reid H. F.. 1910. The California earthquake of April 18,1906 Vol.2: the mechanics of the earthquake. The Carnegie Inst. Washington.
    [129] Reid H. E. 1911. The elastic-rebound theory of earthquake. University of Calif. Publ. geol. Sci., Vol6, 413-444.
    [130] Riehards M. A. and Stock J.M.. 1997. Follow the roving hotspots. EOS, transactions, AGU, 78(51): 599,603.
    [131] Rong-sheng Zeng, Chun-yong Wang, Dong-ning Zhang. 1995. On the dynamics of extensional basra. Pageoph, Vol. 145, Nos. 3/4,579-603.
    [134] Scholz C.H.. 1990. The mechanics of earthquake and faulting. Cambridge university Press.
    [135] Shelton R.H. and J. Tullis. 1981. Experimental flow laws for crustal rocks (abstract). Eos Trans. AGU, 62, 396
    [136] Tapponnier P., G peltzer, and R. Annijo. 1986. On the mechanics of the collision between India and Asia. In Collision Tectonics, edited by M. P.Coward and A.C.Ries, p115-157, Geological
    
    society of London, London.
    [137] Tapponnier P. and Molnar P.. 1977. Active faulting and Cenozoic tectomcs of China. J. Geophys. Res., 105: 5721-5734.
    [138] Tapponnier P., Palzer G, Le'Dain A.Y.,et al.. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiment with plasticine. Geology, 10: 611-616.
    [139] Wang E., B. C.Burchfiel, L. H. Royden, et al.. 1998. Late Cenozoic Xianshuihe-Xiaojiang and Red River fault systems of south western Sichuan and central Yunnan. China, Spec. Pap. Geol. Soc. Am., 327, 108.
    [140] Willet S. D., C.Beaumont, and P. Fullsack. 1993. Mechanical model for the tectonics of doubly vergent compression orogens. Geology, 21, 371-374.
    [141] Zheng S. H.. 1983. Seismic moment tensor inversion of earthquakes in and near the Tibetan plateau and their tectonic implication, Ph.D. thesis of Tohoku University, Japan, 1-187.
    [142] Zhan L.S.and Helmberger, D. V.. 1991. Geophysical implications from relocations of Tibetan earthquakes: hot lithosphere. Geophys. Res. Lett., Vol. 18, No. 12, 2205-2208.
    [143] Zhao W. L., and Morgan W. J.. 1985. Uplift of Tibetan Plateau. Tectonics, 4, 395.
    [144] Zhao W. L., and Morgan W. J.. 1987. Injection of Indain Crust into Tibetan Lower Crust: A two-dimensional Finite-element Study. Tectonics 6, 489-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700