用户名: 密码: 验证码:
动能弹侵彻陶瓷复合装甲机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷复合装甲由于在防护领域的应用背景而引起人们的广泛关注。本文针对陶瓷复合装甲的研究现状,深入系统地研究了陶瓷/金属、陶瓷/非金属轻型装甲和陶瓷多层复合装甲的抗弹性能及优化设计,同时研究了在冲击载荷作用下陶瓷面板的破碎机理,对陶瓷复合装甲不同于均质装甲的抗弹性能进行了分析。文中建立了一些新的模型和解决问题的方法。本文的主要研究内容如下:
     (一)建立了小型穿甲弹垂直侵彻陶瓷/金属轻型装甲的动量模型和能量模型,它们分别适用不同情况,并通过试验验证;基于能量模型和背板椭圆吸能相同假设,建立了小型穿甲弹斜侵彻陶瓷/金属轻型装甲的分析模型,给出了弹道极限速度预测公式;利用能量模型对陶瓷/金属轻型装甲的优化设计进行了分析,给出了陶瓷/金属复合装甲的最佳优化系数。
     (二)系统地研究了陶瓷/非金属轻型复合装甲的损伤机理和抗弹性能。首先,分析了纤维类正交铺层复合靶板在冲击载荷作用下的损伤破坏机理,结合包含损伤和应变率效应的材料动态本构方程,建立了纤维复合材料板弹道极限速度的预测公式;其次,根据陶瓷/纤维材料复合靶板在冲击载荷下的破坏特点,建立了陶瓷/复合材料靶板抗弹性能分析模型,给出了弹道极限速度预测公式;最后,利用应力波反射和透射理论讨论了陶瓷/复合材料靶板的设计问题,对双层陶瓷复合靶板的优化设计进行了分析,给出了在一定面密度下的最佳优化系数,讨论了一定弹道极限速度下的面密度和厚度随优化系数的变化关系。
     (三)研究了冲击载荷作用下陶瓷面板破碎锥角的形成机理。首先,在低速撞击的条件下,基于准静态Hertz的理论与萨布斯基理论,分析了陶瓷破碎锥角的形成;其次,在中高速撞击条件下,利用球面应力波反射迭加理论,分析了陶瓷背面的层裂的形成;最后,简单讨论了高速撞击下陶瓷的破碎机理。
     (四)对杆式弹以1000m/s~3000m/s速度侵彻陶瓷多层复合装甲进行了探讨。首先,基于双剪统一强度理论和球型空穴膨胀理论建立了靶板抗力表达式,并通过压力相等条件给出了杆式弹侵彻陶瓷复合靶板的侵彻速度与撞击速度的表达式,最后用试验进行了验证;其次,利用上面的靶板抗力表达式、侵彻速度、弹杆速度的微分方程,建立了陶瓷/玻璃钢/钢板复合多层靶板侵彻深度分析模型,分两组试验对侵彻深度、
    
    不同长径比的侵彻效果进行了验证;最后,建立了杆式弹垂直侵彻陶瓷多层复合靶板
    的工程模型,给出了预测靶板抗弹性的K。表达式,并通过试验验证,同时,利用该
    公式和给定的约束条件对陶瓷复合装甲的优化设计进行了研究。
During the past years a great deal of interest has been devoted to the study of ceramic composite armor due to the application in defense, In the light of recent work of ceramic/composite armor the dissertation provides the defensible performance of ceramic/ metal, ceramic/non-metal light armor and multi-layer ceramic composite armor and its optimization design. At one time, it motives us to study the smash mechanism of ceramic facet plate under the effect of impact load and to analyzed different defensible performance from homogeneous armor. There set up some new models and come up with a series of solution. The major contributions in this dissertation are as fellows.
    1. Momentum and energy model of small AP normal penetrate through ceramic/ metal light armor is presented. They are applied to different situations and verified by experiments. Analysis model of small AP oblique penetrating ceramic/ metal light armor is established on the basis of energy model and the assumption of ellipse absorbing the same energy in back plate, giving the predictable formula about ballistic limit velocity. With energy model the optimization design in relation to ceramic/ metal light armor is analyzed and the optimal coefficient of ceramic/ metal composite armor is gained.
    2. The damage mechanism and defensible performance of ceramic/ metal light composite armor are studied. Firstly the damage or destroy mechanism of anisotropic fiber orthogonal composite target under the action of impact load is analyzed. With the material dynamic constitutive equation including damage and the effect of stain rate the predictable formula about ballistic limit velocity of fiber composite target. Secondly based on the damage feature about ceramic/ fiber composite target caused by impact load, analysis model about defense performance of ceramic/ composite material target is formed and the predictable formula about ballistic limit velocity is also given. Lastly using the reflection and projectile theory of stress wave the paper discusses the design of ceramic/ composite material target, optimizes the design of double layer ceramic/composite targets, gains optimal coefficient under certain area density and discusses the variety relationship of area density and thickness with optimal coefficient u
    nder some ballistic limit velocity
    3. For impacting on ceramic plate formation mechanism of smash cone angle is investigated. At first in the condition of low-velocity impact it is discussed with the formation of ceramic smash cone angle on the base of quasi-statistic Hertz and 3 a 6 y A c - theory. Then using spherical stress wave reflection and transmission theory under the state of medium-high velocity the formation of spot in the ceramic back. Finally the damage mechanism of ceramic suffered by the high impact is simply discussed.
    4. We discuss the multi-layer composite armor penetrated by the rod projectile with the velocity of 1000m/s~3000m/s. Firstly on the basis of twin shear unified strength theory and spherical cavity expand theory it is established the expression about target defense force, given the equations of rod projectile penetrate and impact velocities on ceramic/ composite target under the same pressure and verified through the experiment. Secondly the analysis model of ceramic/ GRFP/ steel composite multi-layer target penetrate depth employing above differential equation of target defense force, penetrate velocity and rod velocity. There are two team of experiments which testify separately the penetrate depth
    
    
    and effect with different length-to-diameter. Finally engineering model is advanced which rod projectile normal penetrate ceramic multi-layer composite target. The V50 expression of target defensible performance is given verified by the experiment. Using the expression and the given restriction optimization design of ceramic/ composite armor is researched.
引文
[1] A. Tate. Further results in the theory of long rod penetration. J Mech Phys Solids, 17, 141-150, 1967
    [2] Anderson, C.E, P.A.Cox, et al. A constitutive formulation for anisotropic materials. Comp.Mech., 1994,15:201-213.
    [3] J.G.Hetheringgton. The optimization of two component composite amours. Int. J.Impact. Engng, 1992,12(3) : 409-414.
    [4] B.R.Scott.The penetration of compliant laminates by compact projectiles. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp. 1184-1191.
    [5] B.R.劳恩,T.R.威尔肖著.脆性固体材料力学.北京:1985.
    [6] Bai, Y. L. Bai, J., et al. Damage evolution, localization and failure of solid subjected to impact loading. Int.J.Impact Engng, 2000,24: 685-701.
    [7] Ben-Dor, G., Dubinsky, A., et al.3D impostors penetrating into layered targets.J.Theor.Appl.Fracture.Mech.,1991, 27: 161-166.
    [8] Birman, V. and Bert, C. B..Behaviour of laminated plates subjected to conventional blast. Int.J.Impact. Engng, 1987,6(3) : 145-155.
    [9] Bruchey, W. J. and Horwath, E. J.. System considerations the development of high-efficiency ceramic armors. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-167-3-174.
    [10] Carroll M M and Holt A C. static and dynamic pore collapse for ductile porous media, J.Appl.Phys.1972, 43:1626-636
    [11] Cantwell, W. J. and Mortan, J..Impact performation of carbon fiber reinforced plastic. Comp.Sci.Tech, 1990,38:119.
    [12] Charles, E. A., Scott, A. M., Andrew, J. P., et al..Scale model experiments with ceramic laminate targets. ADA288322.
    [13] Chocron Bernoulli, I.S., Rodriguez, J., et al. Dynamic tensile testing of aramid and polyethylene fiber composites. Int.J.Impact. Engng, 1997,19(2) : 135-146.
    [14] Chocron, S. and Sanchez-G61vez, V..A new analytical model to simulate impact onto ceramic/composite armors. Int.J.Impact Engng, 1998,21(6) : 461-471.
    [15] Chocron, S. and Sanchez-Galvez, V..An analytical model to design ceramic/composite armors. 17th international symposium on ballistic. Midrand, South Africa, 1998,pp.3-327-334.
    [16] Chocron, S., Anderson E..Long-rod penetration: cylindrical vs. spherical cavity expansion for extent of plastic flow. 17th international symposium on ballistic. Midrand, South Africa, 1998,pp.3-319-326.
    [17] Chocron, S., Sanchez-Galvez, V., et al. Analytical study and optimization of ceramic/composite armors to range of projectile threats. 17th international symposium on ballistic. Midrand, South Africa, 1998,pp.3-335-342.
    [18] Christophe DENOUAL, Charles E.C., et al. On the identification of damage during impact of a ceramic by a hard steel projectile. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.549-558.
    [19] Church, P., Goldthorpe, B., et al..Development and validation of a dwell model. 19th international symposium on ballistic, Interlaken Switzerland, 2000,pp. 1337-1344.
    [20] Clegg, R., Hayhusrt, C., et al. Application of a coupled anisotropic material model to high velocity impact response of composite textile amour. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.791-798.
    [21] Colin, J.H., Richard, A. C., et al. The application of SPH techniques in AUTODYN-2D to ballistic impact problems. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.407-415.
    [22] Cortes.R, C.Navarro, et al. Numerical modeling of normal impact on ceramic composite armors. Int.J.Impact Engng, 1992, 12:639-651.
    [23] Cullis, I.G. and Lynch, N.J.. Performance of model scale long rod projectiles against
    
    complex targets over the velocity range 1700-2000m/s. Int.J.Impact Engng, 1995, 17: 263-274.
    [24] Curran.D.R, L.Seaman, T.Cooper and D.A.Shocky.Micromachanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets. Int. J.Impact Engng, 1993, 13: 53-83.
    [25] D. L. Orphal, R. R. Franzen. "Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1. 5 to 4. 6 km/s". Int J Impact Engng, 19, 1-13, 1997
    [26] Dov Sherman and t.Ben-Shushan.The ballistic failure mechanisms and sequence in confined ceramic tiles. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.533-541.
    [27] Dr.Michael J.Normandia.Relating Integral Theory of impact strength terms to those of Tate. 14th international symposium on ballistic, Quebec, Canada, 1993,pp. 629-638.
    [28] E. J. Rapacki, G. E. Hauver, P. H. Netherwood, R. F. Benck RF, "Ceramics for armours-a material system perspective". 7 th Annual TARDEC Ground Vehicle Survivability Symposium, USA, 1996
    [29] Ernst, H. J., Wolf, H., Lanz, W..Sic-targets against differently scaled KE-threats. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-435-3-442.
    [30] Fellows, N.A.and Barton, P. C..Development of impact model for ceramic-faced semi-infinite armour.Int.J.Impact Engng, 1999,22:257-279.
    [31] Floyd, A.M., Willianms, K., et al. Through-thickness strain-softening damage modeling of composite laminates. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.877-884.
    [32] Forrestal, M. J. and Longcope, D. B..Target strength of ceramic materials for high-velocity penetration.J.Appl.Phys, 1990,67(8) :3669-3672.
    [33] Forrestal, M. J. and Longgcope, D. B..Target strength of ceramic materials for high-velocity penetration.J.Appl.Phys.67 (8) : 3669-3672.
    [34] Forrestal, M. J. and Luk, V. K..Dynamic Spherical Cavity Expansion in a compressible elastic-plastic solid. ASME Journal of Applied Machanics.1998,55,:275-279.
    [35] G. E. Hauver, P. H. Netherwood, R. F. Benck, L. J. Kecses. "Ballistic performance of ceramic targets. Army Symposium on Solid Mechanics, USA, 1993
    [36] G. E. Hauver, P. H. Netherwood, R. F. Benck, L. J. Kecskes. "Enhanced ballistic performance of ceramic targets". 19 th Army Science Conference, USA, 1994
    [37] G.C.Sih. Impact damage of laminated composite with energy dissipation: Part I-Nonhomogenous characteristics.J.Theor.Appl.Fracture.Mech., 1995, 22: 171-188.
    [38] G.C.Sih. Impact damage of laminated composite with energy dissipation: Part Ⅱ-Damage evolution. J.Theor.Appl.Fracture.Mech.,1995, 22: 189-218.
    [39] G.J.J.M.Peskes.Scaled long rod experiments on ceramic targets. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.1089-1099.
    [40] Gellert, E.P., Cimpoeru, S.J.,et al.A study of effect of target thickness on the ballistic perforation of glass-fiber-reinforced plastic composite. Int.J.Impact Engng, 2000,24: 445-456.
    [41] Grace, F.I. and Rupert Nevin L..Analysis of long rod impacting ceramic targets at high velocity.
    [42] Grace, F.I. and Rupert, N. L..Analysis of long rods impacting ceramic targets at high velocity. Army Research Laborary, ARL-TR-1493, 1997.
    [43] Grace, F.I..Ballistic limit velocity for long rods from ordnance velocity through hypervelocity impact. Int. J.Impact Engng, 1999, 23:295-306.
    [44] Grace.F.I.Nonsteady penetration of long rods into semi-infinite targets. Int.J.Impact Engng.1993, 14: 303-314.
    [45] Guannar W. R., Jerome D. Y., et al.An engineering model for residual mass and velocity of kinetic energy penetrators impacting highly oblique plates. 16th international symposium on ballistic, San Rrancisco, California, 1996,pp.247-256.
    
    
    [46] Gunnar,W. R., Jerome, D. Y.,David, L. D..An engineering model for residual mass and velocity of kinetic energy penetrators impacting highly oblique plates. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.247-256.
    [47] Hazell, P. J. and Iremonger, M. J.. Steel sphere impact of thick alumina targets. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-1-3-8.
    [48] Hazell, P.J. and Iremonger, M.J.Crack Softening damage model for ceramic impact and its application within hydrocode. J.Appl.Phys., 1982, 3:1088-1092.
    [49] Hertel.E. S. and Grady, D.E..Tungsten carbide fragmentation experimental characterization and numerical modeling. 15th international symposium on ballistic, Jerusalem.Israel, 1995.
    [50] Hoog, E. and Ernst, H. J..Ductile limit of the ballistic response of steel backed ceramics. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-57-3-64.
    [51] Horsfall, I. and Buckley, D..The effect of through-thickness crack on the ballistic performance of ceramic amour system. Int.J.Impact. Engng, 1996,18(3) : 309-318.
    [52] J.G.Hetherington and P.F.Lemieux.The effect of obliquity on the ballistic performance of two component composite amours. Int.J.Impact Engng, 1994, 15(2) : 133-148.
    [53] J.van.Hoof, M.J.Deutekom, M.J.Worswick and M.Bolduc.Experinetal and numerical analysis of the ballistic impact response of composite helmet materials. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.660-667.
    [54] James, D. B..Direct evidence for ceramic comminution ahead of a penetrator. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-9-3-16.
    [55] James, D. W. and Anderson E..Optimizations using a light armor model. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-375-3-382.
    [56] James, D. w. and Charles, E. A..An analytical model for ceramic-faced light armors. 16th international symposium on ballistic, San Rrancisco, California, 1996,pp.287-296.
    [57] Jarolav, B., Milors, L., et al.Long rod penetration into steel targets.16th international symposium on ballistic, San Rrancisco, California, 1996,pp.227-236.
    [58] K.Weber, M.EI-Rahed and V.Hoher.Experimental investigation on the Ballistic performance of layered AIN ceramic stacks. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.1247-1254.
    [59] Kumar, K. S. and Bhat, T.B.. High velocity impact response of fibre glass reinforced plastic laminates. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-175-3-182.
    [60] Kurode, A. and Takahashi, H..Optimization method of composite armor structures against long rod projectiles. 17th international symposium on ballistic. Midrand, South Africa, 1998,pp.3-285-292.
    [61] Lee, M. and Yoo, Y. H..Analysis of ceramic/metal amour systems. Int.J.Impact Engng.2001, 25: 819-829.
    [62] Lee, M.. Analysis of jacketed rod penetration. Int.J.Impact Engng, 2000,24: 117-131.
    [63] LeGallic, C., Cauret, M., et al. A consideration of damage in the interaction between tungsten rod penetration and ceramic materials. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.463-469.
    [64] Lundberg, P., Renstrom, R., et al.Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration. Int.J.Impact Engng, 2000,24: 259-275.
    [65] M.Ravid and S.R.Bodner.Analytical investigation of ceramic armor with composite laminated backing. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.1115-1122.
    [66] Mackieewicz, J.F..Advanced ceramic/composite amour for defeat of small arms.Proc.Lightweighg Amours System Symp, 95,1995,pp26.
    [67] Mandell, D. A., Wingate, C.A. et al. Simulation of a ceramic impact experiment using the sphinx smooth particle hydrodynamics. 16th international symposium on
    
    ballistic, San Francisco, CA, USA, 1996,pp397-405.
    [68] Michael, J. N., Sikhanda, S, et al..Modified cavity expansion analysis for modeling finite target penetration. 16 international symposium on ballistic, San Rrancisco, California, 1996,pp.217-226.
    [69] Mr.Jan Hasslid, Mr Rolf Nystrom and Dr Michael J Murphy.Ceracode-A model for numerical analysis of warhead interaction with ceramic amour. 14th international symposium on ballistic, Quebec, Canada, 1993,pp. 555-562.
    [70] N.L.Rupert.Accounting for expected strength variations in ceramic. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.1139-1148.
    [71] N.L.Rupert.Penetration of long rods into finite bi-element target. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp. 1149-1158.
    [72] O'Donnell, R.G..Calculatio n of the Energy of Elastic Deformation of Kevlar backing plates for Ceramic armors. MRL-TN-596, Materials Research Laboratory, DSTO, Victoria, Australia, 1992.
    [73] Orsini, H..Impact behaviour of bi-layer armours.Proc.Lightweighg Amours System Symp, 95,1995.
    [74] P. Lundberg, L. Holmberg, B. Janzon. "An experimental study of long rod penetration into boron carbide at ordnance and hypervelocities." Proc 17 th Int Symp on Ballisticis, South Africa, 3, 251-265, 1998
    [75] P. Lundberg, L. Westerling, B. Lundberg. "Influence of scale on the penetration of tungsten rods into steel-backed alumina targets." Int J Impact Engng, 18, 403-416, 1996
    [76] P. Lundberg, R. Renstrom and L. Holmberg. An experimental investigation of interface defeat at extended interaction time. 19th international symposium on ballistic, Interlaken Switzerland, 2000,pp.1463-1469. .
    [77] P. Lundberg, R. Renstrom, B. Lundberg. "Impact of metallic projectiles on ceramic targets: transition be-tween interface defeat and penetration." Int J Impact Engng, 24, 259-275,2000
    [78] P.M.Cunniff.The V50 performance of body armor under oblique impact. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.829-836.
    [79] Partom, Y. and David, L. L..Validation and calibration of a lateral confinement model for long-rod penetration at ordnance and high velocities. Int.J.Impact. Engng, 1995,17: 615-626.
    [80] Partom, Y., Kivity, Y., Yaziv, D..Long rod penetration into thick alumina (AD-85) targets with and without confinement. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-443-3-450.
    [81] Parttorn Yehuda.Validation of the cavity expansion resistance model for ceramic target with computer simulation.
    [82] Pascal Riou, Charles E.Cottenot and Michel Boussuge.Anisotropic damage model for impacted ceramic materials: application to silicon carbide. Int.J.Impact Engng, 1998,21(8) : 683-693.
    [83] Paul, J.H. and Michael J.I.. A microfracture damage model for ceramic impact and its application within AUTODYN. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.473-481.
    [84] Peskes, G.J.J.M., Briales , C., et al..Optimisation of light weight armour. 16th international symposium on ballistic, San Rrancisco, California, 1996,pp.309-318.
    [85] Prosser,R.A..Penetration of nylon ballistic panels by fragment-simulating projectiles .Part I :a linear approximation to the relationship between the square of the V50 or Vc striking velocity and the number of layer of cloth in the ballisticpanel.Part Ⅱ :Mechanics of penetration. Textile Res.J, 1998,61-85.
    [86] R.Zaera and V.Sanchez-Galvez.Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armors. Int.J.Impact Engng, 1998, 21(3) : 131-137.
    [87] Den Reijer. Penetration of 7. 62 AP projectiles into ceramic faced armour. Proc.on the 11th Int.Symp.on Ballistics. Brussel Congress Centre.Belgium 1989;(Ⅲ):77-85.
    [88] Rajendran, A. M..Modeling the impact behavior of AD85 Ceramic Under multi-Axial
    
    loading. ARL-TR-137, Army Research Laboratory, DSTO, Victoria, Australia, U.S.A., 1993.
    [89] Raul Cortes, Ma Reyes Vigil and Carlos Navarro. Numerical analysis of the normal impact on composite plates faced by ceramic powder. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.521-530.
    [90] Ravid, M., Yehoshua, N., et al. An analytical model for long rod penetration and perforation. 14th international symposium on ballistic, Quebec, Canada, 1993,pp.429-437.
    [91] Raymond L.Woodward.A simple one-dimension approach to modeling ceramic composite amour defeat. Int.J.Impact Engng, 1991,9(4) : 461-471.
    [92] Richard, D. and Dennis, N..An investigation on the result scatter obtained with the DOP technique using an aluminum backing. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.483-493.
    [93] Richard, D..Applying EM computed from DOP testing results to the design of actual ceramic armour systems. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-153-3-158.
    [94] Richard, F., Ton.P., Martien.J..Modeling the ballistic impact behaviour of high-performance polyethylene-fibre-reinforced laminates. 16th international symposium on ballistic, San Rrancisco, California, 1996,pp.297-307.
    [95] Robert P. Swift, Larry, A. Bewhrmann et al. Micro-Mechanical modeling of perforating shock damage.
    [96] Rosenberg, Z. and Dekel, E..A critical examination of modified Bernoulli equation using two-dimensional simulation of long rod penetrators. Int.J.Impact. Engng, 1994,15(5) : 313-328.
    [97] Rosenberg, Z. and Tsaliah,J..Applying Tate's model for the interaction of long rod projectiles with ceramic targets. Int.J.Impact Engng, 1990,9(2) : 247-251.
    [98] Z. Rozenberg and Y. Yeshurun. The relation between ballistic efficiency and compressive strength of ceramic tiles. Int.J.Impact. Engng, 2000,7(3) : 357-362.
    [99] Rosenberg, Z., Dekel, E., et al. More on the ballistic performance of ceramic tiles against long-rod penetration. 17th international symposium on ballistic. Midrand, South Africa, 1998,pp.3-451-458.
    [100] Rosenberg, Z., Marmor, E., et al.On the hydrodynamic theory of long-rod penetration. Int.J.Impact Engng, 1990, 10: 483-486.
    [101] Rozenberg, Z. and Yeshurun, Y..The Relation between ballistic efficiency and compressive strength of ceramic tiles. Int.J.Impact Engng, 1998,7(3) : 357-362
    [102] Rupert, N.L. and Grace, F.I..Penetration of long rods into semi-infinite, bi-element targets. 14th international symposium on ballistic, Quebec,Canada, 1993,pp.469-478.
    [103] S.chocron and V.Sanchez-Galvez.A New analytical to simulate impact ceramic/composite armors. Int.J.Impact Engng, 1998,21(6) : 461-471.
    [104] S.chocron, J.J.Ona, F.Galvez and V.Sanchez-Galvez.Analytical and numerical analysis for the oblique ballistic impact into ceramic/metal add-on armors. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.785-790.
    [105] S.chocron, J.J.Ona, F.Galvez and V.Sanchez-Galvez.New analytical model and numerical analysis for the oblique ballistic impact into composite add-on armors. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.777-784.
    [106] S.Satapathy, S.Bless and S.M.Ivanov.The effects of failure wave on penetration resistance of glass. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp.1159-1167.
    [107] Sadanandan and Hetherington, J.G..Characterisation of ceramic/steel and ceramic/aluminum armors subjected to oblique impact. Int.J.Impact Engng, 1997,19(9-10) : 811-819.
    [108] Sherman, D. and Ben-Shusan, T..Quasi-static impact damage in confined ceramic tiles. Int.J.Impact Engng, 1998,21(4) : 245-265.
    [109] Shim, V. P. W.et al..Modelling deformation and damage characteristics of woven fabric under small projectile. Int.J.Impact. Engng, 1995,16(4) :585-605.
    [110] K Siva Kumar et al.Key Engineering Marerials.1998:141-143,337-348.
    
    
    [111] Straβburger, E., Senf, H. et al.. The ballistic resistance of steel/aramid bi-layer armor against fragment impact. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-207-3-214.
    [112] StraBburger, E., Senf, H. et al.. The dependency of ballistic mass efficiency of light armor on striking velocity of small caliber projectiles. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp. 3-207-3-214.
    [113] Straβburger, E. and Senf, H., et al.. Dynamic impact resistance of ceramic/GRP composite targets. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp. 789-798.
    [114] Straβburger, E. and Senf, H.. Analysis of Energy distribution in a ceramic/GRP composite.
    [115] Subramanian, R. and Bless, S. J.. Penetration of semi-infinite AD95 alumina targets by tungsten long rod penetrators from 1. 5 to 3. 0 km/s. Int. J. Impact, Engng, 1995,17: 807-816.
    [116] Vlasov, A. S., Emelyanov, Y. A., et al.. Kinetics of the high-velocity penetration for brittle materials. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp.3-411-3-418.
    [117] Walker and Anderson E.. Optimization using a light armor model. 17th international symposium on ballistic. Midrand, South Africa, 1998, pp. 3-375-382.
    [118] Walker, J. D. and Anderson, C. E.. Analytic model for a ceramic tile, substrate, and fabric. 17th international symposium on ballistic, Midrand, South Africa, 1998,pp. 3-65-3-72.
    [119] Walker, J.D..An analytic velocity field for fabric backs surface bulging. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp. 1239-1246.
    [120] Walker, J.D.. Constitutive model for fabric with explicit static solution and ballistic limit. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp. 1231-1238.
    [121] Wiesner, V., Wolf, T.Lundberg, P. and Holmberg, L..A study of the penetration resistance of titanium diboride using a new technique foe time resolved terminal ballistic registrations. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp. 1263-1270.
    [122] I.S.Chocron Benloulo and V. SANCHEZ-GALVEZ.A new analytical model to simulation impact onto ceramic/composite armors. Int.J. Impact Engng, 1998; 21(6) : 461-471
    [123] Wolstenhome,et al..A statistical inference about stress concentration in fiber matrix composite.J.Master.Sci, 24:1559-1989.
    [124] Takeda, N. et al..J.materials, 1987(19. )
    [125] Raymond L. Woodward. A simple one-dimension approach to modeling ceramic composite amour defeat. Int.J. Impact Engng, 1990; 9(4) : 455-474.
    [126] Y.Partom, C.E.Anderson and D.L.Orphal. Revising Rt. 18th international symposium on ballistic, AN ANTONIO, TX, 1999,pp. 1081-1088.
    [127] Y.partom, Y. Kivity, D. Yaziv.Long rod penetration thick alumina(AD-85) targets with and without confinement. 17th international symposium on ballistic. Midrand, South Africa, 1998,pp. 3-443-450.
    [128] Zukas, J. A., Nicholas, T., Swift H. F, et al.. Impact Dynamic. New York: Wiley 1982.
    [129] Yehuda Partom and David L.Littlefiels. Dependence of ceramic armor resistance of projectile velocity. 14th international symposium on ballistic, Quebec, Canada, 1993,pp. 563-572.
    [130] Zaera, R. and Sanchez-Galvez. Analytical model of ballistic impact on ceramic/metal lightweight armors. 16th international symposium on ballistic, San Francisco, CA, USA, 1996,pp.495-503.
    [131] Zaera, R., Galvez, F.. Design of ceramic-metal armors against medium caliber projectiles. 17th international symposium on ballistic. Midrand, South Africa, 1998,pp.3-73-79.
    [132] 包亦望,郑元善等.预应力陶瓷及其抗冲击与穿甲性能.材料导报,2000,14:110-112.
    
    
    [133]饱和强化粘塑性介质的动态损伤与破碎的细观机制.材料科学与工艺.1996,4(2):6~10.
    [134]陈增涛,王铎.延性动态损伤的细观描述.应用力学学报,1995,12(3):57~61
    [135]陈增涛,李涛.饱和强化粘塑性介质的动态损伤与破碎的细观机制.材料科学与工艺,1996,4(3):6~10
    [136]陈增涛,孙毅,王铎.率相关塑性介质的动态破碎.爆炸与冲击,1997,17(1):23~28
    [137]高文学,刘运通,扬军.脆性岩石冲击损伤模型的研究.岩石力学与工程学报,2000,19(2):152~155.
    [138]高文学.岩石冲击损伤模型的研究(博士学位论文).北京:北京理工大学,1999,6.
    [139]郭自强编著.固体中的波.北京:地震出版社,1982.
    [140]贺红亮.高应变速率加载下脆性材料的压缩损伤.爆轰波与冲击波,1994,(3):20~26
    [141]黄良钊,张安平.Al_2O_3陶瓷动态力学性能研究.中国陶瓷,1999,35(1):13~15.
    [142]姜春兰,陈放,李明,马晓青.钨球对陶瓷/铝复合靶板的侵彻与贯穿.兵工学报,2001,22(1):37~40.
    [143]经福谦著.实验物态方程导引.北京:科学出版社,1986.
    [144]李大红,王悟.陶瓷物态方程的实验研究.高压物理学报,1993,7(3):226~231
    [145]李晓杰.多孔材料冲击绝热线的近似计算.高压物理学报,1991,5(4):301~306.
    [146]蔺建勋,蒋浩征,蒋建伟.弹丸垂直侵彻土壤混凝土介质的理论分析模型.弹道学报,1999,11(1):1~10.
    [147]凌建明.压缩载荷下岩石细观损伤特征的研究.同济大学学报.1993,21(2):219~225
    [148]彭立华,江大志,沈为.子弹正冲击下多层靶板的损伤与应变波的传播.华中理工大学学报,1996,24(4):82~85.
    [149]沈为.弹脆性材料的损伤本构关系及应用.力学学报,1991,23(3):374~377.
    [150]宋焕成,梁志勇,张佐光.武装直升机与陶瓷/复合材料装甲.航空制造工程,1994,9:9~11.
    [151]汪洋.单向复合材料弹脆性损伤本构模型[D].合肥:中国科技大学博士学位论文,1998.
    [152]王峰会,苟文选.基于连续损伤力学理论的陶瓷材料蠕变寿命预测模型.西北工业大学学报,2001,19(3):365~367.
    [153]王家来,徐颖.应变波对岩石的损伤作用和爆生裂纹的传播.爆炸与冲击,1995,15(3):212~216.
    [154]王介强,宋守志,徐小荷.岩石料层冲击粉碎细观损伤观测及分析.中国有色金属学报,1999,9(3):661~665.
    [155]王礼立编著.应力波基础.北京:国防工业出版社,1985.
    [156]王儒策,赵国志编著.弹丸终点效应.北京:北京理工大学出版社,1991.
    [157]王文俊.陶瓷复合装甲防弹机理及防弹性能.北京理工大学学报.1997,17(2):147~150.
    [158]王泽平,黄风雷,恽寿榕.脆性动态断裂模型.高压物理学报,1991,5(3):90~97.
    [159]夏渊明,扬报昌.纤维束及其单向复合材料应变率相关的统计理论本构实验研究[M].
    [160]肖洪天,周维恒.脆性岩石变形与破坏的细观力学模型研究.岩石力学与工程学报,2000,20(1):151~155
    [161]谢和平,高峰.岩石类材料损伤演化的分形特征.岩石力学与工程学报.1991.10(1):74~82.
    [162]谢和平.脆性材料裂纹扩展的分形运动学.力学学报,1994,26(6):757~762.
    [163]谢和平.脆性材料中的分形损伤.机械强度,1995,17(2):75~82.
    [164]谢和平著.岩石混凝土损伤力学.江苏:中国矿业大学出版社,1990.
    [165]许沭华,王肖钧,张刚明等.Kevlar纤维增强复合材料动态压缩力学性能实验研究.实验力学,2001,16(3):26~32.
    [166]扬军.岩石爆破分形损伤模型的研究.爆炸与冲击.1996,16(1),5~10.
    [167]扬光松.损伤力学与复合材料损伤.北京:国防工业出版社,1995.
    [168]金子明等.纤维复合材料抗弹性能的研究.纤维复合材料.1999.
    [169]沈峰.车辆和人体防护材料的研究进展.兵器材料科学与工程.1999,6.
    [170]杨军,金乾坤,黄风雷著.岩石爆破理论模型及数值计算.北京:科学出版社,1999.
    [171]叶志明著.各向异性材料与混凝土材料断裂力学引论.北京:中国铁道出版社,2000.
    [172]余天庆,钱济成编著.损伤理论及应用.北京:国防工业出版社,1993.
    
    
    [173]俞茂宏著.双剪理论及其应用.北京:科学出版社,1998.
    [174]袁克俭,金莲等.芳纶复合材料抗弹性的研究.工程塑料应用,1995,23(3):40~42.
    [175]袁克俭,金莲等.芳纶复合材料抗弹性的研究.工程塑料应用,1995,23(3):40~42.
    [176]张子新.岩石冲击断裂的损伤与分形效应.金属矿山,1995,(9):13~15.
    [177]张佐光等.防弹芳纶复合材料实验研究.北京航天航空大学学报,1995(7).
    [178]张自强,赵宝荣等编著.装甲防护技术基础.北京:兵器工业出版社,2000.
    [179]章冠人.冲击压缩脆性材料中破碎波的几个问题.高压物理学报,1998,12(2):81~85.
    [180]章冠人.动力破碎分形与加载的关系.高压物理学报.1997,11(2):81~84.
    [181]赵爱红,虞吉林.准脆性材料的细观损伤演化方程.清华大学学报,2000,40(5):88~91.
    [182]赵国志编著.穿甲工程力学.北京:兵器工业出版社,1992.
    [183]周履,范赋群编著.复合材料力学.北京:高等教育出版社,1991.
    [184]赵国志编著.杆式穿甲弹设计理论.北京:兵器工业出版社,1997.
    [185]Gary Savage.陶瓷装甲.兵器材料科学与工程,1991.
    [186]梅志远,朱锡,张振中.舰船装甲防护的研究与进展.武汉造船,2000,5:5~12.
    [187]龚尧南,钱纯,张佐光.陶瓷/复合材料航空装甲撞击响应的数值模拟.航空学报,1995,16(1):92~97.
    [188]赵颖华,王金忠.复合材料界面损伤过程与弹塑性本构关系.复合材料学报,1999,10.
    [189]宋顺成.穿破甲过程动力有限元近似理论及程序.力学进展,1994,24(3):362~373.
    [190]王肖钧,胡秀章等.高速碰撞中的有限元法及运用.爆炸与冲击,1993,13(4):296~303.
    [191]K.J.Johnson著.接触力学.北京:高等教育出版社,1992.
    [192]刘福林.圆板在冲击载荷作用下塑性动力响应的加权余量法解.振动与冲击,1991;(37)55~60.
    [193]布列霍夫斯基赫著,分层介质中的应力波.北京:科学出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700