用户名: 密码: 验证码:
碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对先驱体浸渍裂解工艺制备陶瓷基复合材料过程中碳纤维损伤严重的问题,以聚碳硅烷(PCS)制备Cf/SiC复合材料为重点,采用SEM、TEM、IR、XRD、XPS、TG等表征手段,分析了先驱体裂解过程、纤维基体界面和碳纤维损伤过程,系统地研究了原料(碳纤维、先驱体等)和制备工艺条件等在Cf/SiC复合材料制备过程中对碳纤维损伤的影响,建立了碳纤维损伤程度的表征方法和损伤机理模型,制备了纤维表面涂层并利用涂层碳纤维制备了单向Cf/SiC复合材料。
     本文首次应用复丝拉伸强度测试来表征PIP工艺中碳纤维的损伤程度,较好地解决了陶瓷基复合材料中碳纤维损伤程度如何表征这一棘手的问题。试验对比的结果表明,碳纤维原丝强度与其标称强度值相差不大,碳纤维强度测试结果的误差范围为12~17%。测试结果可以明显反映出不同工艺对碳纤维损伤的差别,为研究碳纤维在PIP工艺过程中的损伤提供了手段。
     探明了PIP工艺制备CMCs过程中碳纤维的损伤形式。研究结果表明,碳纤维的损伤包括了化学损伤、高温损伤和热应力物理损伤。PIP工艺第一周期对碳纤维损伤最大,第一周期中碳纤维的强度损失率远大于后续多个周期浸渍裂解中碳纤维强度损失的总和。碳纤维损伤的主要形式是热应力物理损伤。化学损伤并不是导致碳纤维强度下降的主要因素,其中先驱体化合态的氧并不会对碳纤维产生明显的损伤,纠正了人们长期以来的错误认识。
     首次探明了碳纤维热应力物理损伤机制,即碳纤维表面附着的先驱体在高温下无机化形成陶瓷体,同时伴随着大的体积收缩,在碳纤维的牵引下,基体的体积收缩以开裂形式出现,裂纹的取向以垂直于纤维轴向为主,由于碳纤维与基体热膨胀系数失配,致使碳纤维在降温过程中受到复杂热应力,引起碳纤维损伤。由此建立了碳纤维的四种热应力物理损伤模型,即基体体积收缩应力损伤模型、热应力拉伸损伤破坏模型、热应力弯折损伤破坏模型和热应力剪切损伤破坏模型。其影响因素主要为基体裂纹大小、基体硬度、碳纤维表面缺陷、碳纤维模量等。目前,类似的损伤模型尚未见报道。
     本文首次较系统地对不同先驱体和不同碳纤维在PIP工艺制备CMCs过程中对碳纤维损伤的影响进行了研究。结果表明,PSO裂解后生成的基体硬度较小且延伸性好,可以缓解基体及界面的应力集中,碳纤维强度保留率较高;PSZ裂解过程中除了体积收缩对碳纤维带来物理损伤外,还与碳纤维发生严重的化学反应,使碳纤维强度大幅下降。低强度碳纤维容易在热应力拉伸或弯折破坏模式下损伤;高模量碳纤维高温损伤小,但
    
    国防科学技术大学研究生院学位论文
    容易以热应力剪切破坏模式下断裂;环氧树脂表面胶刚性较大,氧含量较高,使碳纤维
    容易受到化学损伤和热应力弯折损伤,均不宜用来制备C灯siC复合材料。高强度、低模
    量和柔性表面胶的碳纤维可望得到性能较好的C刀SIC复合材料。
     采用先驱体转化法制备并研究了碳纤维表面涂层SIC和si一O一C,并利用涂层碳纤维
    制备了单向Cf/SIC复合材料。结果表明,适当厚度的SIC涂层和si一O一C涂层可以起到
    缓冲层和阻挡层的作用,减小碳纤维的化学损伤和物理损伤。较厚的涂层将导致碳纤维
    之间粘连,通过热应力损伤碳纤维。涂层碳纤维所制备的单向C刀siC复合材料力学性能
    测试结果显示,5%PSO和3%PCS涂层碳纤维所制备的单向C分siC复合材料性能较高,
    分别为797.4MPa和777.2MPa,其涂层厚度分别为0.135 pm和0.09pm,适合于用来
    制备Cf/siC复合材料。
     本文较系统地研究了浸渍和热处理工艺条件对碳纤维损伤和材料性能的影响,阐明
    了制备Cf/siC复合材料应当采用的工艺条件,并建立了PIP工艺制备CMCs过程的浸
    渍模型。研究结果发现,高温加压可以使基体内部裂纹减小或消失,减小了对碳纤维的
    物理损伤;升温速率的提高不仅通过先驱体快速原位裂解避免了大裂纹的产生,从而减
    少了对碳纤维的物理损伤,同时通过缩短高温处理阶段时间减少了碳纤维化学损伤。采
    用快速升温裂解高温加压工艺(1600℃、10MPa)制备得到的C刀siC复合材料性能最优。
     浸渍工艺的分析和模拟可以推导出浸渍时间函数为:怜f(基体尺寸,基体孔径大小
    及分布,先驱体溶液表面张力、接触角及粘度,浸渍压力)。浸渍不完全将导致碳纤维
    受力情况更加复杂,并导致材料致密化困难。超声在有利于浸渍效果的同时使碳纤维表
    面缺陷加深,时间一般不应超过10min。
Focusing on serious damage of carbon fibers in ceramic matrix composites (CMCs) prepared by precursor infiltration pyrolysis (PIP), and with emphasis on carbon fiber reinforced silicon carbide composites (Cf/SiC) derived from polycarbosilane (PCS), the influences of raw materials (including carbon fibers and precursors, etc.) and preparing conditions on carbon fiber damage during the preparation of Cf/SiC composites were investigated systemically. Pyrolysis process, fiber-matrix interface and carbon fiber damage process were observed by SEM, TEM, IR, XRD, XPS and TQ etc. The characterization method of carbon fiber damage degree was established and the models for carbon fiber damage mechanism were also established. The carbon fiber coatings and unidirectional Cf/SiC composites with coated carbon fibers were prepared and studied.
    The multifilament tension strength test was firstly applied to characterizing carbon fibers damage degree in CMCs during PIP, which as an intractable problem was resolved successfully. The test results show that the measured strength is similar to marked strength, and with a deviation of 12-17%. The differences of carbon fiber damage caused by different preparing conditions are showed clearly. A good test method is applied for studying carbon fiber damage in PIP process.
    The mechanism of carbon fiber damage during preparation of CMCs by PIP was clarified firstly. The results show that the damage of carbon fibers includes chemical damage, heat damage and physical damage of thermal stress. The carbon fiber damage mainly occurs in the first cycle of PIP, in which carbon fiber strength lose is greater than the total strength lose in following cycles, and the main form of damage is physical damage of thermal stress. The chemical damage is not the main factor of strength lose. It was first proved that the combined oxygen does not damage carbon fibers obviously, which corrects the long-term misunderstanding about the influence of oxygen on carbon fiber damage.
    The mechanism of physical damage of carbon fibers was clarified firstly. The precursor which attached on carbon fibers changes to inorganic ceramic under high temperature with large volume shrinkage which appearing at cracks with fiber traction and the cracks are mainly vertical to fiber axis. Because of mismatched coefficients of thermal expansion, carbon fibers suffer multiple thermal stresses and are damaged. The physical damage models
    
    
    
    of carbon fibers are established, which are matrix shrink stress damage model, thermal tension stress damage model, thermal bend stress damage model and thermal shear stress damage model. The influence factors are crack size, matrix hardness, carbon fiber surface defect and carbon fiber modulus. Similar damage models have not been reported before.
    The influence of different precursors and carbon fibers on carbon fiber damage during preparation of CMCs by PIP was systemically studied firstly. The results show that PSO pyrolysis matrix has low hardness and good extensibility which can relax stress concentration in matrix and interface, and damages carbon fibers slightly. However, PSZ derived matrix damages carbon fibers largely in physical and chemical ways. The carbon fibers with low strength are broken easily according to thermal tension and bend stress damage models, and the carbon fibers with high modulus are broken easily according to thermal shear stress damage model in spite of less damage caused by heat. The carbon fibers with surface glue of epoxy resin are damaged easily in physical and chemical ways because of high oxygen extent and rigidity of epoxy resin. So, the carbon fiber with high strength, low modulus and flexible surface glue is suitable for the preparation Cf/SiC composites with high properties.
    The Coatings of SiC and Si-O-C were prepared by precursor pyrolysis and studied, and the unidirectional Cf/SiC composites with coated carbon fibers were also prepared and studied. The results show that coatings with suitable thickness can reduce damage degree of carbon fibers as b
引文
[1] 乔松楼,乐俊淮,苏雨生编著.新材料技术——科技进步的基石.中国科学技术出版社:北京,1994:1~5
    [2] 贾成厂,李汶霞,郭志猛等.陶瓷基复合材料导论.冶金工业出版社,1998
    [3] Derek Hull. An introduction to composites materials. Cambridge university press, 1981
    [4] Hilsdorf R. Ceramic usage in turbine advances. American metal market, 1987, 6(5): 1~8
    [5] 徐立华等.先进复相陶瓷的研究现状和展望(Ⅰ).硅酸盐通报,1996,(5)
    [6] G. kostorz. High-tech ceramics-viewpoints and perspectives. CA: Academic Press: USA, 1989
    [7] 宗保重行[日]编.迟文俊译.近代陶瓷.同济大学出版社:上海,1988
    [8] Helms H E, et al. Advanced turbine technology applications project. Proceedings of the 26th automotive technology development contractors' coordination meeting, Dearborn, Michigan, SAE P-219, Society for automotive engineers, Warrendale, Pennsylvania, 1989:319~326
    [9] 王零森.特种陶瓷.中南工业大学出版社:长沙,1998
    [10] Tatsuki Ohji, et al. Strengthening and toughening mechanism of ceramic nanocomposites. J. Am.Ceram. Soc., 1998, 81(6): 1453~1460
    
    
    [11] B. Budiansky, J. C. Amazigo, and A. G. Evans. Small-scale crack bridging and fracture toughness of particulate-reinforced ceramics. J. Mech. Phys. Solids, 1988, (36): 167~187
    [12] Z.M. Huang. The mechanical properties of composites reinforced with woven and braided fabrics.Comp. Sci. Tech., 2000, 60:479~498
    [13] Evans A G. Prospective on the development of high-toughness ceramics. J. Am. Ceram. Soc., 1990,73(2): 187
    [14] Becher P F. Microstructural design of toughened ceramics. J. Am. Ceram. Soc., 1991, 74(2): 255
    [15] Niihara K. New design concept of structural ceramic-ceramic nanocomposites. J. Ceram. Soc. Jpn.,1991, 99(10): 974
    [16] Jin Z, Baa Y. Mechanical analysis on reinforce of nanoparticulate composites. Proc of 5th conf.Asian-Pacific among on strength evaluation, Japan, 1993
    [17] 郭景坤.中国结构陶瓷研究的进展及其应用前景.硅酸盐通报,1995,(4):23
    [18] Stanley R L, Ahmed K N, Samuel L V. Flight-vehicle material structures, and dynamics assessment and future Directions Vol.3. Ceramics and ceramic-matrix composites. New York: The American Society of Mechanical Engineers, 1992
    [19] 张长瑞,郝元凯编著.陶瓷基复合材料——原理、工艺、性能与设计.国防科技大学出版社:长沙,2001
    [20] 张玉峰,郭景坤,诸培南.热处理对SiC纤维/LCAS微晶玻璃复合材料界面结合及力学性能的影响.硅酸盐学报,1994,22(6):523~528
    [21] 汪洋.单向碳纤维增强碳化硅复合材料(Cf/SiC)断裂行为研究[博士学位论文].中国科技大学,1999
    [22] 邹武,陈长乐,肖志超等.聚碳硅烷浸渍裂解法制备的C/SiC材料研究.炭素,1997,(2):19~23
    [23] 徐永东,张立同,成来飞.CVI法制备三维碳纤维增韧碳化硅复合材料.硅酸盐学报,1996,24(5):485~489
    [24] 郑文伟,王兴业,刘凤荣等.三维整体编织物增强陶瓷基复合材料的制备工艺及性能表征.复合材料学报,1997,14(1):48-53
    [25] D. Suttor, T. Erny, and P. Greil. Fiber-reinforced ceramic-matrix composites with a polysiloxane/boron-derived matrix. J. Am. Ceram. Soc., 1997, 80(7): 831~840
    [26] D. Cojean and M. Monthioux. Microtextures of interfaces related to mechanical properties in ceramic fiber reinforced ceramic matrix composites. In 5th Europpean conf. On composite materials proceedings, 1992:729~734
    [27] 甘永学.纤维增强陶瓷基复合材料的研究及其在航天领域的应用.宇航材料工艺,1994,(5):1~5
    [28] E. Tani and K. Shobu. Fabrication of carbon fiber-reinforced SiC/C composites by reaction-bonding. J. Ceram. Soc. Jpn., 1997, 105(8): 703~706
    [29] Kikuo Nakano, Akira Kamiya, Yoichi Nishino, et al. Fabrication and characterization of three-dimensional carbon fiber reinforced silicon carbide and silicon nitride composites. J. Am.Ceram. Soc., 1995, 78(10): 2811~2814
    [30] T Hang, H Knale, U Ehrmann. Processing, properties and structure development of polymer-derived fiber-reinforced SiC. J. Am. Ceram. Soc., 1989, 72(2): 104~110
    
    
    [31] M. Peuchert, T. Vaahs, and M. Bruck. Ceramics from organometallic polymers. Adv. Mater., 1990, 2(9): 398~404
    [32] 谢征芳.活性填料在先驱体转化陶瓷基复合材料及构件中的应用[博士学位论文].国防科技大学,2001
    [33] K.M. Prewo. U.S. Pat. N.:4399231, 1993
    [34] K. Suzuki, S. Kume, and K. Nakano. Fabrication of three-dimensional carbon fiber-reinforced Si_3N_4 composites by infiltration of slurry and organosilicon polymer. J. Ceram. Soc. Jpn., 1998, 106(3):348~351
    [35] Strife J R, Bernnan J J, Prewo K M. Status of continuous fiber-reinforced ceramic matrix composite processing technology. Ceram. Eng. Sci. Proc., 1990, 11(7-8): 871~919
    [36] W.J. Lackey. Review, status, and future of the chemical vapor infiltration process for fabrication of fiber-reinforced ceramic composites. Ceram. Eng. Sci. Proc., 1989, 10(7-8): 577~584
    [37] D. P. Stinton, A. J. Caputo, and R. A. Lowden. Synthesis of fiber-reinforced SiC composites by chemical vapor deposition. Am. Ceram. Soc. Bull., 1986, 65(2): 347~350
    [38] J.I. MoreUect et al.Pulsed-power volume-heating chemical vapor infiltration. J. Mater. Res., 1992, 7(9): 2447~2457
    [39] 徐永东,张立同,成来飞等.CVI法制备连续纤维增韧陶瓷基复合材料.硅酸盐学报,1995,23(3):319
    [40] D. Grupta and J. W. Evans. A methematerial model for chemical vapor infiltration with microwave heating and external cooling. J. Mater. Res., 1991, 6(4): 810~818
    [41] 何新波等.先驱体转化-热压烧结碳纤维增强碳化硅复合材料的显微结构.航空材料学报,1999,(6):27
    [42] 王建方等.热压工艺在Cf/SiC复合材料制备中的应用.航空材料学报,2002,(3):1~4
    [43] 罗瑞盈,李贺军,杨诤等.一种快速制备高性能 C/C复合材料的新技术.西北工业大学学报,1995,13(4):1
    [44] 贺福,王茂章著.碳纤维及其复合材料.科学出版社:北京,1997
    [45] M.G. Dobb, D. J. Johnson, C. R. Park. Compressional behaviour of carbon fibers. J. Mater. Sci.,1990, (25): 829~834
    [46] 何新波.连续纤维增强碳化硅陶瓷基复合材料的研究[博士学位论文].中南工业大学,2000
    [47] 赵稼祥.碳纤维的发展与应用.纤维复合材料,1996,(4):46~50
    [48] J Aveston. In properties of fiber composite, National Physical Laboratory Conference Proceeding,IPC Science and Technology Press, Guildford, England, 1971:63
    [49] G.B. Zheng, H. Sano, Y. Uchiyama, et al. J. Ceram. Soc. Jpn., 1995, 103(1): 1
    [50] 马江.先驱体液相浸渍工艺制备纤维增强碳化硅复合材料[硕士学位论文].国防科技大学,2000
    [51] Yoshida Hideti. J.ceram. Soc. Jpn., 1994, 102(11): 1016~21
    [52] H Yoshida, et al. Ceram. Eng. Sci. Pro., 1993, 1499): 1133
    [53] L. Yan, M. Song, T. Wan. Key. Eng. Mater., 1999, 164:229
    [54] 上海科技情报研究所.碳素纤维复合材料在国外的应用.炭素技术,1974,(6):39~46
    [55] Hald H. et al. Eur. Space Agency (spec publ) ESA SP 1990, ESA SP-303, Space Appl.Adv. Struct. Mater. 283~9
    
    
    [56] 陈朝辉等.先驱体法陶瓷基复合材料研究的进展.内部资料
    [57] J. E Jamet and P. J. Lamisa. Composite Thermal-structures: an Overview of the French Experience.In: Naslaln RED High Temperature Ceramic Matrix Composites. Bordeaux, Woodhead, 1993:215
    [58] 王自荣.3D-B Cf/SiC的工艺、性能和表征[硕士学位论文].国防科技大学,1996
    [59] Ostertag R. et al. Space Agency (spec publ) ESA SP 1992, ESA SP-336 (Adv. Struct. Mater.) 241~3
    [60] 陈朝辉等.SiC陶瓷基复合材料文献综述.国防科技大学,内部资料
    [61] 曹英斌,张长瑞,陈朝辉等.Cf/SiC陶瓷基复合材料发展概况.宇航材料工艺,1999,(5):10~14
    [62] 赵玉庭,姚希曾编著.复合材料基体与界面.华东化工学院出版社,1991
    [63] Guobin Zheng, Hideaki Sano, Kunnio Suzuki, et al. A TEM study of microstructure of carbon fiber/polycarbosilane-derived SiC composites. Carbon, 1999, (37): 2057~2062
    [64] 张国定,赵昌正著.金属基复合材料.上海交通大学出版社:上海,1996
    [65] R. J. Kearns, R. S. Hay, et al. The role of the fiber-matrix interface in ceramic composites, Am.Ceram. Soc. Bull., 1989, 68(2): 429
    [66] 叶恒强等著,材料界面结构与特性.科学出版社,1999
    [67] S.R. Dhakate, V. K. Parashar, V. Raman, et al. Influence of ceramic interphase on the mechanical properties of T-300 carbon composites. J. Mater. Sci. Lett., 2000, 19:1575~1577
    [68] J. E Despres and M. Monthioux. Mechanical properties of C/SiC composites as explained from their interfacial features. J. European Ceram. Soc., 1995, (15):209~224
    [69] J. F. Despres and M. Monthioux. Microtextures of interfaces related to mechanical properties in carbon fiber reinforced ceramic matrix composites. In 5th European conf. On composite materials proceedings, 1992: 901~906
    [70] 张清纯编著.陶瓷材料的力学性能.科学出版社:北京,1987
    [71] L. L. Shaw. Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials. Composites Part B, 1998, 29B: 199
    [72] 李光亮编著.有机硅高分子化学.科学出版社:北京,1999
    [73] H. Nanri, M. Shirai, N. Takeuchi, et al. Effect of a small concentration of iron impurity on the oxidation behavior of porous SiC. J. Ceram. Soc. Jpn., 1997, 105(6): 500~503
    [74] 贾成厂著.陶瓷基复合材料导论(第二版).冶金工业出版社,2002
    [75] C. Rospars, E. Le Dantec, F. Lecuyer. A micromechanical model for thermostructural composites.Comp. Sci. Tech., 2000, 60:1095~1102
    [76] A.G. Evans and F. W. Zok. The physics and Mechanics of Fiber-reinfomed brittle matrix composites.J. Mater. Sci., 1994, 29:3857~3896
    [77] Yu-Fu Liu, Y. Kagawa. The energy release rate for an interfacial debond crack in a fiber pull-out model. Comp. Sci. Tech., 2000, 60:167~171
    [78] W. Wu, I. Verpoest, Janis Varna. Prediction of energy release rate due to the growth of an interface crack by variational analysis. Comp. Sci. Tech., 2000, 60:351~360
    [79] Meda G, Steif P. A detailed analysis of cracks bridged by fibers-limiting cases of short and long cracks. J. Mech. Phys. Solids, 1994, 42(8): 1293-1321
    [80] 杜善义,王彪编著.复合材料细观力学.科学出版社:北京,1998:161
    [81] J.B. Donnet, T K Wang, et al. Carbon fiber. Marcel Dekker, Inc., 1998
    
    
    [82] 贺福.碳纤维的强度理论.碳素,1985,(4):1~9
    [83] 贺福,王润娥.碳纤维强度的Weibull分析.碳素,1986:12~15
    [84] M. Dennis Petry, Tai Mah, and Ronald J. Kerans. Validity of using average diameter for determination of tensile strength and weibull modulus of ceramic filaments. J. Am. Ceram. Soc.,1997, 80(10): 2741~2744
    [85] 贺福.碳纤维的模量理论.碳素,1986:1~9
    [86] D.布洛克著.王克仁等译.工程断裂力学基础.科学出版社,1980
    [87] P. Greil and M. Seibold. Modeling of dimensional Changes during polymer-ceramic conversion for bulk component fabrication. J. Mater. Sci., 1992, 27(9): 1053~1060
    [88] M.E. Westwood, J. D. Webster, R. J. Day, et al. Oxidation protection for carbon fiber composites. J.Mater. Sci., 1996, 31:1389~1397
    [89] Ismail M. K. On the reactivity, structure, and porosity of carbon fibers and fabrics. Carbon, 1991,29(6): 777~792
    [90] J. A. Nairn. Fracture mechanics of composites with residual stresses, imperfect interfaces, and traction-loaded cracks. Comp. Sci. tech., 2001, 61: 2159~2167
    [91] 吴德隆,沈怀荣著.纺织结构复合材料的力学性能.国防科技大学出版社,1998
    [92] 应崇福主编.超声学.科学出版社:北京,1990
    [93] 杨盛良.连续纤维增强铝基复合材料的制备、界面及损伤过程[博士学位论文].国防科技大学,1999
    [94] 江大志.单向纤维增强CMC断裂韧性研究—表征测试与细观机理分析[博士后研究工作报告].中国科技大学,1999
    [95] 周元鑫,江大志,夏源明.碳纤维静-动态加载下拉伸力学性能的试验研究.材料科学工艺,2000,8(1):12~14
    [96] K. A. Appiah, Z. L. Wang, W. J. Lackey. Characterization of interfaces in C fiber-reinforced laminated C-SiC matrix composites. Carbon, 2000, 38:831~838
    [97] Jang-Kyo Kim, Yiu-Wing Mai. High strength, high fracture toughness fiber composites with interface control- a review. Comp. Sci. Tech., 1991, 41:333~378
    [98] 黄玉东,曹海琳,邵路等.碳纤维复合材料界面性能研究.宇航材料工艺,2002,(1):19~24
    [99] 罗青.碳纤维增强碳化硅单向复合材料及其界面研究[硕士学位论文].国防科技大学,1995
    [100] 曹英斌.先驱体转化-热压工艺制备Cf/SiC复合材料工艺、结构、性能研究[博士学位论文].国防科技大学,2001
    [101] 国家高技术新材料领域专家委员会.新材料研究发展预测及对策.材料导报,1999;13(1):1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700