用户名: 密码: 验证码:
钢筋混凝土结构基于性能的抗震研究及破坏评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外大量的震害表明,结构在中等强度或强烈地震作用下,都产生了严重的破坏甚至倒塌,造成了巨大的经济损失和人员伤亡;在我国钢筋混凝土结构非常普及,研究其从开裂、屈服、直至倒塌各阶段的性能具有重要的理论意义和实用价值。近几年来,伴随着基于性能抗震设计理论逐步被地震工程界所认同,对其研究已成为当前地震工程界的热点。本文采用理论分析利试验研究相结合的方法,以结构的非线性地震反应分析为手段,对钢筋混凝土结构基于性能的抗震理论和方法以及破坏评估开展了研究,具体为以下几方面的内容:
     在国内外已有的钢筋混凝土结构非线性动力分析基础上,本文提出了一种具有分布柔度的杆件单元模型,推导求得了构件的柔度系数和刚度系数,建立了考虑刚域影响的构件单元刚度矩阵;利用纤维模型法确定截面的弯矩—曲率关系骨架曲线,其滞回性能通过三个控制参数来反映构件的刚度退化、强度退化以及由于裂缝的开展、闭合利钢筋粘结滑移引起的捏拢现象。遵循截面→构刊→结构不同层次发展的路径,建立了采用拟三维杆系力学分析模型对钢筋混凝土结构进行非线性地震反应分析的理论。
     在对截面高宽比较小的钢筋混凝土柱的恢复力性能试验研究和计算机模拟分析的基础上,对大型火电厂钢筋混凝土结构主厂房纵向框架—剪力墙结构体系进行了模型结构的拟动力试验,输入El-Centro地震波,研究了模型结构在整个试验中的开裂过程、屈服顺序、耗能能力、刚度退化、承载力及滞回性能等,探讨了结构在地震作用下的破坏机理及其薄弱环节或部位。
     在试验研究的基础上,分别对平面框架—剪力墙模型结构和大型火电厂主厂房纵向钢筋混凝土框架—剪力墙原型结构进行了非线性地震反应分析。通过与试验结果的比较验证了本文提出的非线性地震反应分析方法,分析这种结构体系的抗震性能和薄弱部位,为指导这类结构体系的抗震设计以及进行更深入的研究等提供了基础资料。
     结合基于性能的抗震设计理论和方法,本文提出了一种考虑高振型影响的水平侧向力分布模式进行结构的非线性静力推覆分析。分析了钢筋混凝土结构各阶段的内力、变形、和塑性铰出现位置等,该方法可方便地找出结构的薄弱部位利破坏模式。依据推覆分析得到的基底剪力—顶点位移曲线,利用能力谱法和改进的能力谱法计算了结构的顶点位移,并进而按照推覆分析分别对钢筋混凝土框架—剪力墙模型结构和框架结构实例进行了基于
    
     摘 要
    位移的抗震性能评估。
     结构的地震破坏评估是建立在地震破坏准则和破坏模型基础上的,本文在对己有的地
    震破坏准则和破坏模型进行评述的基础上,认为基于变形和能量的双重破坏准则可较好地
    反映结构的实际震害,并根据倒塌极限状态方程提出了改进的 Park&Aug.地震破坏模型。
    还按照 Park&Aug.模型,基于结构的构件层次分别计算了钢筋混凝土结构各构件的破坏指数和
    梁、柱及剪力墙的层破坏指数以及结构整体破坏指数,对钢筋混凝土结构进行了地震破坏评
    估。
The damage caused by earthquakes at home and abroad indicates that engineering structures will go through enormous nonlinear deformations and even collapse under medium or strong earthquakes. Huge economic loss and personnel injuries or deaths have been created. Because reinforced concrete (R.C.) structures are widely used in our country, the study of this kind of structure from cracking and yielding to collapse will be of great importance in theory and of practical values. In recent years, performance-based seismic design theory is recognized step by step. The study of this has now become the present hot spot of earthquake engineering. Combining the theory with experiments, this text deals with the study of performance based seismic theory and method as well as damage assessment to R.C structures by the means of nonlinear seismic response of structures. The main content is as follows.
    Based on the existing nonlinear dynamic analysis of R.C. structures at home and abroad, a kind of element model with the distributed flexibility is put forward, the flexibility coefficients and the stiffness coefficients of element are derived and the stiffness matrix of element with the rigid zones is established. The skeleton curve of bending moment-curvature of R.C. sections can be determined by means of the fiber model method. The stiffness degradation and strength degradation as well as pinching owing to the opening and closing of cracks and steel slipping of hysteretic curve are reflected through three parameters. Following the different level from section to member and from member to structure, the theory of nonlinear seismic response analysis of R.C. structures is established with pseudo three dimensional mechanical model.
    Based on the tentative study of hysteretic performance and computer simulation of R.C. columns with non rectangular sections, pseudo dynamic test of a model structure for the frame-shear wall structure of main factory building in a big heat-power plants is carried out under El-Centro earthquake wave. The cracking process, yielding sequence, energy consuming capacity, stiffness degradation, bearing capacity and the hysteresis etc. of the model structure is studied. Damage mechanism and weak points of structure under earthquakes are dealt with.
    The nonlinear seismic response analysis of the model structures and a R.C. frame-shear wall prototype structure of the main factory building in a big heat-power plant are made on the basis of
    
    
    tentative research. The results of test confirm the nonlinear seismic response analysis method put forward in the text. The seismic performance of this kind of structures will lay the foundation for the seismic design of this kind of structures and further research.
    With performance-based seismic design, nonlinear static push over analysis of structures is made for the horizontal distributed force influenced by high modes in the text. The internal force, deformation and position of plastic hinge in every phase for R.C. structures are analyzed. The weak points and damage pattern of structures can be easily found by using this method. Base shear and top displacement curve is also derived. By using capacity spectrum method and improved capacity spectrum method, the top displacement of structures is calculated and then the displacement-based seismic assessment of R.C. model structure and frame structure is made by push over analysis.
    The damage assessment of structures is based on the earthquake damage criteria and damage model. The author in the text, through the existing description of earthquake damage criteria and damage model, believes that the actual earthquake damage can be showed by the dual damage criteria on the basis of deformation and energy. The author also puts forward improved Park&Ang. damage model according to collapse limit state equation. Based on nonlinear seismic analysis of structures, the damage indice of elements, story level and whole structure are calculated separately according to Park & Ang. damage model. Finally seismic damage assessment of R.C
引文
[1.1] T.Paulay and M.J.N,Priestley,Seismic Design of Reinforced Concrete and Masonry Buildings,A Wiley-Interscience Publication,New York,1992
    [1.2] 《建筑抗震设计规范》(GBJll-89)条文说明,沈阳:辽宁科学技术出版社,1990
    [1.3] E.Rosenblueth,Design of Earthquake Resistant Structures,Pentech Press,London,1980
    [1.4] 国家标准,《建筑抗震设计规范》(GBJll-89),北京:中国建筑工业出版社,1989
    [1.5] R.W.Clough and J.Penzien,Dynamics of Structures,McGraw-Hill,1975
    [1.6] R.W.Clough,Nonlinear Earthquake Response,Earthquake Engineering,1970
    [1.7] 胡聿贤,地震工程学,北京:地震出版社,1988
    [1.8] 范立础、卓卫东,桥梁延性抗震设计,北京:人民交通出版社,2001
    [1.9] 王继唐,抗震防灾技术述评,陕西省抗震防灾办公室,1997
    [1.10] 王亚勇,我国2000年抗震设计模式展望,建筑结构,1999(6):13~19
    [1.11] 郭子雄,基于变形的抗震设计理论及应用研究,同济大学申请博士学位论文,2000
    [1.12] 王亚勇,关于设计反应谱、时程法和能量方法的探讨,建筑结构学报,2000年第1期
    [1.13] j.P.Moehle,Displacement-based Design of RC Structure,10th World Conf. on Earthquake Eng.,Mexico. 1992:1576~1574
    [1.14] M.J.Priestly,Displacement-based Design,Report No.SSRP-94/16,Structure Systems Research,1994:26~32
    [1.15] H.Whittaker,Displacement Estimates for Performance Based Seismic Design,Journal of Structura. Engineering,ASCE,Vol.124,No.8,1998:905~912
    [1.16] 小谷俊介(叶列平译),日本基于性能结构抗震设计方法的发展,建筑结构,Vol.30,No.6~9,2000
    [1.17] SEAOC,Performance-based Seismic Engineering of Buildings.Vision 2000 Committee,Structural Engineers Association of California,Sacramento.CA,1995
    [1.18] 罗奇峰,概率一致设定地震及其确定方法,地震工程与工程振动,1996,16(3)
    [1.19] 王亚勇,建筑抗震设计中地震作用取值,建筑科学,1999,15(5):32~39
    [1.20] R.Riddell and J.C Dela Lora,Seismic Analysis and Design-Current Practice and Future Trends,11th WCEE,Paper No.2010,Mexico,1996
    [1.21] 钱镓茹、方鄂华,基于位移延性的剪力墙抗震设计研究,第十五届全国高层建筑结构学术交流全论文集,1998:293~297。
    [1.22] 方鄂华、钱镓茹,我国高层建筑设计的若干问题,土木工程学报,1999,32(2):1~5
    [1.23] 吕西林、郭子雄,建筑结构在罕遇地震下弹塑性变形验算的讨论,工程抗震,1999(1):15~20
    
    
    [1.24] 王光远、吕大刚,基于最优设防烈度和损伤性能的抗震结构优化设计,哈尔滨建筑大学学报,1999,32(10):1~5
    [1.25] FEMA—273, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Building Seismic Safety Council, Washington, D.C., 1997
    [1.26] M. J. Kowalsky, M. J. N. Priestly and G. A. Macrae, Displacement-based Design of RC Bridge Columns in Seismic Regions, Earthquake Engineering and Structural Dynamics, Vol.24, 1995, 1623-1643
    [1.27] G. A. Macrae and G. R. Kingsley, Displacement-based Design of Multi-degree of Freedom Bridge Structures, Earthquake Engineering and Structural Dynamics, Vol.24, 1995, 1247-1266
    [1.28] S. A. Freman, J. P. Nicoletti and J. V. Tyrdl, Evaluation of Existing Buildings for Seismic Risk—A Case Study of Pugert Sound Naval Shipyard, Bremerton: Proc. U. S. National Conf. Earthquake Eng., 1975
    [1.29] A. K. Chopra and B. K. Geol, Capacity—Demand—Diagram Methods for Estimating Seismic Deformation for Inelastic Structures: SODF Systems[R]. Reports No. PEER-1999/02. Berkeley: Pacific Earthquake Engineering Research Center, University of California, 1999
    [1.30] P. Fajfar, Capacity Spectrum Method Based on Inelastic Demand Spectra, Earthquake Eng. and Structural Dynamics, Vol.28, No.5, 1999
    [1.31] A. A. Nassr and H. Krawinkler, Seismic Demands for SDOF and MDOF Systems. Repons No.95, Blume Earthquake Engineering Center, Dept. of Civil Engineering, Stanford University, Stanford, Calif., 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700