用户名: 密码: 验证码:
盐岩储气库水溶建腔流体输运理论及溶腔形态变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结前人已有成果的基础上,对盐岩储气库水溶建腔过程中的流体输运和溶腔形态变化规律进行了研究,完成了以下研究工作:
     一、依据流体力学、化学动力学理论及物质平衡原理,对盐岩储气库水溶建腔过程中流体输运和溶蚀机理进行了分析,建立了盐岩溶蚀模型。水溶建腔过程中溶腔形态变化受流体输运浓度场与速度场相互作用的影响,在溶腔内的不同区域,流体输运具有不同的特征,在稳定溶蚀的状态下,溶腔内盐溶速率和采盐速率通过流体输运达到平衡。
     二、建立了流体输运和溶腔数学模型,推导了描述溶腔形态变化的溶蚀速度方程和溶腔动边界方程。利用弹性力学理论,建立了夹层力学模型,描述了含夹层非均质盐岩地层水溶建腔过程中,夹层的受力特征和破坏准则以及对溶腔形态变化的影响。
     三、给出了流体输运和溶腔形态变化数学模型的数值计算方法,对差分方程进行了稳定性分析,独立编制了盐岩储气库水溶建腔数值模拟程序,该程序能够动态模拟和显示溶腔形态发展变化过程。
     四、应用物理模拟的实例对数学模型和数值模拟模型进行了验证,结果表明本文模型能够正确描述盐岩地层水溶建腔的基本规律。
     五、通过数值模拟对水溶建腔影响因素进行了分析,得到几点认识:
     盐岩层纵向均质性越好,则溶腔形状越规则;盐层厚度越大,对建腔越有利,而且溶腔形状易调整;对较薄的盐层,建腔难度也增大;
    
    摘要
    腔体溶蚀过程中,夹层的存在,破坏了溶腔边界的连续性,不利于建
    腔作业和腔体形态控制。根据夹层力学模型,可以得到夹层应力分布
    随几何参数的变化规律;夹层的破坏形式一般为弯曲破坏,当弯曲应
    力超过夹层极限应力时,夹层将发生断裂和垮塌。
     研究结果还表明,在控制溶腔形状的工艺参数中,防护液的控制
    对腔体形态变化的影响最大,改变防护液液面位置,可以有效控制腔
    体形态,而其他工艺参数都是通过改变浓度场或者速度场来改变溶腔
    形状的。
     六、提出了盐层水溶建腔优化设计的原则和方法。水溶建腔优化
    设计原则,就是考虑到溶腔的安全性、稳定性,根据建腔周期的要求、
    采盐浓度的要求,自底向上分阶段溶蚀,保证溶腔形状的连续性,对
    于含夹层非均质盐岩地层,应根据夹层状况对水溶建腔的设计参数作
    相应的调整。
     从溶腔总体结构和工艺参数两个方面,提出了盐岩地层水溶建腔
    优化设计方法,首先考虑盐层与盐丘的不同特征,合理设计溶腔的有
    效容积、基本尺寸和形状参数;在此基础上,按照水溶建腔“自顶向
    下”设计方法,对工艺参数进行优化设计。
     对均质盐岩地层和含夹层非均质盐岩地层的水溶建腔优化设计进
    行了数值模拟,计算结果表明,按照“自顶向下”设计方法,在合理
    的工艺参数下,能够溶蚀出符合设计要求的溶腔。
     通过本文研究,为盐岩储气库水溶建腔设计提供了理论依据,对
    建设盐岩地下储气库方案设计具有指导意义。
Theory of fluid transportation and configuration development in solution mined cavern were studied in this thesis. The main works of this thesis include:
    1. According to theory of fluid and chemical kinetics and material equilibrium, mechanism of fluid transportation were analyzed and a model for halite dissolution was given. Shape of solution mined cavern was affected by interaction of consistence and flow field. Characteristic of fluid transportation was different in various regions of solution mined cavern. Rate of dissolution and production were balanced by fluid transportation.
    2. Mathematical model for fluid transportation and solution mining cavern was set up. Equations of dissolution Rate and of moving border for solution mined cavern were derived. The mechanical feature of interlining was discussed and its mechanics model was given by theory of elastic mechanics to describe its influence to the development of solution mined cavern.
    3. The numerical solution to the mathematical model and its computing program were given to simulate development of solution
    
    
    mined cavern.
    4. The model was tested and verified by experiment. Some affecting factors were discussed for the model.
    5. Principle and method were given for optimizing designing of solution mined cavern. The principle could be expressed by dissolving upward gradationally to ensure the continuity of the border of solution mined cavern considering of its security and stability. Then determining the overall structure of the solution mined cavern to optimize the technology parameter by downward designing method.
    Solution mined cavern has been designed in both homogeneous halite stratum and non-homogeneous halite stratum with interlining by numerical simulation method. It has been indicated that the numerical simulating result and the designing cavern were in good agreement for solution mining with the reasonable technology parameter.
    The paper provided an academic basis for designing solution mined cavern and took an important role in building underground gas storage in salt stratum.
引文
[1] . Thomas R. L. and Gehle R. M. A brief history of salt caverns use. international symposium on salt, 2000.
    [2] . Gomm H. And Quast P. Status of gas storage in salt caverns in West Germany. SPE19084, 1989.
    [3] . Magtengaard Jesper. Danish projects revel characteristics and limits of gas cavern storage. Oil & Gas Journal, Aug. 5. 1991.
    [4] .Querio,Charles W.Steiner,Mark Erik.Durnell,William E. Expansion of solution cavern storage technology SPE10167 1981
    [5] . Barron T. F . Regulatory. technical pressures prompt more U. S. salt-cavern gas storage. OGJ Special. Oil & Gas Journal, Sept. 12. 1994.
    [6] . Ratigan Joe L. Underground storage of hydrocarbons in salt formations, 95-OP-020.
    [7] . Saberian A. Study on mixing in water-brine systems. Solution mining Research Institute file 71-0002-SMRI, 1971.
    [8] . Saberian A. and Von Schonfeldt. Convective mixing of water with brine around the periphery of vertical tube. Fourth symposium on salt. Houston. Texas, 1973.
    [9] . Saberian A. and Podio A. L. The horizontal penetration of buoyant jet stream in brine. Solution mining Research Institute file 76-0003-SMRI, 1976.
    [10] . Durie R. W. Jessen F. W. The laminar boundary layer in the free convection dissolution of salt . paper in second symposium on salt. Cleveland. OH, May 1962.
    [11] . Husband W. H. W. and Shook C. A. An experimental study of free convection mass transfer from high vertical surfaces to liquids, paper
    
    in third symposium on salt. Cleveland. OH, April 22-24. 1969.
    [12] . ChangC. Vliet G. C. and Saberian A. Natural convection mass transfer at salt-brine interfaces. ASME paper 76-HT-33, 1976.
    [13] . Durie R. W. Jessen F. W. Mechanism of dissolution of salt in the formation of underground salt cavities. SPE478, 1964. 6
    [14] . Durie R. W. Jessen F. W. The influence of surface features in the salt dissolution process. SPE1005, 1964. 9
    [15] . Jessen F . W . Salt dissolution under turbulent flow conditions. Solution mining Research Institute file 70-0004-SMRI, 1970.
    [16] . Hans Ulrich Rohr. Rates of dissolution of salt minerals leaching caverns in salt-fundamentals and practical application. Fifth international symposium on salt-Northern Ohio geological society, 1979.
    [17] . Kazemi H. and Jessen F. W. Mechanism of flow and controlled dissolution of salt in solution mining. SPE1007, December 1964.
    [18] . Ramson D. R. and Dommers O. B. and Jessen F. W. Techniques for developing predetermined shaped cavities in solution mining. Paper in second symposium on salt. Cleveland. OH, May 1965.
    [19] . Sears G. F. and Jessen F. W. Controlled solution mining in massive salt. SPE1336, March 17. 1966.
    [20] . Snow R. H. and Nielsen H. Solution mining studies. Solution mining Research Institute file 66-0001-SMRI, 1966.
    [21] . Snow R.H. and Nielsen H. Solution mining studies. Solution mining Research Institute file 66-0002-SMRI, 1966.
    [22] . Snow R.H. and Nielsen H. Solution mining studies. Solution mining Research Institute file 66-0003-SMRI, 1966.
    [23] . Snow R.H. and Nielsen H. Solution mining studies. Solution mining Research Institute file 66-0004-SMRI, 1966.
    [24] . Snow R. H. and Nielsen H. Solution mining studies(Final
    
    report). Solution mining Research Institute file 68-0006-SMRI, 1968.
    [25] . Medley . Alfred H . Storage of natural gas in salt caverns. SPE5427 , 1975
    [26] . Saberian A. The effect of water ascent velocity on salt dissolution rate. Solution mining Research Institute file 76-0001-SMRI, 1976.
    [27] . Podio A. L. and Saberian A. Optimization of solution mining operations . Fifth international symposium on salt-Northern Ohio geological society, 1979.
    [28] . Daniel C. Reda and Anthony J. Russo. Experimental studies of oil withdrawal from salt cavities by fresh water injection. SPE13307, 1986
    [29] . Daniel C. Reda and Anthony J. Russo. Experimental studies of salt cavity leaching via fresh water injection. SPE13308, 1986
    [30] . Ratigan J. L. And Devries K. L. Spaced storage wells in salt dome. SPE19085, 1989
    [31] . Wallner. Manfred. Sensitivity and uncertainty analysis applied to cavity design computation in rock salt. SPE28125, 1994
    [32] Langer,M. Geoengineering confidence building for the design and construction of salt caverns SPE28116 1994
    [33] Crossley N.G. Conversion of LPG salt caverns to natural gas storage "a transgas experience" petroleum society of CIM NO.95-131
    [34] . Jessen F. W. Progress report-1) Rate of solution of salt under turbulent flow conditions, 2) study of mixing effects in salt water, 3) Mechanism of solution and cavity control using intermediate injection, 4) Investigation of multiple well system, Solution mining Research Institute file 70-0006-SMRI, 1970.
    [35] . Jessen F. W. Progress report-1) Rate of solution of salt under turbulent flow conditions, 2) study of mixing effects in salt water, 3) Mechanism of solution and cavity control using intermediate injection, 4) Investigation of multiple well system, Solution mining Research
    
    Institute file 71-0005-SMRI, 1971.
    [36]. Jessen F. W. Progress report- 1) Rate of solution of salt under turbulent flow conditions, 2) study of mixing effects in salt water, 3) Mechanism of solution and cavity control using intermediate injection, 4) Investigation of multiple well system, Solution mining Research Institute file 72-0006-SMRI, 1972.
    [37]. Jessen F. W. Progress report- 1) Rate of solution of salt under turbulent flow conditions, 2) study of mixing effects in salt water, 3) Mechanism of solution and cavity control using intermediate injection, 4) Investigation of multiple well system, Solution mining Research Institute file 72-0009-SMRI, 1972.
    [38]. Allen V. Cavity formation in massive salt with a two-well system. Solution mining Research Institute file 70-0003-SMRI, 1970.
    [39]. Saberian A. Cavity development in a three layer bedded salt model. Solution mining Research Institute file 77-0003-SMRI, 1977.
    [40]. Saberian A. Cavity development in a five layer bedded salt model. Solution mining Research Institute file 77-0006-SMRI, 1977.
    [41]. Brown K. E and Jessen F. W. Effect of pressure and temperature on cavities in salt. JPT. V. 11. NO. 12, 1959: PP341-345.
    [42]. Berest P. etc. long-term evolution of sealed cavern. Solution mining Research Institute file 98-4-SMRI, 1998.
    [43]. Nolen J. S. Hantlemann G. Von. Meister S. Etc. Numerical simulation of the solution mining process. SPE4850, 1974.
    [44].陈扬辉.流体动力法是井矿盐工业开采岩盐矿的新方法[J].中国井矿盐.1992
    [45].吴刚等.岩盐溶解速率的研究[J].化工矿山技术.1992
    [46].肖长富等.岩盐溶解特性及其传质过程的研究[J].重庆大学学报.1993
    [47].李武.中国天然碱工业[M].北京:化学工业出版社,1994
    
    
    [48].潘海峰.察尔汗盐湖岩盐层渗透性的初步研究[J].军工勘察,1995.(3):11-16
    [49].于海龙,谭学术等.岩盐溶腔稳定性模拟实验研究.矿山与顶板管理,1995.No.3-4。
    [50].刘成伦等.电导法研究岩盐溶解的动力学特征[J].中国井矿盐,1998.29(3):19
    [51].赵晓华,孙艳秋,吴诗中.深井水溶开采天然碱矿室内模拟实验[J].江西地质,Vol.13.No.3.1999.9。
    [52].刘成伦等.长山岩盐动溶的动力学特征[J].重庆大学学报,2000.23(4):58-59
    [53].刘成伦.钻井开采薄层岩盐水溶物化特征及溶腔形态的研究[J].重庆:重庆大学建筑工程学院.2000
    [54].刘成伦,徐龙君,鲜学福.长山岩盐动溶的动力学特征.重庆大学学报(自然科学版),Vol.23.2000.6。
    [55].殷国富等.基于模糊神经网络的岩盐卤水浓度的控制方法研究[J].自动化学报.2000
    [56].张政.双块修正技术——一种加快传热与流体流动数值计算收敛速度的方法[J].工程热物理学报,Vol.5.No.4.pp.364-370.1984
    [57].金海生等.同时存在温度和盐度梯度的分层流的数值模拟[J].水动力学研究与进展,1991.6(4)
    [58]. ADDED MASS AND OSCILLATION FREQUENCY FOR A CIRCULAR CYLINDER SUBJECTED TO VORTEX-INDUCED VIBRATIONS AND EXTERNAL DISTURBANCE K. VIKESTAD Journal of fluids and structures /M. P. Paidoussis. -2000,14(8). 1071-1088
    [59]. COMPUTATION OF COBBLESTONE EFFECT WITH UNSTEADY VISCOUS FLOW UNDER A STERN SEAL BAG OF A SES N. HIRATA Journal of fluids and structures /M. P. Paidoussis. -2000, 14(8). -1053-1069
    
    
    [60]. RESONANCES IN WAVE DIFFRACTION/RADIATION FOR ARRAYS OF ELASTICALLY CONNECTED CYLINDERS T. UTSUNOMIYA Journal of fluids and structures /M. P. Paidoussis. -2000, 14(8). -1035-1051
    [61].林元雄.岩类水溶采矿技术.四川人民出版社,1990.10
    [62].D.J.特里顿.物理流体力学[M].董务民等译.北京:科学出版社,1992.52~79,165~173.
    [63].L.普朗特K.奥斯瓦提奇K.维格哈特.流体力学概论[M].郭永怀陆士嘉译.北京:科学出版社,1986.330~332.
    [64].杨本洛.流体运动经典分析[M].北京:科学出版社,1986.32~50 classical analysis of fluid motion
    [65].中南矿冶学院分析化学教研室等.化学分析手册[M].北京:科学出版社,1986.245~292.664~668
    [66].富永政英.海洋波动基础理论和观测成果[M].关孟儒译.北京:科学出版社,1984.423~435
    [67].杨世铭.传热学[M].北京:高等教育出版社,1979.83-213
    [68].齐欢.数学模型方法[M].武汉:华中理工大学出版社,1994.137-178
    [69].殷尔禧,张诒宁.材料力学[M].北京:科学技术文献出版社,1994.179-207,217-260,275-310,321-366,377-392
    [70].武汉水利电力学院.工程力学[M].北京:高等教育出版社,1985.186-222,230-262,271-305,314-354
    [71].何庆知,郦正能.工程断裂力学[M].北京:北京航空航天大学出版社1992.10-82,127-155
    [72].赵学庄.化学反应动力学原理[M].北京:高等教育出版社,1983.342-419
    [73].陈昌麟.材料学科中的固体力学[M].北京:北京航空航天大学出版社1992.10-82,127-155,205-220
    
    
    [74].吴家龙.弹性力学[M].上海:同济大学出版社,1987.173-176,326-333,
    [75].姚梦希,邱棣华,陈安.弹塑性力学[M].北京:机械工业出版社,1987.44~56,122-142,140-142
    [76].郑忠,李宁.分子力与胶体的稳定和聚沉[M].北京:高等教育出版社,1994.138-198
    [77].王致勇.无机化学原理[M].北京:清华大学出版社,1983.187-259
    [78].庄礼贤,尹协远,马晖扬.流体力学[M].合肥:中国科学技术大学出版社,1990.83-113,124-170,281-309
    [79].刘国璞,白广美,廖松生.大学化学[M].北京:清华大学出版社,1985.240-280
    [80].Paul C.Hiemenz著,周祖康,马季铭译,胶体与表面化学原理[M].北京:北京大学出版社1984.10-8298-145
    [81].陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,1985.145-209
    [82].郭尚平,黄延章,周娟,胡雅礽,周炎如,于大森.物理化学渗流[M].北京:科学出版社1990.183-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700