用户名: 密码: 验证码:
鄂尔多斯盆地奥陶系天然气成藏机理及其与构造演化关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用有机地球化学和构造地质学理论和方法对鄂尔多斯盆地奥陶系天然气地质研究中薄弱环节成藏要素和作用进行了系统科学分析。利用烃源岩生气定量热模拟技术、热模拟在线碳同位素实验技术、气体轻烃和生物标志物分析技术、运聚成藏物理模拟技术和包裹体中碳同位素分析技术等多种先进的实验技术对烃源岩的生气机理、气源和混合比、成藏史、充注路径、运移方向和构造作用与成藏关系等问题进行了深入的研究,在前人研究的基础上,经过本次大量的实验分析和综合研究,提出了一些新的认识。
     通过对储层和烃源岩中沥青定量统计分析、烃源岩生气热模拟、最大吸附气实验测定及地质类比法等综合研究认为在鄂尔多斯盆地有机碳为0.2%可作为高—过成熟的海相碳酸盐岩有机碳下限标准。有利烃源岩主要分布在西南部边缘的“L”型斜坡地带和东部米脂盐湖一带。对低成熟(部分为成熟)的烃源岩在开放和密闭体系下的生气热模拟实验研究建立了热解气和油裂解气的生气模式,热解气的生气高峰在Ro=1.0—1.5%,油裂解气生气高峰是在Ro=1.5—2.5%之间,从热解气和油裂解气的相对含量来看热解气占总生气量的21%,油裂解气可能占79%,油裂解气产率为620m~3/吨.油。
     采用气—烃源岩直接和动态对比的研究思路对鄂尔多斯盆地中部气田气源进行了多项地球化学参数综合对比研究,进一步证明中部气田气源具有混源特征,但是,在不同区块上、下古生界天然气混合程度不同,在中部气田的北部、西部和南部天然气主要以下古生界来源为主的混合气,而中部气田的东部则主要以上古生界来源为主的混合气。
     加强了对包裹体中气体碳同位素测定方法研究,真空球磨法提取气体进行碳同位素分析的方法无裂解和氧化反应,代表真实流体,测定的碳同位素值可靠。用这种方法对鄂尔多斯盆地中部气田的储层包裹体中烃类气体碳同位素进行了测定,结合单个包裹体成分及均一温度认为该区有两期成藏史,并且早期可能主要来源于煤成气。
     从生烃史、古地温史恢复、包裹体均一温度分布及单个包裹体气相成分等
    
    分析,鄂尔多斯盆地中部气田天然气成藏至少有两期,通过古地温史模拟资料
    与包裹体均一温度的对比研究,中部气田天然气成藏的主要时期可能在晚三叠
    世末和早白至世末,在晚三叠世末中部气田天然气是由东向西和由南向北运移
    趋势,盆地中部是天然气运移聚集的指向区。在白里系沉积末盆地中部低气势
    圈闭区在靖边南北一带稳定分布并向西扩大,东部米脂凹陷生气中心的天然气
    有向西、向北方向运移的趋势,鄂尔多斯盆地上古生界烃源岩在晚三叠世和早
    白里世存在剩余压力,在压力的驱动下,太原组煤层中的天然气可以微裂缝和
    上下泥岩微孔隙作为运移路径。
     通过盆地构造作用对烃源岩分布和演化、奥陶系顶部风化壳储层的横向分
    布、成藏期运移方向和成藏后的保存保存等具有控制作用。根据鄂尔多斯盆地
    中部的沉积史、构造发育史、古岩溶形成史、生排烃史等等,按其时空配置关
    系,归纳气藏的形成可分为四个演化阶段:储集层孕育阶段(0;-C;)、圈闭形
    成阶段(C。-P)、天然气运聚成藏阶段(J。-K;)和气藏调整/定型阶段(K。-Q)o
The essential elements and process of gas reservoir formation of Ordovician in Ordos basin have been annalysed systematicly and scientificly by means of the theory and method of organic geochemistry and tectonic geology in this dissertation.The several advanced techniques,such as gas generation thermal simulation, on-line individual gas compounds carbon isotope determination(PY-GC-C-IR-MS), the analysis technique of light hydrocarbons and biomarkers in natural gas, gas migration simulation and gas carbon isotope determination in fluid inclusions, have been applied to focuse on the study of the gas generation mechanism of souce rock, correlation between gas and source rock, reservoir formation history, migration direction, charging road in detail. Some conclusions have been made in the following.
    That the value of TOC is 0.2% may be regarded the low evaluation value of marine carbonate souce rock at the stage of high to over mature. According to the content of bitumen in source rock and reservoir, gas generation quantity, the maximum absorption gas quantity and geology analogy. Good source rock is developed in the slope belt of platform in the southwest part and middle-east part of Ordos basin. The gas generation of low mature source rocks has been simulated in the open system and close system respectively.The models of primary cracking gas (gas from kerogen) and secondary cracking gas (gas from oil) have been established. The Ro value of primary cracking gas generation peak is ranged from 1.0% to 1.5%. The Ro value of secondary gas generation peak is ranged from 1.5% to 2.5%. The quantity of primary cracking gas is up to 21 percentage of total gas generated. The quantity of secondary cracking gas is up to 79 percentage of the total gas generated.
    The comprehensive correlation between gas and source rock shows that natural gas in the north, west and south part of the center gas fields mainly come from Lower Paleozoic source rock, The attribution ratio of Lower Paleozoic source rock is up to 60-70%. In the other part, natural gas is mainly from Upper Paleozoic souce rock, its attribution ratio is up to 70%.
    Author pay more attention to the carbon isotope values of gas in fluid
    
    
    inclusions.The methods of pyrolysis and vaccum ball grinding have been used to obtain carbon dioxide, methane and other gases.Then, the carbon isotope values of these gases have been identified by GC-C-IR-MS. Because carbon oxide generated during pyrolysis process affected the carbon isotope value of methane by pyrolysis, authors concluded that the method of vacuum ball grinding is better than that of pyrolysis.The carbon isotope values of carbon dioxide, methane, ethane and propane of fluid inclusions of calcite samples in center field of Ordos basin have been determined.The results show that the values of 8 13Ci is distributed between -26.73% and -43.60%.The values of 13C2 are from -22.53%~-25.80%o and the values of 8 13Cs are from -22.53%o~-25.80%o. The characteristics of gas from fluid inclusion show that these gas are generated from coal and is very different from gas in gas fields. Authors speculate the times of gas filling reservoir are two at least. At early time, it is probably coal type gas.
    The analysis results of hydrocarbon generating history, paleotemperature history, the homogenization temperature distribution of fluid inclusions and individual fluid inclusion compounds show that the natural gas charging times in the center gas field is two. The first is at the age of late Triassic. At that time, natural gas migrated from the east to the west and from the south to the north. The center of basin is the accumulation target of gas migration and accumulation. At the age of early Cretaceous, the natural gas generated in the MiZhi depression migrated to the west and the north. At the ages of gas generation peak, anormally high pressures exsisted. With the help of this kind of pressure, natural gas generated from coal in the TaiYuan formation can be migrated to the Ordovician wethered crust reservoir accrossing micro-fiss
引文
1.李德生,1992,李德生石油地质论文集,北京:石油工业出版社会社。
    2.何登发等,1996,克拉通盆地分析,北京:石油工业出版社。
    3.林舸,李自安等1998,中国大中型气田构造样工与天然气富集成藏的关系,中科院长沙大地构造所。
    4.杨俊杰、裴锡古主编,1996,中国天然气地质学(第四卷):鄂尔多斯盆地,石油工业出版社。
    5.张吉森,方炳旺等,1990秦晋地区古生界沉积及生储条件研究,石油工业部秦晋联队研究报告。
    6.张抗,1989,鄂尔多斯断块构造与资料,西安:陕西科学技术出版社。
    7.黄汲清等,1980,中国大地构造及其演化,北京:科学出版社。
    8.戴金星、王庭斌、宋岩等,1997,中国大中型天然气田形成条件与分布规律,地质出版社。
    9.张国伟等,1988,北秦岭古活动大陆边缘,秦岭造山带的形成及演化,西北大学出版社。
    10.任纪舜等,1981,中国大地构造及其演化,科学出版社。
    11.徐正球等,1993,鄂尔多斯盆地奥陶系碳酸盐岩天然气形成机制,长庆石油勘探局。
    12.陈义才、李延钧等,鄂尔多斯盆地中央古隆起及周缘地区下古生界低丰度碳酸盐岩烃源岩生排烃能力评价,西南石油学院,1997。
    13.程克明等,1996,碳酸盐岩油气生成理论与实践,北京:石油工业出版社。
    14.夏新宇,碳酸盐岩生烃与长庆气田气源,石油工业出版社,2000。
    15.王涵云等,1982原油热解成气模拟实验,天然气工业,No.3,28~33。
    16.孙少华等,1996,鄂尔多斯残留地台盆地构造热演化与油气成藏,长沙:中南工业大学出版社。
    17.孙少华等,1996,鄂尔多斯盆地地温场与烃源岩演化特点,大地构造与成矿学,V20(3),255~261。
    
    
    18.耿安松、刘德汉等,中国海相盆地碳酸盐岩大中型气田形成,中科院广州地球化学研究所,1998长庆石油勘探局,1993。
    19.贝丰、吴征等,鄂尔多斯盆地古生界天然气生成条件及油气资源评价,成都理工学院,1994。
    20.郑聪斌、章贵松等,鄂尔多斯盆地奥陶系古岩溶特征与圈团条件研究、长庆油田分公司,2000。
    21.戴金星、宋岩、张厚福等著,1997,中国天然气的聚集区带,科学出版社,57~83。
    22.夏新宇,碳酸盐岩生烃与长庆气田气源,石油工业出版社,2000。
    23.梁狄刚、张水昌等,塔里木盆地生油岩与油源研究,北京石油科学研究院等,1998。
    24.夏新宇、洪峰等,鄂尔多斯盆地下奥陶统碳酸岩有机相类型及生烃潜力,沉积学报,1999,17(4):638~643。
    25.戴金星等,天然气地质研究新进展,石油工业出版社,1997。
    26.郝石生、高岗等,高—过成熟海相烃源岩,石油工业出版社,1996。
    27.黄汝昌等,华北地区天然气形成富集规律及资源评价,石油勘探开发科学研究院分院天然气所,1990。
    28.张文正,鄂尔多斯盆地上古生界深盆气形成的气源条件研究,长庆石油勘探局,1997。
    29.陈义才、李延钧等,鄂尔多斯盆地中央古隆起及周缘地区下古生界低丰度碳酸盐岩烃源岩生排烃能力评价,西南石油学院,1997。
    30.冉启贵、胡国艺等,鄂尔多斯盆地伊克昭盟地区古生界盆地模拟及天了勘探区带优选评价,石油勘探开发科学研究院廊坊分院,1997。
    31.王震亮、陈荷立等,1998,鄂尔多斯盆地中部上古生界天然气运移特征分析,石油勘探与开发,25(6)。
    32.马振芳、周树勋等,1999,鄂尔多斯盆地中部奥陶系顶部古风化壳特征及其与天然气富集的关系,26(5)。
    33.谢庆邦、吕强等,陕甘宁盆地中央古隆起及周缘地区大中型气田成藏条件及其分布,大庆石油勘探局,1995。
    
    
    34.宋岩、魏国齐等,2000,天然气地质研究及应用,石油工业出版社。
    35.吕强、张军等,鄂尔多斯盆地中央古隆起及周缘地区天然气勘探新领域研究,长庆石油勘探局,1998。
    36.冯增昭、鲍志东等,鄂尔多斯盆地及周缘地区下古生界岩性、岩相及储集体工业制图,石油大学(北京)。
    37.闵琪、付金华等,1999,鄂尔多斯盆地下古生界天然气运移聚集特征,第四届全国油气运移学术会议。
    38.夏新宇、赵林等,1998,鄂尔多斯盆地中部气田奥陶系风化壳气藏天然气来源及混源比计算,沉积学报,16(2)。
    39.周江羽、吴增龙等,1998,鄂尔多斯盆地的地热场特征与有机质成熟史,石油实验地质,20(1)。
    40.徐永昌,1994,天然气成因理论及应用,科学出版社。
    41.陈安定,1994,陕甘宁盆地中部气田奥陶系天然气的成因及运移,石油学报,15(2):1~10。
    42.黄第藩、熊传武等,1996,鄂尔多斯盆地中部气田气源判识和天然气成因类型,天然气工业,16(6):1~5。
    43.关德师、张文正等,1993,鄂尔多期盆地中部气田奥陶系产层的油气源,石油与天然气地质,14(3):191~199。
    44.张士亚,1994,鄂尔多斯盆地天然气气源及其勘探方向,天然气工业,14(3):1~4。
    45.黄汝昌,1997,中国低熟油及凝析气藏的形成与分布规律,石油工业出版社。
    46.长庆油田石油地质志编写组,1992,中国石油地质志(卷十二:长庆油田),石油工业出版社。
    47.杨俊杰,1991,陕甘宁盆地下古生界天然气的发现,天然气工业,11(2):1~6。
    48.杨俊杰、裴锡古主编,1996,中国天然气地质学(第四卷):鄂尔多斯盆地,石油工业出版社。
    49.张文正、关德师,1997,液态烃分子系列碳同位素地球化学,石油工业
    
    出版社,142~161。
    50.郝石生、高耀斌、黄志龙,1996,鄂尔多斯盆地中部气田聚集条件及运聚动平衡,中国科学,26(6):488~492。
    51.林壬子,1992,轻烃技术在油气勘探中的应用,中国地质大学出版社。
    52.戴金星、王庭斌、宋岩等,1997,中国大中型天然气田形成条件与分布规律,地质出版社。
    53.戴金星、夏新宇,1999,长庆气田奥陶系风化壳气藏气源研究,地学前缘,6(6),增刊:195~203。
    54.柳常青、马亭、梅博文等,1993,油田水短链有机酸毛细管等速电泳法研究,分析化学,21(3):290~293。
    55.黄福堂、张维芹、张国林等,1993,松辽盆地北部地层水中“指纹标志”化合物的分布特征及其与油气关系的研究,地球化学,(2):136~145。
    56.刘崇禧等,1984,油田水中可溶气态烃的组成与含量的地球化学意义,石油勘探与开发,(2)。
    57.郝石生、张振英,1993,天然气在地层水中的溶解度变化特征及地质意义,石油学报,14(2):12~22。
    58.杨俊杰、李银德、王少昌等,1989,鄂尔多斯地区下古生界碳酸盐岩油气富集条件,长庆石油勘探局。
    59.郑苞英、叶俭、祝总祺、宋国初,1999,鄂尔多斯盆地奥陶系马家沟组气液包裹体研究,西安工程学院报,21(3):13~16。
    60.贾进斗、何国琦、李茂松等,1997,鄂尔多斯盆地基底结构特征及其对古生界天然气的控制,高校地质学报,3(2):146~153。
    61.刘斌、沈昆,1998,包裹体流体势图在油气运聚研究方面的应用,地质科技情报,17,sup:81~86。
    62.王莉娟,1998,流体包裹体成分分析研究,地质评论,44(5):496~501。
    63.申维、赵鹏大,1998,分形统计模型的理论研究及其在地质学中的应用,地质科学,33(2):234~243。
    64.傅强,王家林,1998,鄂尔多斯盆地中部气田奥陶系马五_1_层的古岩溶作用与天然气富集。
    
    
    65.李景贵,张谦,1998,鄂尔多斯盆地中部气田马五段气源岩地球化学特征,天然气工业,18(5)17~21。
    66.冯增昭,鲍志东,1999,鄂尔多斯奥陶纪马家沟期岩相古地理,沉积学报,17(1),1~8。
    67.潘钟祥等,石油地质学,北京:地质出版社,1986
    68.张厚福等,石油地质学,北京:石油工业出版社,1989
    69. Martini A. M., Walter L. M., Budai J. M. et al, 1998, Genetic and temporal relations between formation. waters and biogenic methane: upper Devonian Antrim Shale, Michigan basin, USA, Geochimica et Cosmochimica Acta, 62(10):1699~1720。
    70. Shi Jixi and Lan wenbo, 1993, Organic inclusion as an indicator of oil/gas potential assessment of Carbonate reservoir beds, Chinese Journal of Geochemistry, 12(1): 2~13。
    71. Shelton K I,1992, Fluid-inclusion studies of regionally extensive epigenetic dolomites Bonneterre dolomite,Southeast Missouri. Geo. Soc. American Bull, 104: 675~683。
    72. Jersenius J,Burrus R C, 1990, Hydrocarbon-water interactions during brine migration: Evidence from the composition of hydrocarbon inclusions in calcite from Danish North Sea oil fields. Geochim. Cosmochim. Acta, 54: 705~713。
    73. Shephfrd T J,Chenery S R, 1995, Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study. Geochimical et CosmochimicaActa, 59(19): 3997~4007。
    74. Mclimans, 1987, The application of fluid inclusion of migration of oil and diageenesis in petrolum reservoirs.Applied Geochemistry, 2:585-603。
    75. Barth T., Borgun A. E. and Riis M., 1988, Organic acids in reservoir waters——relationship with inorganic ion composition: amount, composition and role in migration of oil. Org. Geochem., 13: 461~465。
    76. Barth T. and Bjorlykke K, 1993, Organic acids from source rock maturation: generation potentials, transport mechanisms and relevance for mineral diagenesis,
    
    Applied Geochemistry,, 8: 325~337。
    77. Carothers W. W. and Kharaka Y. K., 1978, Aliphatic acid anions in oilfields waters——Implications for origin of natural gas. AAPG Bull., 62, 2441~2453。
    78. Fisher J. B., 1987, Distribution and occurrence of aliphatic anions in deep subsurface waters. Geochim. Cosmochim. Acta, 9: 2459~2468。
    79. Kharaka Y. K., Lungedard P. D. and Ambats G. Et al., 1993, Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils, Applied Geochemistry, 8: 317~324。
    80. Means J. L. and Hubbard N. J., 1987, Short-chain aliphatic acid anions in deep subsurface brines: a review of their origin, occurrence, properties and importance and new data on their distribution and geochemical implications in the Palo Duro Basin, Texas, Organic Geochemistry, 11: 177~191。
    81. Willey L. M, Kharaka Y. K., Presser T. S. et al., 1975, Short chain aliphatic acid anions in oil field waters and their contribution to the measured alkalinity. Geochimica et CosmochimicaActa, 39, 1707~1711。
    82. Galimov, E. M., 1988, Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rock, Chemical Geology, 71: 77~95.
    83. Leythaeuser, D., Schaefer, R. G., et al., Role of diffasion in primary migration of hydrocarbons, Bull AAPG, 1982, V. 66, No. 2.
    84. Stahl, W. J. and Carey, Jr. B. D.,1975, Source rock identification by isotope andlyses of natural gases from fields in Val varde and Delaware Basins, west Texas, Chemical Geology, 16. 257~267.
    85. Price, L. C., 1983, Aqueous solubility of methane at elevated pressures and temperatukes, org. Geochem, Vol. 4, No. 3~4.
    86. Hinch, H. H., 1980, The nature of shales and the dynamics of hydrocarbon on expulsion in the ctulf coast Tertiary section, AAPG studies in geology, No. 10.
    87. Cramer, B., krooss, B., Littke, R.(1998). Modelling isotope fractionation during primary cracking of natural gas: a reaction kinetic approach. Chemical Geology, 149, 235~250.
    
    
    88. Waples, D. W. 2000. The kinetics of in-reservoir ou dostruction and gas formation: constraints from experiment al and empirical data, Org. Geochem. Vol.21. No. 7.
    89. Levorson A. I. "stratigraphic type oilfields" AAPG, Tulsa, Okla, 1941.
    90. Liewig, N. et. al, 1987. Ro-Sr and K-Ar dating of clay diagenesis in Jurassic Sandstone resenoir: Hild Field, Nothern North Sea. Clays and clay Minerals.21,497~511.
    91. Bjdrkum, P. A. et. al., 1988. An isochemical model for formation of anthigenic kaolinite, K-feldspar and illite in sediments. Journal of sedimentary Petrology, 506-511.
    92. Burley, S. D. 等, 1992. Authigenic clays; diagenetic sequenc es and conceptual diagenetic models in contrasting basin margin and bas in center, North Sea Jurassie Sandstones and mudstones. In: Houseknecht, D. W. Pittman, E. D. (eds) Orgin, Diagenesis and petrophysics of clay Minerals in Sandstones. SEPM, Special Publication, 47, 81~110.
    93. Hamilton, P. J. 1992. K-Ar dating of illites in Brent Group reservoirs: a regional perspecative. In: Morton. A. C., Haszeldine, R. S., Giles, M. R. Brown, S.(eds) Geology of the Brent Group. Geological Soeiety, Loneon, special papen, 61,377~400.
    94. Harris, N. C. 1989. Diagenetic quartzarenite and destruction of secondary porosity: An example from the Middle Jurassic Brent Sandstone of northwest Europe. Geology, 17, 361~364.
    95. Ehrenberg, S. N. 1990. Relationship between diagenesis and reservoir quality in sandstones of the Garn Formation, Haltenbanken, Mid-Norwegian Continental shelf Bulletin AAPG, 74, 1538~1559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700