用户名: 密码: 验证码:
长周期地震动衰减关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了我国水平向基岩长周期加速度反应谱衰减关系。根据长周期地震动研究的特点,本文从数据与方法两方面进行了以下工作。
     在数据方面,主要使用了地震学研究所使用的数字宽频带记录,包括中国数字地震台网(CDSN)宽频带记录、法国全球数字地震台网(Geoscope)中国新疆乌什台的宽频带记录、美国南加州数字宽频带记录,另外也包括我国低放大倍数模拟式位移记录。
     对观测数据着重考察了其长周期特性的可靠性。对于速度型和加速度型的数字宽频带记录,从仪器特性、恢复的地面运动对比、信噪比研究、反应谱对比等方面研究这类记录在长周期段的可靠性。建立了这类记录的处理方法,并计算了它们的反应谱。对于模拟式低放大倍数位移记录,以泰安地震台的513型中强地震仪所记录的1976年7月28日唐山地震的7.1级余震两个水平分向的记录图为例,详细说明了对记录图数字化、弧型校正、基线校正、等距插值、仪器响应校正等步骤,计算了周期T≤10s的反应谱,分析了它们的可靠性。
     为弥补观测资料分布的不足,还发展了用面波震级定义估计长周期反应谱值的方法,与观测数据一起,作为统计分析的基础数据。
     在方法上,采用了经验统计方法回归参考地区的反应谱衰减关系,用转换方法并加入中国数字地震台网记录得到中国东部地区和西部地区的反应谱衰减关系。对反应谱的长周期部分与短周期部分用不同的资料分别进行研究。将美国西部地区作为参考地区,对美国南加州地区的数字宽频带记录进行了搜集与处理后作为观测资料,共754条水平向记录,与利用震级定义所估计的反应谱值一起,用统计回归的方法建立美国西部长周期加速度反应谱衰减关系。与用模拟式强震仪记录所得出的美国西部地区短周期(T=0.04s-4s)加速度反应谱衰减关系结合,得出了美国西部地区水平向基岩宽周期(T=0.04-20s)加速度反应谱衰减关系。最后用常规的转换方法,并加入我国158条水平向宽频带数字记录,建立了中国东部和西部地区的水平向基岩宽周期(T=0.04-20s,ζ=5%)加速度反应谱衰减关系。
     在本文工作中,得到了如下主要成果与认识:
     (1)过去使用的低放大倍数位移式地震仪记录可用于长周期地震动研究。位移记录在经过适当的校正处理后,可得到周期长达10s的反应谱。本文给出了此类记录的处理方法。
    
     (2地震学家攸用的数字宽频带地震仪具有良好的口 朋特性,其记录较适介十K川
    朋地震动研究。木义发现,数宇宽频带记录的啪卢水平很低,在川朔K达 205时,即仗在
    弱地震动的惰况下,还具有较高的信啪比,并且浊度型记录的信噪比禾厂加让度型门录的
    信噪比。速度型和加速度型数字宽频带记录可以恢复出相同的地震动,在一定的川朋范田
    内得到相同的反应谱,间接证明了这两种地恁记录的可靠性。相比较而言,介玫弱地震动
    的情况下,速度型记录更适合于较长周期地震动的研究。数宇宽频带记录的处理方法较为
    简单,不需要人多的校正步骤,从而保留了需要的K周朔成价,为长)刷田地恁动F]f究捉仪
     ’!
    了条件。
     (3)捉出了川震级定义估汁反应谱值的思想。泅过准级定义估计了个同川沏地汰波的
    地而最大位移,进而估计了相应周期的反应谱值,作为实际观测数抓的补充,井。IJ以对让
    立反应谱衰减关系起到一定的约火作用。
     (叶山美国南加州地区数丫宽频带记录和震级定义所得到的反应以数掂述、\的夭冈西
    部长周期加诠度反应谱哀减关系,与用美国西部强发记录建立的短周期加边度反应谱哀测
    关系在周期T=l.ss左右衔接较好,从一个侧面说明了这两种数据在1.ss刷田附近部是可靠
    的。通过将这两个哀减关系相接,本文建立了美国西部地区宽周期(T=0.04205)水平向基岩
    加诬度反应谱哀减人系。与用枚拟记录得到的郁戍大系w比,小义得到的加注度反应谐哀
    减关系既解决了高人级时对长川朋估汁小足的问题,同时也尤服了低浴级一in场时俏吹比
    低的缺点,史为合理。
     (5)利用美国西部的地震烈度哀减关系与中国东部和西部地区的地震烈度及4a义系,
    用转换方法分别得到了中国东部与中国西部地区的宽周期(T=0刀4-205)水‘卜向基岩加洼度反
    应谱衰减关系。在用转换方法建立中国分区长周期反应谱哀减关系时,还加入了中冈的数
    字宽频带记录及模拟式位移记录资料重新回归,使转换得到的反应谱哀减关系少为合理。
     J
     (6)通过对新疆乌什台所记录的新疆伽师强震群宽频带数字记录的分析,发现地震震
    级大小对长周期地震动的影响程度较大,地震越大,长周期成份越丰富。与上滑型地震相 多
    比,倾滑型地震的长周
The goal of this paper is to develop the long period attenuation relationships for horizontal acceleration response spectrum of rock site in China. The study is carried out both in database and methodology aspects.
    In the database aspect,the digital broad-band records originally used by seismological studies are used. These data mainly come from the digital broad-band records which are used by seismologists. The recordings include the CDSN records,the Wushi station records of the Geoscope,the TERRAScope records of southern California. The analog low-gain displacement-type records of China are also used.
    The reliability of the observation data in long period range is particularly inspected. This is done "by verifying the instrument response characteristic,examining the signal-to-noise ratio,comparing the recovered ground motions and response spectra from the velocity type and acceleration type digital broad-band records. The processing method for the digital broad-band records is developed. For the analog low-gain displacement-type records,two horizontal-component records of a M7.1 aftershock of Tangshan earthquake,July 28,1976,in Tai'an seismic station are used as the example to show the procedures of digitizing,arc-shape correction,baseline correction,equal-interval interpolation and instrument response correction. The reliability of the analog low-gain displacement-type records for long period study is also discussed.
    In order the database to have a better magnitude-distance distribution,a method to estimate the long period response spectrum values from earthquake magnitude definition is developed.
    The empirical attenuation relationship for horizontal acceleration response spectrum in reference region is developed by regression,and the relationships for eastern China and western China are obtained by transform method and the data from China. The western North America is set as the reference region. 754 horizontal-component digital broad-band records in western North America are processed. The acceleration response spectra are calculated and used as part of the database. The response spectrum values are estimated by the earthquake magnitude definition and are used as another part of the database. The long period attenuation relationship of acceleration response spectrum is developed using this database. The short-period attenuation equation is
    
    
    developed by using the analog strong motion records of western North America. By connecting the short period and the long period attenuation relationships together,the wide period (7"=0.04-20sec) attenuation relationships for horizontal acceleration response spectrum of western North America are obtained. Then the transform method and the digital broad-band data from China is applied to obtain the wide period attenuation relationships for horizontal acceleration response spectra of eastern China and western China in rock sites (C,=5%).
    We have got the following knowledge and conclusions:
    (1) The records of low-gain analog displacement-type seismograph can be used to study long period ground motion. After proper correction procedures the usable period can be up to 10 sec. The processing procedures are showed in the paper.
    (2) The digital broad-band seismographs used by seismologists have high quality long period characteristics and the records are suitable for studying long period ground motions. We find that the noise level of the record is very low. Even in weak ground motion condition the digital broad-band record has high signal-to-noise ratio when the period is as long as 20 sec. The signal-to-noise ratio of the velocity-type records is lower than that of the acceleration-type records. From the velocity-type records and the acceleration-type records in one station the same ground motions can be recovered,and the calculated response spectra are the same in a specific period range. This indirectly proves the reliability of the two types of records. When in the weak ground motion condition,the velocity-type digital broad-band records are more suitable fo
引文
Abrahamson N. A. and Silva W. J., 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes. Seism. Res. Lett., 68(1): 94~109
    Abrahamson N. A. and Somerville P. G., 1996. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bull Seism. Soc. Am., 86(1B): S93~S99
    Aguilar Z., Iemura H., Igarashi A., Yasuda M., 2000. Observation and synthesis of long
    period earthquake ground motions at the Akashi Kaikyo Bridge constrcution site. Proc. of 12th World Conference on Earthquake Engineering, Paper No. 1359
    Aki K. and Richards P. G., 1980. Quantitative seismology, theory and methods, Volume I, II. W. H. Freeman and Company, San Francisco, pp932
    Atkinson G. M. and Boore D. M., 1995. Ground-motion relations for Eastern North America. Bull. Seism. Soc. Am., 85(1):17~30
    Atkinson G. M. and Silva W., 2000. Stochastic modeling of California ground motions. Bull. Seism. Soc. Am., 90(2):255~274
    Atkinson G. M., 2001. An alternative to stochastic ground-motion relations for use in seismic hazard analysis in Eastern North America. Seism. Res. Lett., 72(2):299~306
    B(?)th M., 1981. Earthquake magnitude--Recent research and current trends. Earth-Science Review, 17:315~398
    Boore D. M. and Atkinson G. M., 1987. Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in eastern North America. Bull. Seism. Soc. Am., 77(2):440~467
    Boore D. M., 2001. Effect of Baseline Corrections on Displacements and Response Spectra for Several Recordings of the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seism. Soc. Am.,91(5):1199~1211
    Boore D. M., Joyner W. B., and Fumal T. E., 1997. Equations for estimating horizontal response spectra and peak acceleration from western north American earthquakes: a summary of recent work. Seism. Res. Lett., 68(1): 128~153
    Brune J. N., 1970. Tectonic stress and spectra of seismic shear waves, J. Geophys. Res., 75, 4997~5009
    
    
    BSSC, 1994. NEHRP recommended provisions for seismic regulations for new buildings, Part 1—Provisions, FEMA222A, Federal Emergency Management Agency, 290pp
    Chandra U., 1979. Attenuation of intensities in the United States. Bull. Seism. Soc. Am., 69(6):2003~2024
    Chiu H-C, 1997. Stable baseline correction of digital strong-motion data. Bull. Seism. Soc. Am., 87(4):932~944
    Compbell K. W., 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudoabsolute acceleration response spectra. Seism. Res. Lett., 68(1):154~179
    Duda S. J., 1978. Physical significance of the earthquake magnitude: the present state of interpretation of the concept. Tectonophysics, 49(3/4):119~130
    Ekstr(?)n G., Dziewonski A. M. and Woodhouse J. H., 1987. Centroid-moment tensor solution for the 51 IASPEI selected earthquakes, 1980-1984. Phys. Earth Planet. Inter., 47, 62~66
    Fumal, T. E. and Tinsley J. C., 1985. Mapping shear wave velocities of near furface geologic materials, in Evaluating Earthquake Hazards in the Los Angeles Region-An Earth-Science Perspective, J. E. Ziony (Editor), U. S. Geol. Surv. Profess. Pap. 1360, 101~126
    Gutenberg B. and Richter C. F., 1956. Earthquake magnitude, intensity, energy, and acceleration. Bull. Seism. Soc. Am., 46(2):105~145
    Gutenberg B., 1945a. Amplitude of surface waves and magnitudes of shallow earthquakes. Bull. Seism. Soc. Am., 35, 3~12
    Gutenberg B., 1945b. Magnitude definition for deep-focus earthquakes. Bull. Seism. Soc. Am., 35, 57~69
    Hanks T. C. and Kanamori H., 1979. A moment magnitude scale. J. Geophys. Res., 84(B5):2348~2350
    Hu Y. X., 2001. Strengthen the link between engineering and seismology. Earthquake Engineering Frontiers in the New Millennium, Spencer & Hu (eds), 103~108
    Hu Y. X., Yu Y. X., 2000a. A combine approach of evaluation of long-period design spectrum. Proceedings of 12th World Conference on Earthquake Engineering, Jan. 30 - Feb. 4, Auckland, New Zealand, Paper No.0680.
    Hu Y. X., Yu Y. X., 2000. A seismological-engineering approach to the estimation of wide response spectrum for distant earthquake. Advances in Structural Dynamics, Vol.1, J. M. Ko and Y. L. Xu (Eds.), Elsevier Science Ltd. Proceedings of the International Conference on Advances in Structural Dynamics, 13-15 December 2000, Hong Kong, China, 193~200
    
    
    Iwan W. D., Moser M. A., Peng C. Y., 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph. Bull. Seism. Soc. Am., 75, 1225~1246
    Jennings C. W., 1977. Geological map of California (1:750,000). California Department of Conservation, Division of Mines and Geology, Sacramento, California
    Kanamori H., 1977. The energy release in great earthquakes, J. Geophys. Res., 82(20):2981~2987
    Karnik V., Kondorskaya N. V., et al., 1962. Standardization of the earthquake magnitude scale. Studia Geoph. et Geod., 6, 41~47
    Katayama T., Shino I., 1984. An engineering study of long-period strong motion using displacement seismograph records. Proceedings of the Eighth World Conference on Earthquake Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Vol. II, 289~296
    Lam N., Wilson J., Chandler A. and Hutchinson G., 2000a. Response spectral relationships for rock sites derived from the component attenuation model. Earthquake Engng. Struct. Dyn., 29:1457~1489
    Lam N., Wilson J., Chandler A. and Hutchinson G., 2000b. Response spectrum modelling for rock sites in Iow and moderate seismicity regions combining velocity, displacement and acceleration predictions. Earthquake Engng. Struct. Dyn., 29:1491~1525
    Nuttli O. W., 1973. Seismic wave attenuation and magnitude relations of Eastern North America. J. Geophys. Res., 78:876~885
    Park S. and Elrick S., 1998. Predictions of shear-wave velocities in southern California using surface geology. Bull. Seism. Soc. Am., 88, 677~685
    Richter C. F., 1935. An instrumental earthquake magnitude scale. Bull. Seism. Soc. Am., 25, 1~32
    Sadigh K., Chang C.-Y., Egan J. A., Makdisi F. and Youngs R. R., 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seism. Res. Lett., 68(1):180~189
    Sato T., Graves R. W., Somerville P. G., 1999. Three-dimensional finite-difference simulations of long-period strong motions in the Tokyo Metropolitan area during the
    
    
    1990 Odawara earthquake (M_J5.1) and the great 1923 Kanto earthquake (M_s 8.2) in Japan. Bull. Seism. Soc. Am., 89(3):579~607
    Takeo M., Kanamori H., 1992. Simulation of long-period ground motions for the 1923 Kanto earthquake (M≈8). Bulletin of the Earthquake Research Institute, University of Tokyo, 67, 389~436
    Takeo M., Kanamori H., 1997. Simulation of long-period ground motion near a large earthquake. Bull. Seism. Soc. Am., 87(1): 140~156
    Tamura K, Sasaki Y., Aizawa K, 1990. Attenuation characteristics of ground motions in the period of 2 to 20 seconds. Proceedings of Fourth U.S. National Conference on Earthquake Engineering, May 20-24, 1990, Palm Springs, California
    Trifunac M. D., 1993. Long period Fourier amplitude spectra of strong motion acceleration. Soil Dynam. Earthq. Engng., 12, 363~382
    Trifunac M. D., 1995. Pseudo relative velocity spectra of earthquake ground motion at long period. Soil Dynam. Earthq. Engng., 14, 331~346
    Trifunac M. D., Lee V. W., 1974. A note on the accuracy of computed ground displacements from strong-motion accelerograms. Bull. Seism. Soc. Am., 64, 1209~1219
    Trifunac M. D., Todorovska M. I., 2001. Evolution of accelerographs, data processing, strong motion arrays and amplitude and spatial resolution in recording strong earthquake motion. Soil Dynam. Earthq. Engng., 21(6), 537~555
    Trifunac M. D., Udwadia, F. E. and Brady, A. G., 1973. Analysis of errors in digitized strongmotion accelerograms. Bull. Seism. Soc. Am., 63, 157~187
    Wald D. J., Graves R. W., 1998. The seismic response of the Los Angeles basin, California. Bull. Seism. Soc. Am., 88(2):337~356
    Wang S. Y., Yu Y. X., Gao A. J., Yan X. J., 2000. Development of attenuation relations for ground motion in China. J. Earthquake Prediction Res., 8:32~20
    Wills C. J., Peterson M., Bryant W. A., Reichle M., Saucedo G. J., Tan S., Taylor G., and
    Treiman J., 2000. A Site-Conditions Map for California Based on Geology and Shear-Wave Velocity. Bull. Seism. Soc. Am., 90, S187~S208
    Wyss M. and J. N. Brune, 1968. Seismic moment, stress, and source dimensions for earthquakes in the Califomia-Nevada region, J. Geophys. Res., 73:4681~4694
    Xiang Z. F. and Li Y. M., 2000. Statistical characteristics of long period response spectra of earhtquake ground motion. 12th World Conference on Earthquake Engineering, Paper No. 0745
    
    
    Yu Y. X., Hu Y. X., 2001. A combine method to establish attenuation relation of long-period response spectrum. in Earthquake Engineering Frontiers in the New Millennium, Edited by B. F. Spencer, Jr and Y.X. Hu, A. A. Balkema Publishers, 177~182
    Zama S., 1996. Regionality of long-period ground motion using JMA strong motion displacement records. Eleventh World Conference on Earthquake Engineering, Paper No. 1891
    Zama S., 2000. Characteristics of long-period strong ground motions due to earthquakes in the eastern margin of the Japan Sea. 12th World Conference on Earthquake Engineering, Paper No. 1987
    陈达生、刘汉兴,1989.地震烈度椭圆衰减关系.华北地震科学,7(3):31~42
    陈培善,1981.国际上测定地震震级的现状.地震地磁观测与研究,2(3):12~16
    陈培善、白彤霞,1991.震源参数之间的定量关系.地震学报,13(4):401~411
    陈培善、成瑾,1998.中国地震基本台网测定面波震级的偏差.国际地震动态,7:6~8
    陈培善、李保昆、白彤霞,1998.根据构造环境应力场预测峰值水平加速度.地球物理学报,41(4):502~517
    崔鸿超,1997.高层建筑钢结构在我国的发展.建筑结构学报,18(2):60~71
    大崎顺彦,1980.地震动的谱分析入门.吕敏申、谢礼立译,地震出版社,283pp
    傅淑芳、刘宝诚、李文艺编,1984.地震学教程,上册.地震出版社,332pp
    冈本舜三,1980.地震工程学.国立台湾大学工学院地震工程研究中心编译,台北:科技图书股份有限公司,pp561
    葛焕称,1982.震级的标度.地震地磁观测与研究,3(3):34~39
    葛焕称,1997.震级概念和测量方法的历史演变.中国地震学研究进展,141~151,地震出版社,北京
    郭履灿,1982.论震级问题的现状和改进震级测定的途径和措施.地震地磁观测与研究,3(3):20~24
    郭明珠、毛志清、魏秀丽等,2002.伽师强震群地震动特点与震源机制关系的研究.地震工程与工程振动,22(1):28~31
    国家地震局科技监测司,1987.中国地震台志,第一卷,第一分册.北京:地震出版社,345
    国家地震局震害防御司,1990.地震工作手册.地震出版社,633pp
    国家质量技术监督局国家标准统一宣贯教材,1999.GB17740—1999《地震震级的规定》宣贯教材.北京:中国标准出版社,57pp
    
    
    胡聿贤,1988.地震工程学,北京:地震出版社,692pp
    胡聿贤、张敏政,1984.缺乏强震观测资料地区地震动参数的估算方法.地震工程与工程振动,4(1):1~11
    胡聿贤、周克森、阎秀杰,1996.缺乏地震动加速度记录地区地震动估计的映射法.地震工程与工程振动,16(3):1~10
    胡聿贤主编,1999.地震安全性评价技术教程.北京:地震出版社,387pp
    霍俊荣,1989.近场强地面运动衰减规律的研究.国家地震局工程力学研究所博士学位论文,298pp
    李鸿吉,1992.用FFT和现代控制论方法恢复地面位移.地球物理学报,35(1):37~43
    吕红山,1995.反应谱的标定及其长周期外延.国家地震局地球物理研究所硕士学位论文,58pp
    单新建、何玉梅、朱燕、马宝柱、张桂芳、杨成荣,2002.伽师强震群震源破裂特征的初步分析.地球物理学报,45(3):416~425
    滕台鸿、任道容、潘华,1995.强震流动观测台网的建设.地球与空间科学观测技术进展,100~104,地震出版社,北京
    汪素云、时振梁,1993.有感半径与震级的关系及其应用.中国地震区划文集,北京:地震出版社,179~184
    汪素云、俞言祥、高阿甲、阎秀杰,2000.中国分区地震动衰减关系的确定.中国地震,16(2):99~106
    王国权,2000.921 台湾集集地震近断层地面运动特征.中国地震局地质研究所博士学位论文,190pp
    吴忠良、陈运泰、牟其铎,1994.核爆炸地震学概要.北京:地震出版社.140pp
    谢礼立、胡成祥,1983.强震记录的采样与插值研究.西北地震学报,5(2):61-65
    谢礼立、李沙白、钱渠炕、胡成祥、周雍年,1984.强震加速度记录的常规处理和分析方法.地震学报,6(3):341~351
    谢礼立、钱渠炕、李沙白,1982.数字化噪声对强震记录的影响及其消除方法.地震学报,4(4):412~420
    谢礼立、周雍年、胡成祥,于海英,1990.地震动反应谱的长周期特性.地震工程与工程振动,10(1):1~20
    徐果明、周蕙兰编著,1982.地震学原理.科学出版社,445pp
    徐士良,1992.FORTRAN常用算法程序集,北京:清华大学出版社.433pp
    
    
    许绍燮、Duda S. J., 武宦英,1988.根据西德G(?)ttingen地震台仪器记录编制的中国地震目录—对中国地震目录中1903年以来M≥7地震参数的核对.地震学报,10(3):257~269
    许忠淮、汪素云、高阿甲、郭瑛,1994.我国部分早期震源机制解答的重新测定.地震地磁观测与研究,15(5):1~9
    阎秀杰、赵凤新,1998.采用映射法转换我国地震动衰减关系.中国地震区划学术讨论会文集,地震出版社,140~150
    俞言祥、高孟潭,2001.台湾集集地震近场地震动的上盘效应.地震学报,23(6):615~621.
    俞言祥、汪素云、吕红山,1997.利用513中强地震仪记录图计算长周期地震动反应谱.地震学报,19(3):268~274
    赵荣国,1981.1967—1978年期间《中国地震台网观测报告》的震级测定问题.地震地磁观测与研究,2(3):49~54
    赵荣国、李卫平,1997.现今震级测定偏差.国际地震动态,12:1~8
    中国科学院地球物理研究所,1975.地震仪器概论.北京:科学出版社.302pp
    中华人民共和国国家标准,GB17740—1999,地震震级的规定,1999.中国标准出版社,北京
    中华人民共和国国家标准,GB50011—2001,建筑抗震设计规范,2001.中国建筑工作出版社,北京,327pp
    周公威、赖德伦、姚立平,1995.中国数字地震台网(CDSN)及其二期技术改造.见:陈运泰(主编),地球与空间科学观测技术进展.北京:地震出版社.68~73
    周公威等,1990.中国数字地震台网文集.北京:学术书刊出版社
    周克森,2002.地震动衰减关系的全对称变换.新世纪地震工程与防震减灾,王椿鏞、齐霄斋主编,地震出版社,北京,671~682
    周仕勇,1999.1997年伽师强震群研究及其生成机理的探索.中国地震局地球物理研究所博士学位论文
    周锡元、王国权、徐国栋,2002.台湾921集集地震近场地面运动研究.新世纪地震工程与防震减灾,王椿铺、齐霄斋主编,地震出版社,北京,81~104
    周雍年、章文波、于海英,1997.数字强震仪记录的长周期误差分析.地震工程与工程振动,17(2):1~9
    朱令人、苏乃秦、杨马陵,1998.1997年新疆伽师强震群及三次成功的临震预报.中国地震,14(2):101~115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700