用户名: 密码: 验证码:
中国大陆上地幔顶部体波速度层析成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在详细分析研究了上地幔顶部折射波层析成像技术的理论和方法及其发展历程的基础上,搜集了中国大陆及邻区的Pn和Sn到时资料,利用层析成像技术,重建了中国大陆上地幔顶部的P波和S波速度横向变化图像,并反演出P波波速的各向异性分布。
     1、用91138条Pn射线的走时反演出中国大陆上地幔顶部的P波速度横向变化和各向异性分布。求得平均Pn速度为8.05km/s,速度变化从-0.29km/s(3.6%)至+0.31km/s(3.9%)。整体上中国东西部存在明显差异,西部地区速度变化以高速异常为主:① 高速异常区主要是沿青藏高原隆起区的周边分布,特别是准噶尔盆地、塔里木盆地、柴达木盆地及四川盆地都呈明显的高速,均超过8.2km/s;② 青藏高原隆起区的中部,显示出速度的低异常带;③ 位于青藏高原东南缘的川滇西部地区速度呈现低异常。
     东部地区速度变化以低速异常为主:① 整个华北和东北地区,都呈现Pn低速异常,特别是华北盆地区、渤海湾和山西地堑低速异常非常明显,最小低于7.8km/s;② 华南地区整体上在平均值上下,在珠江口地区、广西中部地区、庐山地区波速略微偏低,在长江以南,珠江以北地区中部波速略微偏高。
     如果不考虑Pn波速度的各向异性变化,波速横向变化的整体趋势和考虑各向异性时接近,但Pn波速度与地质构造吻合得没有考虑各向异性时好。
     中国东部的波速各向异性相对要弱于西部。整体上有三处各向异性较强,同时射线较密、范围较大,即结果相对可靠的区域:① 塔里木盆地中西部地区,快波速方向呈北西方向;② 川西藏东地区,快波速方向为北西西方向;③ 鄂尔多斯地台快波方向为东西方向。
     用检测板方法进行反演结果的分辨率测试,结果表明,大部分地区对速度空间变化的分辨能够达到3°×3°,各向异性分辨能够达到4°×4°,边缘地区分辨一般较差。
     2、用了43646条Sn射线反演得到中国大陆上地幔顶部S波速度横向变化。求得全区Sn平均速度为4.55km/s,速度变化从-0.14km/s(-3.1%)到+0.15km/s(3.3%)。整体上中国Sn速度分布是东低西高。在中国西部,构造上相对稳定的塔里木盆地、准噶尔盆地和吐鲁番—哈密盆地,以及柴达木盆地东端、四川盆地及其南部地区,台湾海峡等是明显的高Sn速度区,鄂尔多斯地台也偏高。在中国东部,山西北部、华北盆地,渤海湾东部、郯庐断裂郯城段周围、台湾及其东部海区、等是明显的低Sn速度区,同时川滇西部、庐山地区和青藏高原北部Sn速度也偏低。用检测板测试来检验解的分辨率,结果表明在大部分地区分辨率可达4°×4°,在新疆和四川盆地射线密集区可达3°×3°。对比Pn波速度和Sn波速度就得到波速比或泊松比的空间变化。
    
     中国大陆上地慢顶部体波速度层析成像
     3、将Pn波速度和Sn波速度横向变化与地质构造对比发现,地震波速高的
     地区往往是构造上比较稳定的古老盆地、地台等,而地震波速低的地区是在构造
     上比较活动的张性盆地,火山活动区和岩浆岩分布区。同时地震波速厂与地壳
     厚度H呈明显的线性正相关关系,与大地热流呈负相关关系,并得到三者的线
     性回归方程,回归系数D V/DH换算成b V/OP?是压强)后,与上地慢岩石的
     高温高压实验结果基本一致。
    ’4、在塔里木盆地、川西藏东地区、鄂尔多斯地台、柴达木盆地东端及其它
     ’
     几个各向异性较强的地区,Pn快波速的方向与最大主压应力方向有着较好的一
     致性,同时与GPS测量的地壳运动速率方向也基本上一致。
     另外,在 Heam TM.提供程序的基础上,对其算法进行了一点改进,将地震
     延迟按慢度网格进行归类,考虑到许多地震以成群的方式出现,有很多集中分布
     在某网格内的地震实际上具有相同的时间延迟,因此本文对每个慢度网格只用一
     个地震延迟,这样就减少了许多未知数,从而提高了计算的稳定性、精度和效率。
     同时详细分析研究了 Yao Z石等 (199)给出的用 LSQR算法作层析成像反演时
     解的分辨矩阵的求法,作为算法的应用试验,本文并将其用到Pn波实际反演中,
     得到迭代500次后分辨矩阵对角线元素的空间分布。分辨矩阵对角线元素的大小
     和射线的疏密呈正相关关系。
In this paper the author studies the theory and method of refraction tomography at uppermost mantle. The images of P- and S-wave velocity lateral variation are rebuilded at uppermost mantle beneath China continent, and anisotropy of P-wave velocities are obtained on the basis of Pn and Sn travel time data in China and adjacent area by tomography technique.
    1 , Travel times of 91138 Pn arrivals recorded from China and adjacent regional earthquakes are inverted in a tomographic study to map the lateral variations and anisotropy of Pn velocity of the uppermost mantle. Average P-wave velocity 8.05km/s is got and velocities vary from -0.29km/s(3.6%) to +0.31km/s(3.9%). On the whole, the velocities are different in eastern and western China. In the west, high velocities are predominant. (1) Abnormal high velocities mainly exist around Qingzang plateau, especially in Junggar, Tarim, Qaidam and Sichuan basin, velocities there are higher than 8.2 km/s. (2) Low velocities only exist in the middle of Qingzang plateau and western part of Sichuan and Yunnan region.
    In eastern China, low velocities are predominant. (1) The whole North-China and most northeastern China have low velocities, especially in North-China basin, Bohai bay and Shanxi rift valley, the velocities are abnormally low. The lowest velocity reaches 7.8km/s. (2) In southern China, the velocities are near average value. A little low velocities exist in the regions such as Zhujiangkou, middle of Guangxi, Lushan and so on. A little high velocities exist in the middle region lied to the south of Yangzi river and to the north of Zhujiang river. When the anisotropy is not taken into account, the obtained image almost has the same variation pattern with that when anisotropy is considered. But Pn velocities are not well consistent with geology for the former than the later.
    Pn anisotropy is less remarkable in eastern China than western China. In general, there are three large regions, where anisotropy is significant. In these region rays are dense, so anisotropy are credible. (1) In Tarim basin, the direction of faster velocity is oriented NW-SE. (2) In the east of Qingzang plateau and west of Sichuan basin, the direction of faster velocity is oriented NWW-SEE, (3) In erdos terra, the direction of faster velocity is oriented E-W.
    The resolution of Pn image eastmated by use of Checkerboard method indicates: velocity resolution reaches 3O X 3O, anisotropy resolution reaches 4O X 4O in most regions, the resolution is low in marginal region.
    2, The image of Sn-wave velocity lateral variation is reconstructed in China
    
    
    continent by tomography method using 43646 Sn rays. The average Sn velocity is 4.55km/s. the velocity perturbations vary from -0.14 km/s (-3.1%) to +0.15 km/s (3.3%). In gerneral, Sn velocities are higher in western China than in eastern China. In the west, there are some obvious high velocity regions, such as tectonically stabe Tarim, Junggar, Turpan, Hami basin and east of Qaidam basin, Sichuan basin and to its south, Taiwan Strait and so on. High velocities also exist in Erdos. In eastern China, low velocities exist in northern Shanxi, North-China basin, to the east of Bohai Bay, northern Tan-Lu fault, Taiwan and its east. In addition, the low velocities lie in western part of Sichuan and Yunnan, Lushan and northern Qingzang Plateau. The resolution of Sn velocity by Checkerboard test is 4O X 4O in most regions,and 3O X 3O in dense ray regions, such as Xinjiang and Sichuan basin. The velocity ratio or Poisson ratio variaton can be obtained by comparing Pn and Sn velocities.
    3 , In comparing Pn and Sn velocity variation with geology, we will find that high velocity regions always exist in old stable basin and terra, but low velocity regions lie in active extensional basin, volcano area and magmatic rock regions. Velocity variation is positively correlated with crust thickness and negatively correlated with Earth's heatflow. The linear regression equation of velocity, crust thichness and heatflow is obtained. The regression coefficient dV/
引文
Anderson D.L., 1989. Theory of the Earth. Black well Scientific Publications, Boston.
    Babuska V., 1981. Elastic anisotropy of rock-froming minerals. J. Geophys., 50(1),1-6.
    Babuska V., 1984. P-wave velocity anisotropy in crystalline rocks. Geophys. J. R. astr Soc., 76, 113-119.
    Backus G.E., 1965. Possible forms of seismic anisotropy of the uppermost mantle under oceans, J. Geophys. Res., 70, 3429-3439.
    Bamford D., 1973. Refraction data in western Germany-A time term interpretation. Z.Geophys., 39, 907-927.
    Bamford D., 1976. MOZAIC time-term analysis, Geophys. J.R. astr. Soc., 44, 433,
    Bamford D., 1977. Pn velocity anisotropy in a continental upper mantle, Geophys. J.R. astron. Soc., 49, 29-48.
    Bamford D., M. Jentsch, C.Prodehl, 1979. Pn anisotropy studies in northern Britain and the eastern and western United States, Geophys. J. R. Astron. Soc., 57, 397-429.
    Bannister S.C., Ruud B.O., Husebye E.S., 1991. Tomographic estimates of sub-Moho seismic velocities in Fennoscandia and structural implications. Tectonophys., 189,37-53.
    Barazangi M., James Ni., 1982. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan plateau: Possible evidence for underthrusting of Indian continental lithosphere beneath Tibet, Geology, 10,179-185.
    Beghoul N., M. Barazangi, 1989. Mapping high Pn velocity beneath the Colorado Plateau constrains uplift models, J. Geophys. Res., 94, 7083-7104.
    Beghoul N., M. Barazangi, 1990. Azimuthal anisotropy of velocity in the mantle lid beneath the Basin and Range province, Nature, 348, 536-538,
    Beghoul N., M. Barazangi, 1995. Comment on "Lateral variations and azimuthal isotropy of Pn velocities beneath Basin and Range Province" by Lian-she Zhao, J. Geophys. Res., 100, 12459-12461.
    Black P.R., L.W. Braile, 1982. Pn velocity and cooling of the continental lithosphere,J. Geophys. Res., 87, 10557-10568.
    Cattaneo M., Eva C., Merlanti F., 1985. Crustal inhomogeneities in Northwest Italy as inferred by Pn-wave time residuals. Tectonophys., 118, 143-158.
    Cermak V., 1989. Crustal heat production and mantle heat flow in Central and Eastern Europe. Tectonophys., 159, 195-215.
    
    
    Chastel Y., Dawson P., Wenk H. et al., 1993. Anisotropic convection with implications for the upper mantle. J. Geophys. Res., 98, 17757-17771.
    Christensen N.I., 1974. Compressional wave velocity in possible mantle rocks to pressures of 30 kilobars. J. Geophys. Res., 79, 407-412.
    Christensen N.I., 1979. Compressional wave velocity in rocks at high temperature and pressure: Critical thermal gradients and crustal low-velocity zone. J. Geophys. Res., 84, 6849-6857.
    Christensen N.I., 1984. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectomites, Geophys. J. R.Astron. Soc., 76, 89-111.
    Christensen N.I., Moony W.D., 1995. Seismic velocity structure and composition of the continental crust-A global view. J. Geophys. Res., 100(B7), 9761-9788.
    Eberhart-Philips D., 1986. Three-dimensional velocity structure in north California Coast Ranges from inversion of local earthquakes arrival times. Bull. Seismol.Soc. Am. 76, 1025-1052.
    Efron B., 1979. Bootstrap methods, another look at the jackknife. Ann. Stat., 7, 1-26.
    Efron B., Tibshirani R., 1986. Bootstrap methods for standard errors, confidence intervals, and another measurements of statistical accuracy. Stat. Sci., 1, 54-77.
    Enderle U., J. Mechie, S. Sobolev et.al., 1996. Seismic anisotropy within the uppermost mantle of southern Germany, Geophys. J. Int., 125, 747-767.
    Fuchs K., 1977. Seismic anisotropy of the subcrustal lithosphere as evidence for dynamical processes in the upper mantle. Geophys. J. R. Astron. Soc., 49,167-179.
    Goes S., Govers R., Vacher P., 2000. Shallow mantle temperatures under Europe from P and S wave tomography. J. Geophys. Res., 105(B5), 11153-11169.
    Golub G.H., Kanhan W., 1965. Calculating the singular values and pseudoinverse of a matrix. AIAM J. Numer. Anal., 2, 205-224.
    Hearn T.M., 1984. Pn travel times in Southern California. J. Geophys. Res., 89,1843-1855.
    Hearn, T.M., Clayton, R.W., 1986. Lateral velocity variations in southern California, Ⅱ. Results for the lower crust from Pn waves, Bull. Seisin. Soc. Am., 76, 511-520.
    Hearn, T.M., N. Beghoul, M. Barazangi, 1991. Tomography of the western United States from regional arrival times, J Geophys. Res., 96, 16369-16381.
    Hearn T.M., Ni J., 1994. Pn velocities beneath continental collision zones, the Turkish-Iranian plateau. Geophys. J. Int., 117, 273-283.
    Hearn T M., 1996. Anisotropic Pn tomography in the western United States. J.Geophys. Res., 101(B4), 8403-8414.
    
    
    Hearn T M., 1999. Uppermost mantle velocities and anisotropy beneath Europe. J.Geophys. Res., 104(B7), 15123-15139.
    Hess, H.H., 1964. Seismic anisotropy of the uppermost mantle under oceans, Nature,203,629-631.
    Humphreys E., Clayton R.W., 1988. Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res., 93, 1073-1085.
    Jackson I., Rigden S.M., 1998. Composition and temperature of the earth's mantle,Seismological models interpreted through experimental studies of earth materials. In Jackson I.(ed.), The earth's mantle, composition, structure and evolution, pp.405-460, Cambridge univ. press, New York.
    Jonathan M L, Robert S C., 1989. Tomographic inversion for three-dimensional velocity structure at mount St. Helens using earthquake data. J. Geophys. Res.,94(B5), 5716-5728.
    Jones, C.H., H. Kanamori, S.W. Roecker, 1990. The missing root, Teleseismic and regional Pn arrivals observed in the southern Sierra Nevada, California (abstract),Eos Trans. AGU, 71, 1558.
    Jones, C.H., H. Kanamori, S.W. Roecker, 1994. Missing roots and mantle "drips",Regional Pn and teleseismic arrival times in the southern Sierra Nevada and vicinity, California, J. Geophys. Res., 99, 4567-4601.
    Karato, S-I., 1989. Seismic anisotropy, Mechanisms and tectomic implications, in Rheology of solids and of the earth, edited by S. Karato and M. Toriumi, Oxford Sci., pp.393-422, New York.
    Kern H., 1982. P-and S-wave velocity in crustal and mantle rocks under the simulataneous action of high confining pressure and high temperature and the rock microstructure. In, Schreyer W. ed. High-pressure research in geosciences.Stultgart, E. Schreizerbart'sche Verlagsbuchhandlung, 15-45.
    Kern H., Tubia J.M., 1993. Pressure and temperature dependence of P-and S-wave velocities seismic anisotropy and denisity of sheared rocks from the Sierra Alpujata massif (Ronda peridotities, Southern Spain). Earth Planet. Sci. Lett. 119,191-205.
    Koch M., 1992. Bootstrap inversion for vertical and lateral variations of the S wave structure and the vp/vs-ratio from shallow earthquakes in the Rhinegraben seismic zone, Germany. Tectonophys., 210, 91-115.
    Koch M., 1993. Simultaneous inversion of 3D crustal structure and hypocentres including direct, refracted and reflected phases-Application to the souther Rhine Graben, Germany. Geophys. J. Int., 112, 429-447.
    
    
    Lanczos C., 1995. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. ,l..Res. N.B.S., 45, 255-282.
    Levshin A.L., Ritzwoller M.H. Barmin M.P. et al., 2001. New constraints on the arctic crust and uppermost mantle, surface wave group velocities, Ph, and Sn. Phys.Earth Planet. Int., 123, 185-204.
    Li Songlin, Mooney W.D., 1998. Crustal structure of China from deep seismic sounding profiles. Tectonophysics, 288:105-113.
    Makeyava L I, Vinnik L P, Roecker S W., 1992. Shear-wave splitting and small convection in the continental upper mantle. Nature, 358(9): 144-145.
    Manghnani N.H., Ramananantoandro R., Clark S.P., 1974. Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar. ,J. Geophys.Res., 79, 5427-5446.
    Matsushima S., Akeni K., 1977. Elastic wave velocities in the ichinome-gata ultranafic nodules: composition of the upper mantle. In: High-pressure research:Application in geophysics. Edited by Murli H. Manghnani and Syun-iti Akimoto.Academic Press, New York.
    McNamara D.E., T. Owens, G. Silver et.al., 1994. Shear wave anisotropy beneath the Tibetan Plateau, J. Geophys. Res., 99, 13655-13665.
    McNamara D.E., Walter W.R., Owens T.J. et al., 1997. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomograpy. J. Geophys. Res., 102(B1), 493-505.
    Mckenzie D., 1979. Finite deformation during fluid flow. Geophys. J. R. Astron. Soc., 58,689-715.
    Mele G., A. Rovelli, D. Seber et.al., 1996. Lateral variations of Pn propagation in Italy, Evidence for a high-attenuation zone beneath the Apennines, Geophys. Res. Lett.,23,709-712.
    Mele G, Rovelli A, Seber D, et al., 1998. Compressional velocity structure and anisotropy in the uppermost mantle beneath Italy and surrounding regions, J. Geophys. Res., 103(B6), 12529-12543.
    Menke W., 1984. Geophysical data analysis, discrete inverse theory. Academic press, San Diego.
    Nicolas A., Boudier F., Boullier A.M., 1973. Mechanisms of flow in naturally and experimentally deformaed peridotites. Am. J. Sci., 273,853-876.
    Nicolas A., Christensen N.I., 1987. Formation of anisotropy in upper mantle peridotites, A review, in composition, structure and dynamics of the lithosphere-athenosphere system, Geodyn. Ser. Vol.16, edited by K. Fuchs and C.Froidevaux, pp. 111-123, AGU, Washington D.C.
    
    
    Nolet G.(Ed.), 1987. Seismic tomography with applications in global seismology and exploration geophysics. Nethefiand: D. Reidel publishing company
    Nolet G., 1993. Solving large linearized tomographic problems, in seismic tomography, Theory and practice. 248-264. ed. Iyer H.M., Hirahara K. Chapman,Hall. London.
    Nolet G., Ziehuis A., 1994. Low S velocities under the Tornquist-Teisseyre zone,evidence for water injection into the transition zone by subduction, J. Geophys.Res., 99, 15813-15820.
    Nolet G., Coutlee C., Clouser R., 1998. Sn velocities in western and eastern North America. Geophys. Res. Lett., 25(10), 1557-1560.
    O'Leary D.P., Simmons J.A., 1981. A bidiagonalization regularizatin procedure for large scale discretizations of ill-posed problems, SIAM J. Sci. Stat. Comp., 2,474-489.
    Paige C.C., 1971. The computation of eigen values and eigen vectors of very large sparse matrices, PhD thesis, London University.
    Paige C C, Saunders M A., 1982a. LSQR, An algorithm for sparse linear equations and sparse linear system. ACM Trans. Math. Software, 8, 43-71.
    Paige C.C., Saunders M.A., 1982b. LSQR, sparse linear equations and least squares problems. ACM Trans. Math. Software, 8, 195-209.
    Parolai, S., D. Spallarossa, C. Eva, 1997. Lateral variations of Pn wave velocity in northwestern Italy, J. Geophys. Res., 102, 8369-8379.
    Raitt R.W., 1963. Seismic refraction studies of the Mendocino fracture zone,MPL-U-23/63, Marine Physical Lab., Scripps Institution of Oceanography,University of California, San Diego.
    Raitt, R.W., G.G. Shor, T.J.G Francis, 1969. Anisotropy of the Pacific upper mantle, J.Geophys. Res., 74, 3095-3109.
    Raitt, R.W., G.G. Shor, G.B. Morris, 1971. Mantle anisotropy in the Pacific Ocean,Tectonophys., 12, 173-186.
    Ribe N.M., Yu Y., 1991. A theory of the evolution of orientation textures in deformaed olivine polycrystals,J. Geophys. Res., 96, 8325-8335.
    Ribe N.M., 1992. On the relation between seismic anisotropy and finite strain. J.Geophys. Res., 97, 8737-8747.
    Ritzwoller M.H., Barmin M.P., Villasenor A. et al., 2002. Pn and Sn tomography across Eurasia to improve regional seismic event locations.(in press)
    Sawamoto H., Weidner D.J., Sasaki S. et.al., 1984. Single-crystal elastic properties of the modified spinel phase of magnesium orthosilicata. Science, 224, 749-751.
    Scheidegger A.E., Willmore P.L., 1957. The use of least squares method for the interpretation ot data from seismic surveys. Gieophys., 22, 9-22.
    
    
    Shor G., Pollard D., 1964. Mohole site selection studies north of Maui,J. Geophys.Res., 69, 1627-1638.
    Song L. P., Koch M., Koch K. et al., 2001. Isotropic and anisotropic Pn velocity inversion of regional earthquake traveltimes underneath Germany. Geophys. J.Int., 146, 795-800.
    Spakman W., Nolet G., 1988. Imaging algorithms, accuracy and resolution in delay time tomography. In, Vlaar N.J. et al. (Eds.), Mathematical geophysics, a survey of recent developments in seismology and geodynamics. Reidel, Dordrecht, pp.155-188.
    Vetter U., J.B. Minster, 1981. Pn velocity anisotropy in southern Califormia, Bull.Seismol. Soc. Am., 71, 1511-1530.
    Vinnik L.P., L.I. Makeyeva, A. Milev, et.al.,1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle, Geophys. J. Int., 111,433-447.
    Willmore P.L., Bancroft A.M., 1960. The time term approach to refraction seismology.Geophys. J. R. Astron. Soc., 3,419-432.
    Yao Z.S., Roberts R,G., Tryggvason A., 1999. Calculating resolution and covariance matrices for seismic tomography with the LSQR method. Geophys. J. Int., 138,886-894.
    Ye Hong, Shedlock K.M., Hellinger S.J. et al., 1985. The north China basin: an example of a Cenozoic rifted intraplate basin. Tectonics, 4(2): 153-169.
    Young D.M., 1971. Iterative solution of large linear systems. Academic, Sam Diego,Calif.
    Zervas, C.E., R.S. Crosson, 1986. Pn observation and interpretation in Washington,Bull. Seismol. Soc. Am., 76, 521-546.
    Zhao D., Hasegawa A., Horiuchi S., 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan.J. Geophys. Res., 97(B13),19909-19928.
    Zhao, L., 1993. Lateral variations and azimuthal isotropy of Pn velocities beneath Basin and Range province, J. Geophys. Res., 98, 22109-22122.
    曹克信,王周元,1991.甘肃东南地区的Pn波速度.地震地磁观测与研究.12(4),6-9
    陈天长,范军,曾健,1996.四川地区Sn波偏振.四川地震.4,85-90.
    狄秀玲,袁志祥,丁韫玉,1999.用折射波Sn走时反演渭河断陷及邻近地区的莫霍面速度.西北地震学报,21(2),178-182.
    丁志峰,1999.近震层析成像的理论及应用(博士学位论文),北京:中国地震局地球物理研究所.
    
    
    丁志峰,曾融生,吴大铭,1992.青藏高原的Pn波速度和Moho面的起伏.地震学报,14(增刊》592-599.
    胡圣标,何丽娟,汪集旸,2001.中国大陆地区大地热流数据汇编(第三版).地球物理学报,44(5):612-626.
    雷建设,2000.浅析中国地区体波走时层析成像研究进展.西北地震学报,22(4):471-475.
    雷建设,2002..中国及邻区地幔底部及其部分地区地壳上地幔三维速度结构的研究(博士学位论文).北京:中国科学技术大学.
    李强,刘瑞丰,杜安陆,等,1994.新疆及其毗邻地区地震层析成像.地球物理学报,37(3):311-320.
    吕宗文,1990.我国新生代火山活动特征及危险活动区的初步划定.见:火山研究与发展—1989年全国火山地震研讨会文集.北京:地震出版社.
    刘福田,曲克信,吴华,等,1989.中国大陆及其邻近地区的地震层析成像,地球物理学报,32(3):281-291.
    刘国栋,1994.中国大陆岩石圈结构与动力学,地球物理学报,37(增刊):65-81.
    刘嘉麒,1999.中国火山.北京:科学出版社.
    刘启元,陈九辉,李顺成,等,2000.新疆伽师强震群区三维地壳上地幔S波速度结构及其地震成因的探讨.地球物理学报,43(3):356-365.
    卢德源,李秋生,高锐,等,2000.横跨天山的人工爆炸地震剖面.科学通报,45(9):982-988
    马宗晋,陈鑫连,叶叔华,等,2001,中国大陆区现今地壳运动的GPS研究.科学通报,46(13):1118-1120.
    马杏垣,1987.中国岩石圈动力学纲要.北京:地质出版社.
    马杏垣主编,1989.中国岩石圈动力学地图集.北京:中国地图出版社.
    马杏垣主编,1991.中国岩石圈动力学概论.北京:地震出版社.
    裴顺平,许忠淮,汪素云,2002.新疆及邻区Pn速度层析成像.地球物理学报,45(2),218-225.
    滕吉文,曾融生,闫雅芬,等,2002.东亚大陆及周边海域Moho界面深度分布和基本构造格局.中国科学(D辑),32(2):89-100.
    汪素云,Hearn T.M.,许忠淮,等,2001.中国大陆上地幔顶部Pn速度结构.中国科学(D辑),31(6),449-454.
    汪集畅,1993.从我国大地热流分布看地壳、上地幔活动的不均匀性.中国地球场理学会年刊,北京:地震出版社.
    王良书,1990.下扬子江苏地区Pn残差与上地幔波速各向异性.地球物理学报,33,174-185.
    王良书,李成,薛革,等,2000.山东及邻区上地慢波速各向异性及地球动力学意义.地质科学,35,40-46.
    
    
    王琪,张培震,牛之俊,等,2001.中国大陆现今地壳运动和构造变形.中国科学(D辑),31(7):529-536.
    王社教,胡圣标,汪集畅,2000.准噶尔盆地热流及地温场特征.地球物理学报,43(6):771-779.
    胥颐,刘福田,刘建华,等,2000.中国大陆西北造山带及其毗邻盆地的地震层析成像.中国科学(D辑),30(2):113-122.
    胥颐,刘福田,刘建华,等,2001.中国西北大陆碰撞带的深部特征及其动力学意义.地球物理学报,44(1):40-47.
    薛广盈,冯锐,1990.利用首波重建基底速度图像,地震地质,12,141-148.
    许忠淮,徐国庆,吴少武,1999.东海地壳现代构造应力场及其成因探讨.地震学报,21(5):495-501.
    许忠淮,汪素云,高阿甲,2000.地震活动反映的青藏高原东北地壳现代构造运动特征.地震学报,22(5):472-481.
    许忠淮,2001.东亚地区现今构造应力图的编制.地震学报,23(5):492-501.
    汪素云,Heam T M,许忠淮,等,2001.中国大陆上地幔顶部Pn速度结构.中国科学(D辑),31(6):449-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700