用户名: 密码: 验证码:
骨形成蛋白脱钙骨基质颗粒骨水泥复合材料的评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:骨缺损修复是骨科临床常见并涉及多方面理论和技术的难题,不论是先天性还是外伤、感染、肿瘤等原因造成的骨缺损,还是老年或其他原因所致的骨萎缩,都将引起严重的功能障碍和外观畸形,对此,唯一可行的治疗方法是对其进行修复,以恢复骨骼的正常功能和矫正骨骼畸形。最早用骨移植进行骨缺损修复的手术是在1668年,当时一位荷兰医生在战争时期用狗的颅盖骨修复了一名战士的颅盖骨缺损,虽然术后发现患者的颅盖骨缺损愈合,但并没有给人们以很大的启示。1674年,荷兰医生Leeuwenkoek开始对骨的结构进行观察和描述,以此为基础,Duhamel和Heyde发现和认识到了骨生成的现象及其重要性,其后法国人Ollier在狗和兔子身上做实验观察到,如果在机体内得到适宜的环境,游离的自体骨仍然具有生长能力。真正的第一例临床自体骨移植术是1820年由德国医生Walther完成的,而第一例临床同种异体骨移植术是苏格兰人William Macewen与1880年完成的。由此人们认识到对于一些较大的骨缺损可以用某些骨材料进行修复,以此来弥补骨组织自身有限的再生修复能力。用骨移植来修复骨缺损真正的广泛开展始于二十世纪初期。1923年Albee发表了他总结的3000例自体骨移植术,1924年Lexer又报道了1000例手术,其中还报道了大量有关同种异体骨移植修复骨缺损的手术。虽然这期间开展了大量的此类手术,但结果成败参半,而对于骨移植如何促进骨缺损修复的机理仍缺乏明确的认识。
     早在1930年,Huggins报道了将膀胱粘膜植入肌肉中可以诱导生成新骨组织的结果,从而对异位成骨的概念有了初步的认识。真正对骨缺损修复和骨再生过程进行广泛深入研究的应当是美国的Marshall R.Urist教授。1952年,Urist将未分化的结缔组织细胞植入动物眼前房后诱导形成了新生骨组织,1965年,他又发现将动物的长骨皮质骨基质脱钙冻干后植入同种动物的肌肉内也可以诱导形成新生骨组织,从而建立了可靠的实验动物模型。这一模型的建立为揭示失去活性的脱钙骨基质在异位的宿主区诱导未分化间充质细胞分化并形成骨组织的本质提供了前提。为了进一步研究这一骨诱导现象,Lash等人参照Grobstein的方法将冻干脱钙骨基质装入扩散盒内,然后一起植入动物皮下组织或肌肉陷窝内,一定时间后发现在扩散盒的微孔滤膜外有新生骨组织沉积。扩散盒的引用排除了细胞间直接作用的可能,但仍不能解释这种骨诱导现象。1967年,Urist等人在成骨诱导广泛和深入研究的基础上,总结和回顾了以往所做的各种研究结果,提出了骨诱
    
     第四军医大学博士学位论文
     导物质(Bone Induction Pincghe,BIP)的新概念。
     BIP被人们初步证实后,Uist等人又经过了大量的研究以后,于1971年首次提出了
     骨形成蛋白(又称为骨形态发生蛋白,Bone Mdsenehc Prten,BMP)的概念,他认
     为BIP实质上就是BMP。这一概念的提出使研究范围大大缩小,从而更加明确了这一领
     .域的研究方向。在以后的十余年的时间里,Urist等人通过不懈的努力,她BMP进行了
     更加广泛深人的研究,并对其进行了分离和提纯。近年来的研究证明,BMP是一种高效
     的骨诱导物质,在促进骨缺损的修复过程中,其作用几乎与自体骨移植的效果相同,因
     此,它在骨缺损修复的实验研究和临床应用过程中占有极其重要的地位,为充分发挥它
     的诱导成骨的功能,目前研究的焦点是对其载体释放系统进行探索。
     本实验的目的是制备骨形成蛋白(BMP)脱钙骨基质颗粒(DBM)骨水泥(BC)复合
     材料,将DBM作为BWi的载体,用BC赋予材料可塑型性,对其进行综合评价,为临床应
     用和批量化生产提供方法和依据。
     方法:制备狗的异体脱钙骨基质颗粒(DBM),使其直径<2.0。,消毒备用。提取牛
     的骨形成蛋白(bBMP),消毒,将其埋人小白鼠后腿股部肌肉内行成骨诱导活性测定后备
     用。将Mpp与mM按l:25的质量比用直接掺合法和吸附法复合后,再与骨水泥(BC)
     按质量比0:10、4:6、5:5、6:4和7.5:2.5的比例复合,至眈呈面团期时制成诱
     导成骨活性测定标本、生物相容性研究标本、生物力学测定标本和扫描电镜观察标本,
     分别埋入小白鼠后腿股部肌肉内行成骨诱导活性测定、植入小白鼠腹腔内行生物相容性
     研究、体外行生物力学强度和弹性模量测定以及扫描电镜下观察。应用自行研制的骨肿
     瘤微波治疗仪,以1.skHZ频率、70W功率加热至5055oC,持续20分钟,建立成年狗股
     骨微波灭活骨缺损的实验动物模型,将4:6、5:5、6:4和7.5:2.5的复合材料植入
     右侧狗股骨骨缺损处,左侧单纯植入骨水妮做对照,术后不同时间进行X射线照相、
     一TC--MDP骨显像、大体标本观察、生物力学测定、组织学观察、土霉素荧光标记和印度
     墨汁灌注观察。
     结果:自行提取的bBWi具有很强的成骨诱?
OBJECTIVE It is common to be met in orthopedic clinic that the bone defects caused by bone tumors which have no ideal methods to repair at present However the clinical results that arrest people's attention have been got by the surgical treatment for bone tumors with microwave-induced hyperthermia and the allograft decalcified bone matrix (DBM) combined with bone cement (BC) had been used to try repairing the bone defects caused by microwave-induced hyperthermia in recent years. In order to further improve the bone formation inductive activity, we try to mix the bovine bone morphogenetic protein (bBMP) with this composite material and this experiment was designed to determine the biological procedure of the composite material of DBM, BC and bBMP when it was implanted in the canine femoral defect caused by microwave-induced hyperthermia. The aim of the present experiment is to prepare and evaluate the composite material of bovine bone morphogenetic protein (bBMP), decalcified bone matrix (DBM) and bone cement
     (BC) for the clinical use and the batch process.
    METHODS The allograft canine DBM which diameter was less than 2.0mm was prepared and sterilized to use. The bBMP was extracted from the fresh cortex of the four limbs of the young ox and its bone formation inductive activity was determined. First mix the bBMP and DBM together with the proportion of 1:25 with adsorption and directly, then add BC with different weight proportion and finally the composite material was examined by biomechanics, scan electron microscope, determinations of bone formation inductive activity and biocompatibility. The canine femoral defect model was caused by microwave-induced hyperthermia and the composite material was implanted into the canine right femoral defect and the left one was filled up with BC only as a contrast. The canine femurs were examined by X-ray, 99mTc-MDP bone scintigraphy, biomechanics, histology, flurescence labeling of terramycin and India ink staining.
    RESULTS The bBMP had strong bone formation inductive activity. At the third day when it was buried in the muscles of the behind legs of the mouse, there were a large number of
    6
    
    
    mesenchymal cells around the bBMP and at the seventh day the mesenchymal cells were differentiated into the chondrocytes. At the fourteenth day the cartilage was formed and at the twenty-first day and the twenty-eighth day the new bone was formed. Though the bone inductive activity of the composite material was weaker and the amount of the new bone which it inducted to form was less than that of bBMP, it had very strong bone inductive activity. There was no affect for the bone formation inductive activity of the composite material when the bBMP was combined with DBM with different method. However the direct method was the most convenient. When the composite material was implanted into the abdominal cavity of the mouse, no animal died in the acute toxicity test and the body weight, red blood cells, white blood cells and hemoglobin of the mouse were not affected in the subacute test. The composite material did not affect the function of hemolysis and coagulation. The determinative results of biomechanics was that the biomechanical intensity of the composite material decreased when the proportion of DBM was from 0% to 75%. However the composite material had enough intensity to bear a load when the proportion of DBM was 50% and 60%. Under the scan electron microscope, there were irregular gaps in the composite material and most of them with the diameter was less than 100 u m and the porosity was less than 20% when the proportion of DBM was 40%. So it was unfavorable for the new bone to form and the new blood vessels to reconstruct. However there were many irregular gaps with diameter of 200 u m to 800 u m in the composite material with the proportion of DBM was 50% and 60% and the porosity was 32% to 55%. There were more irregular gaps with diameter of 200 u m to 800 u m in the composite material with the proportion of DBM was 75% and the porosity was more than 60%. However the DBM
引文
1 Urist MR and McLean FC. Osteogenic potency and new bone formation by induction in transplants to the anterior chamber of the eye. J Bone Joint Surg, 1952, 34-A: 443-470.
    2 Urist MR. Bone: formation by autoinduction. Science, 1965, 150:893-899.
    3 Urist MR, Silverman BF, Buring K, et al. The bone induction principle. Clin Orthop, 1967,53:243-283.
    4 赵廷宝,范清宇,郭照江.骨形成蛋白在骨缺损修复中的矛盾与克服.医学与哲学,2000,21(8):38~39.
    5 金岩,杨连甲.生物活性材料修复骨缺损过程的基本内容与概念.见杨连甲,金岩,胡蕴玉主编:口腔和骨科的生物活性材料.1993,陕西科学技术出版社,7.
    6 Bang, G., and Urist, M. R.. Bone induction in excavation chambers in matrix of decalcified dentin. Arch. Surg. 1967,94:781.
    7 Dubuc, F. L., and Urist, M. R. The acceaaibility of the bone induction principle in surface-decalcified bone implants. Clin. Orthop. 1967,55:217.
    8 Strates, B. S., and Urist, M. R.. Origin of the inductive signal in implants of normal and lathyritic bone matrix, clin. Orthop.1969,66:226.
    9 Urist, M. R.. Mesenchymal cell reaction to inductive substrates for new bone formation, in Dunphy, J.E.,and van Winkle,W,Jr, et al, (eds). Repair and regeneration, New York:McGraw-Hill, Inc., 1969,229~259.
    10 Urist, M.R,Dowe,T.A.,Hay, P.H. and Swales, B. S..Inductive substrates for bone formation. Clin. Orthop. 1968,59:59.
    11 Urist, M. R.,Jurist,J.M., Dubuc, E L., and Strates, B. S..Quantitation of new bone formation in intramuscular implants of bone matrix in rabbits. Clin. Orthop. 1970,68:279.
    12 Urist, M. R.,and Strates, B. S..Bone formation in implants of partially and wholly demineralized bone matrix. Clin. Orthop. 1970,71:271~278.
    13 Urist, M. R.,and Strates, B. S..Bone morphgenetic protein. J Dent Res,50[Suppl.6]: 1971,1392.
    14 Urist, M. R.,Iwata, H,Ceccotti,P,W.L.,et al. Bone morphgenesis in implants of insoluble bone gelatin. Proc Natl Acad Sci USA, 1973,70:3511.
    
    
    15 Urist, M. R.,Mikulski,A.and Lietze,A..Solubilized and insolubilized bone morphgenetic protein. Proc Natl Acad Sci USA, 1979,76:1828.
    16 Urist, M. R., Lietze,A., Mizutani, H.,et al. A bovine low molecular weight bone morphgenetic protein(BMP)fraction. Clin. Orthop. 1982,162:219.
    17 Urist, M. R., Mizutani,H.,Conover, M.A.,et al. Dentin ,bone and osteosarcoma tissue bone morphgenetic proteins. In Factors and Mechanisms Influencing Bone Growth. New York, Allen R. Liss, 1983,61~81.
    18 Urist, M. R.,DeLange, R J, and Finerman, G A M.. Bone cell differentiation and growth factors: Induced activity of chondro-osteogenetic DNH. Science, 1983,220:680.
    19 Urist, M. R.,Huo,Y K, Brownell,A G,et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci USA,1984,81:371.
    20 Urist, M. R.,Chang J J,Lietze,A, et al. Methods of preparation and bioassay of bone morphogenetic protein and polypeptide fragments. In Bames, D and Sirbaska, D A (eds.):Methods in Enzymology, vol. 146.New York,Academic Press, 1987,294~312.
    21 吴祖尧.诱导成骨与骨形态发生蛋白.中华骨科杂志,1988,8(3):231~234.
    22 唐六一,吴祖尧.骨形态发生蛋白的载体及其释放系统.中华骨科杂志,1993,13(2):140~142.
    23 董玉峰,戴克戎.骨形态发生蛋白载体的研究进展.国外医学.创伤与外科基本问题分册,1999,20(1):6~9.
    24 梁戈,胡蕴玉,郑昌琼,等.多孔β-TCP/BMP复合人工骨的研制和动物体内的相关研究.中华骨科杂志,1998,18(2):75~79.
    25 Urist, M. R., Lietze,A, Dawson E. β-tricalcium phosphate delivery system for bone morphogenetic protein. Clin Orthop,1984,187:277~280.
    26 Ono I, Ohura T, Murata M, et al. A study on bone induction in hydroxyapatite combined with bone morphogenetic protein. Plast Reconstr Surg, 1992,90:870~879.
    27 Hollinger J O, Kleinschmidt J G The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg, 1990,1:60~68.
    28 罗卓荆,胡蕴玉,王茜.去抗原牛松质骨块/bBMP复合材料修复兔长骨骨缺损.第四军医大学学报,2000,21(1):48~51.
    29 陈克明,李旭生,刘兴炎,等.骨形态发生蛋白复合纤维蛋白载体修复骨缺损的实验研究.中华骨科杂志,1998,18(2):68~70.
    
    
    30 胡晓波,夏筠,李群,等.骨诱导性载体复合骨形态发生蛋白的双重成骨作用.中华骨科杂志,1998,18(2):80~83.
    31 Kawamura M, Urist M R. Human fibrin is a physiological delivery system for bone morphogenetic protein. Clin Orthop,1988,235:302~310.
    32 De Bore H, H. The history of bone graft. Clin Orthop, 1988,226:292.
    33 Burchardt H. The biology of bone graft repair. Clin Orthop, 1983,174:28.
    34 Prolo D J, Rodrigo J J. Comtemporary bone graft physiology and surgery. Clin Orthop,1985,200:322.
    35 Springfield D S. Massive autogenous bone grafts. Orthopedic clin North Am,1987,18(2):249.
    36 Pelker R R. and Friedlaender G E. Biomechanical aspects of bone autografts and allografts. Orthopedic clin North Am, 1987,18(2):235.
    37 Bieber E J, and Wood M B. Bone reconstruction. Clin Plast Surg, 1986,13(4):645.
    38 Motoki D S, Mulliken J B. The healing of bone and cartilage. Clin Plast Surg,1990,17(3):527.
    39 Byrd H S, and Nee M P. Autogenous bone grafts to the face. Facial Plast Surg,1986,3(2):63.
    40 Campanacci M, Laus M. Osteofibrous dysplasia of the tibia and fibula. J Bone Surg(Am),1981, 63:367.
    41 Nakashima Y. Osteofibrous dysplasia (ossifying fibroma of long bone), a study of 12 cases.Cancer, 1983,52:909.
    42 王家瑚,徐维邦.软骨肉瘤的诊断与治疗.中华骨科杂志,1992,12:116.
    43 刘广杰,张明贵,曹云,等.骨巨细胞瘤治疗方案的探讨.中华骨科杂志,1984,4:94.
    44 郑兴礼,郑启明.骨巨细胞瘤治疗的体会.中华骨科杂志,1989,9:11.
    45 时述山,胥少汀,张龙海.长骨纤维异样增殖症的手术治疗.中华骨科杂志,1988,8:7.
    46 徐莘香,李印良,刘建国,等.瘤体骨切除灭活再植治疗四肢长骨巨细胞瘤.中华骨科杂志,1997,17:430.
    47 徐万鹏,吴捷,牛晓辉,等.髋臼周围肿瘤的切除与重建.中华骨科杂志,1995,15:805.
    48 林建华,许卫红,朱夏,等.恶性骨肿瘤的保肢手术18例报告.中国矫形外科杂志,1998,5:244.
    49 孙磊,胡蕴玉,宁志杰.同种异体骨移植生物学.中国矫形外科杂志,1996,3(1):56~58.
    
    
    50 章莹,侯春林.骨巨细胞瘤的治疗进展.中国矫形外科杂志,1997,4(2):141~142.
    51 侯树勋,陆裕朴,胡蕴玉.氯化锌烧灼对骨巨细胞瘤细胞及移植骨愈合影响的实验研究和临床应用.中华骨科杂志,1984,4(1):22~26.
    52 陈国瑞,王永惕,张学义,等.保存的异体半关节移植.中华骨科杂志,1984,4(2):86~89.
    53 Parrish FF. Allograft replacement of all or part of the end of a long bone following excision of a tumor. J Bone Joint Surg(Am), 1973,55:1.
    54 Burchardt H. Biology of bone transplantation. Orthop Clin North Am, 1987,18:187.
    55 Burchardt H, Enneking W F. Transplantation of bone. Surg Clin North Am, 1978,58:403.
    56 Schwarz N, Schlag G, Thumher K, et al. Fresh autogenetic, frozen allogengtic, and decalcified allogenetic bone grafts in dogs. J Bone Joint Surg(Br), 1991,73:787.
    57 Heiple K G A comparative study of the healing process following different types of bone transplantation. J Bone Joint Surg(Am), 1963,45:1593.
    58 Enneking W F, Mindell E R. Observations on massive retrieved human allografts. J Bone Joint Surg(Am), 1991,73:1123.
    59 Gray J C, Elevs M W. Early osteogenesis in compact bone isografts: A quantitative study of the contributions of different graft cells. Calcif Tissue Int, 1979,29:225.
    60 Conoly J F. Injectable bone marrow preparation to stimulate osteogenetic repair. Clin Orthop, 1995,313:8.
    61 Reddi A H. Bone morphogenetic proteins, bone marrow stromal cells, and mesenchymal stem cells. Clin Orthop, 1995,313:115.
    62 Schwarz N, Dinges H P, Schiesser A, et al. Dog bone less osteogenetic than rat bone. Bone-matrix transplants in nude rats. Acta Orthop Scand, 1989,60:693.
    63 Delloye C, Verhelpen M, Hemricourt J, et al. Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects. Clin Orthop,1992,282:273.
    64 Johnson E E, Urist M R, Schmalzried M, et al. Autogenetic cancellous bone grafts in extensive segmental ulnar defects in dogs. Effects of xenogengtic bovine bone morphogenetic protein without and with interposition of soft and interruption of blood supply. Clin Orthop, 1989,243:254.
    65 Hosny M, Sharawy M. Ostoinduction in rhesus monkeys using demineralized bone powder allografts. J Oral Maxillofac Surg,1985,43:837.
    
    
    66 Ripamonti U. Bone induction in nonhuman primates. An experimental study on the baboon. Clin Orthop, 1991,269:284.
    67 Aspenberg P, Wang E, Thorngren K G Bone morphogengtic protein induces bone in the squirrel monkey, but bone matrix does not. Acta Orthop Scand, 1992,63:619.
    68 Miyamoto S. Bone induction in monkeys by bone morphogenetic protein. J Bone Joint Surg(Br), 1993,75:107.
    69 Lindbolm T C, Lindbolm T S, Alitalo I, et al. Bovine bone morphogenetic protein(bBMP) induced repair of skull trephine defects in sheep. Clin Orthop, 1988,227:265.
    70 Yoshimine Y, Akamine A, Mukai M, et al. Biocompatibility of tetracakium phosphate cement when used as a bone substitute. Biomaterials, 1993,14:403.
    71 Nielsen F F. Biodegradable guide for bone regeneration: Polyurethane membrances tested in rabbit radius defects. Acta Orthop Scand, 1992,63:66.
    72 Strater B S, Tiedeman J J. Contribution of osteoinductive and osteoconductive properties of demineralized bone matrix to skeletal repair. Eur J Muse Res, 1993,2:61.
    73 Pelker R R. Biomechanical properties of bone allografts. Clin Orthop, 1983,174:54.
    74 Pelker R R. Effects of freezing and frozen-drying on the biomechanical properties of rat bone. J Orthop Res, 1984,1:405.
    75 Jerosch J, Muchow H, Clahsen H. Stability of human bone cortex following various preservation and sterilization methods. Z Orthop Ihre Grenzgeb, 1991,129:295.
    76 Wolfinbarger L J, Zhang Y, Adam B L, et al. A comprehensive study of physical parameters, biomechanical properties and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. Spine, 1994,19:284.
    77 Guo M Z, Xia Z S, Lin L B. The mechanical and biological properties of demineralized cortical bone allografts in animals. J Bone Joint Surg(Br), 1991,73:791.
    78 Zhang Y, Homsi D, Gates K,et al. A comprehensive study of physical parameters, biomechanical properties and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. Spine, 1994,19:304.
    79 Pelker R R, McKay J J, Troiano N, et al. Allografts incorporation: a biomechanical evaluation in a rabbit model J Orthop Res, 1989,7:585.
    80 Horowitz M C, Friedlaender G E. Immunologic aspects of bone transplantation. Orthop Clin North Am, 1987,18:227.
    
    
    81 Bos G D. The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg(Am),1983,65:89.
    82 Muscolo D L. Tissue-typing in human massive allografts of frozen bone. J Bone Joint Surg(Am), 1987,69:583.
    83 Lance E M. Some observations on bone graft technology. Clin Orthop, 1985,200:114.
    84 Urist M R, Mikulski A, Boyd S D. A chemosterilized antigen-extracted autodigested alloimplant for bone banks. Arch Surg, 1975,110:416.
    85 Charnley J. Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg(Br), 1960,42:48.
    86 Chamley J. The bonding of prosthesis to bone by cement. J Bone Joint Surg(Br), 1964,46:518.
    87 US National Institute of Health. Consensus Development Conference Statement: Total hip replacement, 1994,Sept, 12-14.
    88 Harrington K D. The use of methylmethacrylate for vertebral body replacement and anterior stabilization of pathological fracture-dislocation of the spine.Due to metastatic malignant disease. J Bone Joint Surg(Am), 1981,63:36.
    89 钟继平,梅芳瑞.骨水泥在脊柱外科中的应用.中国矫形外科杂志,1996,3(1) :58-59.
    90 Gurr K R, McAfee P C, Shih C M, et al. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. J Bone Joint Surg(Am), 1988,70:1182.
    91 Wang GJ, Reger S I, Shao Z H, et al. Comparative strength of anterior spinal fixation with bone graft or polymethylmethacrylate. Clin Orthop,1984,188:303.
    92 陈安民,王泰仪.钢筋骨水泥的机械性能及其在脊柱骨折脱位中的应用.中国生物医学工程学报,1988,7:181.
    93 Homsy C S. Some physiological aspects of prosthesis stabilization with acrylic polymer. Clin Orthop, 1972,83:317.
    94 Richard W, Stephen DBS, Mccoig JA, et al. Induction and characterization of an interface tissue by implantation of methymethacrylate cement into the posterior part of the cervical spine of the dog. J Bone Joint Surg(Am), 1988,70:51.
    95 McAfee PC, Baltimore DC, Bohlman HH, et al. Failure of stabilization of the spine with methymethacrylate. J Bone Joint Surg(Am), 1986,68:1145.
    96 Horowitz SM, Doty SB, Lane JM, et al. Studies of the mechanism by which the mechanical
    
    failure of polymethylmethacrylate leads to bone resorption. J Bone Joint Surg(Am), 1993,75:802.
    97 Pazzaglia VE. Pathology of the bone-cement interface in loosening of total hip replacement.Arch Orthop Trauma Surg, 1990,109:83.
    98 Quinn J, Jonsner C, Triffitt JT, et al. Polymethylmethacrylate-induced inflammatory macrophages resorb bone. J Bone Joint Surg(Br), 1992,78:652.
    99 Liu YK, Park JB, Njus GO,et al. Bone-particle-impregnated bone cement: an in vitro study. J Biomed Mater Res, 1987,21:247.
    100 Beaumont PWR, Plumpton B. The strength of acrylic bone cement and acrylic cement-stainless steel interface. J Mat Sci, 1977,12:1853.
    101 Hodosh MG A vitreous carbon-polymethacrylate endosteal dental implant. J Biomed Mater Res, 1975,9:97.
    102 Hodosh MG, Shklar G, Povar M, et al. The anatomic inorganic bone-polymethacrylate endosteal dental implant. Oral Surg Oral Med Oral Pathol, 1968,25:883.
    103 Pilliar RM, Blackwell R. Carbon fiber-reinforced bone cement in orthopedic surgery. J Biomed Mater Res, 1976,10:893.
    104 Rejda BV, Rieger MR. Porous acrylic cement. J Biomed Mater Res, 1977,11:373.
    105 Park HC,Liu YK, Lakes RS. The material properties of bone-particle impregnated PMMA. J Biomech Engin, 1986,108:141.
    106 戴克戎,郑泽坤,高玉兰,等.无机骨粒骨水泥的实验研究.中华外科杂志,1989,27(5):309~313.
    107 裘世静,戴克戎,董凡,等.有机骨粒骨水泥内部骨形成的扫描电镜观察.中华骨科杂志,1991,11(5):369~371.
    108 姚志修,王善沅,王公善,等.国产骨水泥按国际标准的评定.中华骨科杂志,1997,17(10):624~627.
    109 Hamblen DL,Carter RL.Sarcoma and total hip replacement.J Bone Joint Surg(Br),1984,66:625.
    110 徐卫东,肖斌,吴岳嵩.人工髋关节手术中的猝死.中华外科杂志,2001,39(10):805~806.
    111 Dandy DJ. Fat embolism following prosthetic replacement of the femoral head. Injury,1971,3:85~88.
    112 Ortega S, Pascual A, Fraca C. Heart arrest in cemented hip arthroplasty. Rev Esp
    
    Anestesiol Reanim. 2000,47:31~35.
    113 Parvizi J, Holiday AD, Ereth MH, et al. The frank stinchfield award: sudden death during primary hip arthroplasty. Clin Orthop, 1999,369:39~48.
    114 Vidal MJ, Mimran R, Allieu Y, et al. Plastic de comblement par metacrylate de methyle traitementde certaines tumeours osseuses benignes. Montpellier Chirurgical Tome,1969,15(4):389.
    115 Gitelis S, Wang J, Quast M, et al. Recurrence of a giant cell tumor with malignant transformation to afibbrosarcoma twenty-five years after primary treatment. J Bone Joint Surg(Am), 1989,71:757.
    116 Dahlin DC. Bone Tumor. 3rd ed. Springfield, Charles Thomas, 1978,99.
    117 郑兴礼,郑启明.骨巨细胞瘤治疗的体会.中华骨科杂志,1989,9(1):11.
    118 De Camargo OP. The use of methylmethacrylate as a hyperthermia agent for the treatment of giant cell tumors. Experience of 78cases in along term apprisal. In T Yamamuro(eds). New development in limb salvage in musculoskeletal tumor. Belin. Springer-Verlag,1989,289.
    119 Persson BM, Ekelivnd L, Gunterburg B, et al. Favorable results of acrylic cementation for giant cell tumors. Acta Orthop Scand, 1984,55:209.
    120 姚长海.骨水泥在骨肿瘤治疗中的应用与骨水泥植入综合征.白求恩医科大学学报,1985,11(1):110.
    121 Richard JO, Donnell MD, Dempsey S. Recurrence of giant-cell-rumors of the long bones after curettage and packing with cement. J Bone Joint Surg(Am), 1994,76:1827.
    122 Chalmers J, Gray DH, Edinburg H, et al. Observations on the induction of bone in soft tissues. J Bone Joint Surg (Br), 1975, 57:36~45.
    123 Burwell RG. Studies in the tyansplantation of bone. J Bone Joint. Surg(Br), 1964,46:110~113.
    124 夏贤良.脱钙同种骨加自体红骨髓复合植骨.中华骨科杂志,1982,2:242~244.
    125 Nade S and Burwell RG. Decalcified bone as a substrate for osteogenesis. J Bone Joint Surg(Br), 1977, 59:189~196.
    126 Tuli SM.The osteoinductive property of decalcified bone matrix. J Bone Joint Surg(Br)1978,60:116~119.
    127 Simmons DJ.The bone inductive potetial of a composite bone allograft-marrow autograft in rabbits. Clin Orthop, 1973,97:237~240.
    
    
    128 Sakata H and Takagi K.Effect of bone matrix-induced bone formation in rats. Clin Orthop, 1987,220:253~256.
    129 孙沫逸.同种异体骨明胶与异种骨复合移植的实验研究.中华医学会第三次全国口腔学术会议论文汇编,1988,130.
    130 Zide MF, Kent JN,Muchado L.Hydroxylapatite cranioplasty directly over dura. J Oral Maxillofac Surg, 1987,45:481~486.
    131 Kent JN,Zide MF and Kay JF.Hydroxylapatite block and particles as bone graft substitutes in orthognathic and reconstructive surgery. J Oral Maxillofac Surg, 1986,44:597~601.
    132 Mehlisch DR,Dallas A and Texos H.Collagen/hydroxylapatite implant for augmenting deficient alveolar ridges. Oral Surg, 1989,68:505~508.
    133 Gongloff PK AND Montgomery CK,Experimental study of the use of collagen tubes for implantation of particulate hydroxylapatite. J Oral Maxillofac Surg, 1985,43 :845~848.
    134 Ripamonti U, Schnitzler CM and Cleaton-Jones PC. Bone induction in a composite allogeneic bone/alloplastic implant. J Oral Maxillofac Surg, 1989, 47:963~967.
    135 Bell R and Beiren OK. Effect of hydroxylapatite tricalcium phosphate and collagen on the healing of defects in the rat mandible. J Oral Maxillofac Surg, 1988, 46: 589~593.
    136 肖建得,朱通伯,杜靖远,等.胶原羟基磷灰石人工骨的研制及动物实验结果.中华骨科杂志,1988,8:222~225.
    137 Gongloff RK, Whitlow W and Montgomery CK. Use of collagen tubes for implantion of hydroxylapatite. J Oral Maxillofac Surg, 1985,43:570~576.
    138 Block M, Kent JN, Ardoin RC, et al. Mandibular augmentation in dogs with hydroxylapatite combined with demineralized bone. J Oral Maxillofac Surg, 1987,45:414~418.
    139 Alper G, Bernick S, Yazdi M, et al.Osteogenesis in bone defects in rats:the effects of hydroxylapatite and demineralized bone matrix. Am J Med Sci, 1989,298:371~376.
    140 Nade S,Armstrong L and Baggaley B. Osteogenesis after bone and bone marrow transplantation. Clin Orthop, 1983,181:255~263.
    141 白波,黄承达.羟基磷灰石配合自体红骨髓移植对成骨作用的实验研究.中华骨科杂志,1990,10:442~444.
    
    
    142 Lew D, Gamble JW and Shahbazian TS. The use of freeze-dried rib and hydroxylapatite in fracture occurring in a patient with familial facial osteodystrophy. Oral Surg, 1987,64:15~20.
    143 Kawamura M, Iwata H, Sato K, et al. Chondrosteogenetic respone to crude bone matrix proteins bound to hydroxylapatite. Clin Orthop,1987,217:281~292.
    144 Driessen AA, Klein CT and De Groot K. Preparation and some properties of sintered β-whitlockite. Biomaterials. 1982,3:113~116.
    145 Altermatt S, Schwobel M and Pochon JP. Operative treatment of solitary bone cysts with tricalcium phosphate ceramic. Eur J Pediatr Surg, 1992,2:180~182.
    146 王翔,周树夏,刘宝林,等.钛种植体复合骨形成蛋白的初步实验研究.实用口腔医学杂志,1989,5:245~247.
    147 Miki T, Harada K, Imai Y, et al. Effect of freeze-dried poly-L-lactic acid discs mixted with bone morphogenetic protein on the healing of rat skull defects.J Oral Maxillofac Surg,1994,52:387~396.
    148 Kawamura M and Urist MR. Human fibrin is a physiological delivery system for bone morphogenetic protein. Clin Orthop, 1988,235:302~310.
    149 陈克明,李旭升,刘兴炎,等.骨形态发生蛋白复合纤维蛋白载体修复骨缺损的实验研究.Chin J Orthop,1998,18:68~70.
    150 胡晓波,吴祖尧.骨诱导促进骨愈合的实验研究.中华骨科杂志,1988,8:125~128.
    151 Hu XB, Yao LL, Lu CX, et al. Experimental and clinical investigation of insoluble bone matrix gelatin. Clin Orthop, 1993,293:360~365.
    152 Bays PA.Current concept in bone grafting, current advance in oral.J Maxillofac Surg, 1983,41:109~112.
    153 刘纬,胡蕴玉,陆裕朴,等.重组合异种骨的研制及其生物活性分析.中华医学杂志,1991,71:378~380.
    154 胡蕴玉,陆裕朴,刘纬.不同复合异种骨修复长骨骨缺损的实验研究.中华骨科杂志,1990,10:74~76.
    155 Takaoka K, Nakahara H, Yoshikawa H, et al. Ectopic bone induction on and in porous hydroxylapatite combined with collagen and bone morphogenetic protein. Clin Orthop,1988,234:250~254.
    156 李亚非,胡蕴玉,李雪冰,等.骨粒粒度与强化搅拌对骨形态发生蛋白提取量和活性的影
    
    响.中华骨科杂志,1996,16:118~120.
    157 Fan QY, Ma BA, Qiu XC, et al. Preliminary report on treatment of bone tumors wuth microwave-induced hyperthermia. Bioeletromagnetic, 1996,17:218~222.
    158 Fan QY, Ma BA, Guo AL, et al. Surgical treatment of bone tumors in adjunction with microwave-induced hyperthermia and adjuvant immnunothempy: a preliminary report.Chin Med J, 1996,109:425~431.
    159 范清宇,马宝安,周勇,等.骨盆环区域骨肿瘤的外科治疗.第四军医大学学报,1999,20(12):1017~1023.
    160 范清宇,马宝安,周勇,等.插入式微波天线阵列诱导高温原位灭活治疗肢体恶性或侵袭性骨肿瘤.第四军医大学学报,1999,20(12):1024~1028.
    161 胡运生,范清宇,杨连甲,等.异体骨基质明胶颗粒骨水泥复合牛骨形成蛋白修复兔桡骨缺损.第四军医大学学报,1999,20(12):1071~1074.
    162 周勇,范清宇,蒋维中,等.异体脱钙骨基质颗粒骨水泥骨形态发生蛋白复合材料的成骨诱导活性.第四军医大学学报,1999,20(12):1085~1087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700