用户名: 密码: 验证码:
疏水缔合聚合物与表面活性剂二元驱油体系界面流变性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Laboratory Study on the Interfacial Rheological Property of the Dual-chemical EOR Fluid System Combined by Hydrophobical Associating Polymer (NAPs) and Surfactant (SDBs)
  • 作者:叶仲斌
  • 论文级别:博士
  • 学科专业名称:油气田开发工程
  • 学位年度:2002
  • 导师:罗平亚 ; 李允
  • 学科代码:082002
  • 学位授予单位:西南石油学院
  • 论文提交日期:2002-01-05
摘要
化学驱及复合化学驱提高采收率的机理研究涉及到驱油体系的体相流变性、界面张力和界面流变性等方面。大量的研究结果表明,界面流变性直接影响到驱替的过程和最终的驱替效果。在提高采收率技术领域,界面流变性研究主要包括以下四个方面的研究课题:一是界面粘度的有效测试方法和手段;二是在可靠测试手段下对化学驱及复合化学驱过程中的油水界面流变性进行系统研究;三是就化学驱及复合化学驱过程中界面流变性对驱油的微观过程和宏观结果的影响进行研究;四是如何在驱油剂的研制、开发和驱油体系研究过程中使驱油体系的界面流变性达到最佳状态。本论文围绕第一、二两个方面开展了大量的、深入细致的研究工作。
     界面粘度是反映界面层中物质组成和存在状态的物理量,是表征和反映界面流变性的基础参数之一。因此,可靠、准确和方便地测试界面粘度具有重要意义。通过对界面粘度的系统研究,可以提高我们对油水体系中界面液膜的形成机理、结构特征和驱油性能的认识,有助于拓展驱油过程中各种物化现象的描述手段、更好地理解微观驱油机理、促进驱油剂的研制与开发、发展更多更有用的EOR/IOR方法,同时也将促进胶体科学和界面科学技术领域的进步。
     迄今为止,不少的学者已围绕界面粘度的表征方法和测试手段进行了大量的开创性研究工作,也取得了一些有意义的、可以借鉴的成果。在众多的界面粘度测定方法中,沟槽式粘性牵曳界面粘度计因其理论基础可靠、结构相对简单而被大多数研究者接受和采用,并在二十世纪八十年代以后获得广泛承认,成为了测量界面剪切粘度的最主要方法。然而,它的测定方法的固有缺陷决定了它不能用于测定粘稠性流体间的界面粘度,因而也就不能应用于化学驱及复合化学驱界面流变性的研究中。鉴于此,本文对沟槽式粘性牵曳界面粘度计的仪器结构及测定原理进行了系统分析,并在此基础上改进和完善了它的测定方法,解决了体相粘度较高的流体表面粘度和界面粘度测定问题,使聚合物和复合化学驱油体系与油之间的界面粘度测定的测定成为现实。通过对测量结果的误差分析发现,下相液体深度的测量精度是界面粘度测量
    
    !给论
    ——
    的关键,为此改进了液体深度测量方法,设计并加工了液体深度测量器,大
    大提高了深度测量精度。
     针对新型疏水缔合聚合物(NAns)和十H烷基苯磺酸钠(SDBS),研究
    了单纯的聚合物溶液、单纯的表面活性剂溶液和聚表二元复合驱油体系的表
    面粘度以及各体系与模拟油之间的界面粘度。研究结果表明,体相粘度直接
    影响界面粘度,对于增粘型流体,提出了用无因次界面粘度来描述界面流变
    性的方法,它排除了溶液体相粘度的干扰,是直接反映溶质在界面上的吸附
    和集特性的参数,对研究界面层的组成、结构及平衡状态具有重要意义。
     NAPS溶液与模拟油相之间的界面粘度和无因次界面粘度同时受温度、聚
    合物浓度和溶液矿化度影响。聚合物浓度对无因次界面粘度的影响因溶液矿
    化度不同而有所差异。
     聚合物分子结构不同,其界面流变性有明显差异。NMs与模拟油之间的
    界面粘度明显高于HPAM与模拟油之间的界面粘度。
     表面活性剂SDBS在溶液表面聚集,在降低表面张力的同时,将增加表面
    粘度,浓度在CMC附近,表面粘度达到最大。在表面活性剂溶液/模拟油体
    系中,当加入的SDBS分子的浓度较低时,SDBS分子将首先在油水界面上吸
    附,使界面张力和界面粘度同时降低;当SDBS浓度增加到一定程度后,SDBS
    的进一步增加将促使界面膜形成,降低界面活性,使界面张力回升,界面粘
    度增加。SDBS与NAPS之间存在明显的相互作用,在一定的表面活性剂浓度
    范围内,它们之间会出现有利的协同效应。
     聚表之间相互作用对界面流变性产生明显影响,且影响程度和作用机理与
    NAPs浓度有关。在表面活性剂的CMC附近和NAPs的CAC附近,聚表二
    元体系中表面活性剂分子在表/界面上的聚集与作用机理不同,从而使聚表二
    元体系的物化性质与表面活性剂浓度的变化关系变得复杂化。
     均匀设计实验方法适用于多因素、多水平的实验设计,实验次数等于因素
    的水平数,是大幅度减少试验次数的一种较好的试验设计方法。实验结果表
    明,将均匀设计实验方法用在聚表二元驱油体系的界面流变性研究中具有明
    显的优势,大大减少了实验工作量。该方法适合于用在化学驱及复合化学驱
    提高采收率技术中普遍存在的多因素、多水平及因素之间存在相互作用的实
     且且
    
     MQ
    验研究中。
     将逐步回归分析方法用于实验数据处理,结合专业知识,可以将均匀设计
    方法安排的实验结果作多元非线性回归,帮助分析出影响界面流变性的主要
    因素、各因素之间是否存在相互作用,以及相互作用的强弱,为复合化学驱
    提高采收率机理和驱油体系性能研究提供指导。
The enhanced oil recovery mechanisms of chemical flooding and combination chemical flooding are related to oil displacement system apparent Theological property, interfacial tension, interfacial Theological property and so on. A lot of researches show that interfacial Theological property affects displacement process and final displacement effect. In the field of EOR, the following four main aspects about interfacial Theological property have been concerning. First one is efficient and powerful testing methods of interfacial viscosity; Second one is systematic study of oil-water interfacial Theological property during chemical flooding and combination chemical flooding on the basis of reliable testing methods; Third one is to study the effect of interfacial Theological property on micro-processes and macro-results of oil displacement during chemical flooding and combination chemical flooding. Forth one is to study how to make the interfacial Theological property of oil displacement system optimal during deve
    loping recovery chemicals. In this paper, the first and second aspect has been addressed.
    Interfacial viscosity reflects material components and state in the interface layer, and is one of basic parameters to express interfacial Theological property. So it is of significance to measure interfacial viscosity reliably, precisely and conveniently. As a summary it was evidenced that the interfacial rheology is an efficient and powerful detection technique, which may enhance our knowledge on formation, structure, properties and behavior of interfacial layers formed in oil/water systems. Thus similar studies will probably accelerate the progress significantly not only in oil recovery but also in all areas of colloid science and technology.
    Up to now, many researchers have done a lot of creative studies on expression
    
    
    
    and measuring methods of interfacial Theological property, and achieved some significant progress. Among those methods measuring interfacial viscosity, the deep channel viscous interfacial viscometer has been accepted by most of researchers because of its reliable theoretical basis and relative simple structure. Since 1980's, it has been the most important method to measure interfacial viscosity. But it couldn't be used to measure the interfacial viscosity of viscous fluids because of its defects of measuring method. Consequently, it couldn't be used to study the interfacial Theological property of chemical flooding and combination chemical flooding. All in all, the study of this area lags behind development of petroleum industry obviously, and it can't satisfy the needs of oil development with high efficiency. So on the basis of systematic analysis to structure and principle of deep channel viscous interfacial viscometer, its measurement method was modified and improved. Because of those improvements, it becomes reality to measure surface viscosity and interfacial viscosity of viscous fluids, consequently, interfacial viscosities of polymer solution and oil, and combination chemical flooding system and oil can be obtained now. Error analysis shows that measuring precision of lower liquid depth is a key factor affecting interfacial viscosity measurement. A new type of liquid depth meter was designed and employed. It greatly improved the precision of depth.
    By using of NAPs and SDBS, we studied surface viscosity of polymer solution, surfactant solution, and Polymer/Surfactants fluid system as well as interfacial viscosity between them and simulation oil. Results show that interfacial viscosity heavily affects by bulk viscosity , so it isn't comprehensive enough to use interfacial viscosity to describe interfacial Theological property of viscous liquid only. A dimensionless interfacial viscosity was proposed. It has been proved to be reasonable and reliable for describing the interfacial Theological property.
    Both interfacial viscosity and dimensionless interfacial viscosity affect by temperature, polymer concentration and salinity. The effect of NAPs concentration on dimensionless interfacia
引文
[1]. D.T. Wasan, L. Gupta and M.K. Vora, "Interfacial Shear Viscosity at Fluid-Fluid Interfaces", AIChE J., V. 17, No.6, 1971
    [2]. J.C.Slattery, "Interfacial effects in the recovery of residual oil by displacement", DOE/BC/10068-23(DE82009274), April 1982.
    [3]. R. L. Kao etc., "Measurement of the Dynamic Interfacial Tension and Interfacial Dilatational Viscosity at High rates of Interfacial Expasion Using the Maximum Bubble Pressure Method. Ⅱ.Liquid-Liquid interface", J. of Colloid and Interface Science (简写JCIS, 下同) V. 148, No.1, 1992
    [4]. R. L. Kao etc., "Measurement of Interfacial Dilatational Viscosity at High Rates of Interface Expansion Using the Maximum Bubble Pressure Method Ⅰ. Gas-Liquid Surface "JCIS, V148, No.1, 1992
    [5]. H. O. Lee, Tsung-shann Jiang and K. S. Avramidist, "Measurements of interfacial shear viscoelasticity with an oscillatory torsional viscometer", JCIS, V. 146, No. 1, 1991
    [6]. A. R. Deemer etc., "Measuring Liquid-Liquid Interfacial Behavior with the Deep-Channel Surface Viscometer", JCIS, V78, No.1, 1980
    [7]. V. Mohan etc., "Effect of Aging on Surface Shear Viscosity of Surfactant Solutions", JCIS, V.57, No.3,1976
    [8]. J. R. Campanelli & D. G Cooper, "Interfacial Viscosity and the Stability of Emulsions", Can. J. Chem. Eng. V.67, 1989
    [9]. P. D. Berger etc., "Designing and Selecting Demulsifiers for Optimum Field Performance Based on Production Fluid Characteristics", SPE16285, 1987
    [10]. P. B. Briley, A. R. Deemer and J. C. Slattery, "Blunt Knife-Edge and Disk Surface Viscometers", JCIS, V.56, No.1, 1976
    [11].王新平 等,“表面活性剂与聚丙烯酰胺在油水界面的流变性”,物理化学学报,第14卷,第1期,1998
    [12].何更生 编,《油层物理》,石油工业出版社,1994
    
    
    [13].韩显卿 编,《提高采收率原理》,石油工业出版社,1993
    [14].石油天然气总公司石油勘探开发科学研究院,《油藏数值模拟论文集(一)》,1990
    [15].李庆扬 等编,《数值分析》,华中理工大学出版社,1995
    [16].徐萃薇 编,《计算方法引论》,高等教育出版社,1985
    [17].沈崇棠 等编,《非牛顿流体力学及其应用》,高等教育出版社,1989
    [18].陈文芳 等主编,《流变学进展》,学术期刊出版社,1986
    [19].陈文芳 著,《非牛顿流体力学》,科学出版社,1984
    [20]. Tsung-shann Jiang, Jing-den Chen and J. C. Slattery, "Nonlinear Interfacial Stress-Deformation Behavior Measured With Several Interfacial Viscometers", JCIS, V96, No.1, 1983
    [21]. Lun-yan Wei, W. Schmidt and J. C. Slattery, "Measurement of the Surface Dilatational Viscosity", JCIS, V.48, No. 1, 1974
    [22]. K. S. Avramidis etc., "Measurement of the Surface Dilatational Viscosity of Aqueous Gelatin-Surfactant Solutions", JCIS, V. 147, No. 1, 1991
    [23]. A. Hajiloo and J. C. Slattery, "Importance of Surface Viscosities, Diffusion, and Surface Adsorption to Longitudinal and Transverse Waves", JCIS, V.111, No.1, 1986
    [24]. K. Miyano and B. M. Abraham etc., "Longitudinal Surface Waves for the Study of Dynamic Properties of Surfactant Systems Ⅰ. Instrumentation", JCIS, V.92, No.2, 1983
    [25]. L. Ting and D. T. Wasan etc., "Longitudinal Surface Waves for the Study of Dynamic Properties of Surfactant Systems Ⅱ. Air-Solution Interface", JCIS, V.102, No.1, 1984
    [26]. L. Ting and D. T. Wasan etc., "Longitudinal Surface Waves for the Study of Dynamic Properties of Surfactant Systems Ⅲ. Liquid-Liquid Interface", JCIS, V.107, No.2, 1985
    [27]. F. C. Goodrich etc., "A New Surface Viscometer of High Sensitivity Ⅰ. Theory", JCIS, V.52, No.2, 1975
    
    
    [28]. A. Poskanzer etc., "A New Surface Viscometer of High Sensitivity Ⅱ. Experiments with Stearic Acid Monolayers", JCIS, V.52, No.2, 1975
    [29]. F. C. Goodrich etc., "A New Surface Viscometer of High Sensitivity Ⅲ. Stearic Acid at the Oil/Water Interface", JCIS, V.75, No.2, 1980
    [30]. V. Thominet etc., "Light Scattering Study of the Viscoelasticity of Soluble Monolayers ", JCIS, V. 126, No.1, 1988
    [31]. J. Prieditis etc., "Interfacial Viscoelastic Response to Oscillatory shear Deformations", JCIS, V.119, No.2, 1987
    [32]. J.C. Slattery etc., "Spinning Drop Interfacial Viscometer", JCIS, V.73, No.2, 1980
    [33]. N.H.Sagert and M. J. Quinn, "Surface Viscosities at High Pressure Gas-Liquid Interfaces", JCIS, V.65, No.3, 1978
    [34]. GP. Gladden and E. L. Neustadter, "Oil/Water Interfacial Viscosity and Crude Oil Emulsion Stability", J. Inst. Petrol., V.58, No.564, 1972
    [35]. J. Ross, "Transition Temperatures of Monolayers and Surface Viscosity of Dilute Aqueous Solutions of Lauryl Alcohol in Sodium Lauryl Sulfate ", J. Phys. Chem., V.62, May, 1958
    [36]. Soo-gun Oh and J. C. Slattery, "Disk and Biconical Interfacial Viscometer", JCIS, V.67, No.3, 1978
    [37]. D.T. Wasan etc., "The Mechanism of Oil Bank Formation and Coalescence in Porous Media", ERDA Symp. On Enhanced Oil, Gas Recovery and Improved Drilling Methods, Tulsa, Okla., 1977
    [38]. J. C. Slattery, "Interfacial Effects in the Displacement of Residual Oil by Foam", AIChE J., V.25, 1979
    [39]. Yia-ching Ray and H. O. Lee etc., "Oscillatory Torsional Interfacial Viscometer", JCIS, V.119, No.1, 1987
    [40]. M. Aleman-Gomez etc, "A Statistical Structural Model for Unsteady-State Displacement in Porous Media", SPE13265, 1984
    [41]. D.W. Goupil and F. C. Goodrich,"Interfacial Conformational Modifications in
    
    a Polypeptide ", JCIS, V62, No.1, 1977
    [42]. Dongming Li and J. C. Slattery, "Measuring Nonlinear Surface Stress-Deformation Behavior For Aqueous Solutions Of Dodecyl Sodium Sulfate And Dodecly Alcohol", JCIS, V. 125, No.1, 1988
    [43]. T. J. Jones etc., "Water-in-Crude Oil Emulsion Stability and Emulsion Destabilization by Chemical Demulsifiers", JCPT, April-June, 1978
    [44]. T. J. Stoodt and J. C. Slattery, "Effect of the Interfacial Viscosities upon Displacement", AIChE J., V.30, No.4, 1984
    [45]. R. M. Giordano and J. C. Slattery, "Effect of Interfacial Viscosities upon Displacement in Sinusoidal Capillaries", AIChE J., V.33, No. 10, 1987
    [46]. R. M. Giordano and J. C. Slattery, "Effect of Interfacial Viscosities upon Displacement in Capillaries with Special Application to Tertiary Oil Recovery", AIChE J., V.29, No.3, 1983
    [47]. P. S. Hahn etc., "Mobility Control in the Displacement of Residual Oil by an Unstable Foam", AIChE J., V.31, No.6, 1985
    [48].张仲寅 等编著,《粘性流体力学》,国防工业出版社,1989
    [49].程心一 著,《计算流体动力学》,科学出版社 1984
    [50]. D. O. Shah and R. S. Schechter, "Improved Oil Recovery by Surfactant and Polymer Flooding" AIChE Symp. on Improved Oil Recovery by Surfactant and Polymer Flooding, Kansas City, Kan., 1976. Academic Press, Inc. New York,1977
    [51]. J.Lakatos-Szabo, I.Lakatos, "Effect of non-ionic surfactants on interfacial rheological properties of crude oil/water systems", Progr Colloid Polym Sci(1997) 105:302-310
    [52]. J.Y. Zhang, X.P. Wang, et al, "Interfacial rheology investigation of polyacrylamide-surfactant interactions", Colloids Surfaces A: Physicochem. Eng. Aspests 132(1998)9-16
    [53]. N.Aderangi & D.T. Wasan, "Coalescence of single drops at liquid/liquid interface in the presence of surfactants/polymers", Chem. Eng. Comm., 1995,
    
    Vol.132,207-222
    [54]. J.Lakatos-Szabo, I.Lakatos, "Effect of sodium hydroxide on interfacial rheological properties of oil-water systems", Colloids Surfaces A: Physicochem. Eng. Aspests 149(1999)507-513
    [55].方开泰著,均匀设计与均匀设计表,科技出版社,1994
    [56].方开泰,均匀设计,应用数学学报,1980,第三期,p363-372
    [57]. Wang, Y. & Fang, K.T., A note on uniform distribution and experimental design, Kexue Tongbao, 26, p485-489, 1981
    [58].赵弈殊,均匀设计表及其使用表的构造,战术导弹技术,1988年,No.4,p53-58
    [59]. Bundschuh, P. & Zhu, Y.C., A method for exact calculation of the discrepancy of low-dimensional finite point sets(Ⅰ), Abhandlungen aus dem Math. Seminar der Univ. Hamburg, Bd. 63, 1993
    [60].夏之宁、谌其亭、穆小静、李志良,正交设计与均匀设计的初步比较,重庆大学学报(自然科学版)1999年05期
    [61].张金廷,混料均匀设计,应用概论统计,V.9,p168-175,1993
    [62].唐明,余杰,廉秀俊,超细粉煤灰高功能PRC材料的研究,沈阳建筑工程学院学报,2000年02期
    [63].赵天波,李凤艳,添加高聚物对乳化蜡型混凝土养护剂性能的影响,精细化工,2000年01期
    [64].李寿芬,杨新平,均匀设计在苯氧乙酸合成中的应用,华夏医学,2000年01期
    [65].陈立,徐汉虹,赵善欢,应用均匀设计获取复配农药最佳增效配方,华南农业大学学报,2000年03期
    [66].徐晓东,均匀设计方法在水稳剂配方研制中的应用,精细石油化工,2000年05期
    [67].杨世昕,2-甲基-5(4)-硝基咪唑合成的均匀设计试验,华西药学,1999年04期
    [68].范建春,吴庆轩等,微乳液对Cd(Ⅱ)-PAN光度分析法的增敏条件优化研
    
    究,广西大学学报(自然科学版),2000年02期
    [69].赵天波,李凤艳,均匀设计与调优软件在配方研究中的应用,石油化工
    高等学校学报,1998年04期
    [70].简济斌、张建方,偏差的误用,数理统计与管理,1996年04期
    [71].马长兴,均匀性的一个新度量准则—对称偏差,南开大学学报(自然科学版),1997年01期
    [72].方开泰、郑胡灵,均匀设计的新度量——最大对称差准则,应用概率统计,V8,p2-16,1992
    [73].项可风、吴启光,试验设计与数据分析,上海科学技术出版社,1989
    [74].方开泰、全辉、陈庆云,实用回归分析,科学出版社,1988
    [75].郭拥军,水溶性聚合物/表面活性剂相互作用研究——从溶液到固/液界面,西南石油学院博士学位论文,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700