用户名: 密码: 验证码:
苯乙烯-丁二烯-苯乙烯(SBS)热塑性弹性体的固相力化学改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将固相力化学技术引入苯乙烯-丁二烯-苯乙烯(SBS)三嵌段热塑性弹性体的改性。利用磨盘形力化学反应器独特的挤压和剪切力场的作用,制备了多种不同粒径及分布的塑料超微粉对SBS进行填充改性,并改变加工温度进一步调控和优化塑料分散相在橡胶中的分散结构及相界面,利用通用塑料和工程塑料复合微粉在弹性体中形成具有模量梯度和结构梯度的分散相结构,达到提高弹性体性能的目的;利用磨盘剪切力场,在固态下实现了层状硅酸盐材料(蒙脱土)片层剥离,制备了亚微米及纳米尺寸的粘土片层,并通过高聚物微粉的隔离作用,解决了无机纳米粉体自身的团聚、在高粘度聚合物基体中难以均匀分散以及无机分散相与聚合物基体相界面结合弱等技术难题,同时利用塑料熔融包覆粘土粒子,以及包覆复合粒子在温度变化后变形、粘连,形成新的具有结构梯度和模量梯度的分散相结构的特点,为调控无机粒子在高聚物基体中的相结构提出新的学术思想;实现了低分子有机酸酐、大分子有机酸酐、过氧化物及热固性树脂等对SBS的固相改性,将高效、清洁的物理新技术引入聚合物加工领域,为弹性体的改性提供新的思路。
     一、首次利用TEM、AFM、DSC、XPS、FTIR及分子量分析和性能测试深入系统研究了磨盘形力化学反应器独特的剪切和挤压力场下热塑性弹性体材料的力化学行为,探讨应力对具有独特相结构的SBS的粉碎特性、粉碎过程粒度变化、分散相与连续相结构变化、分子链断裂与交联、分子量变化、分子结
    
     摘 要
    一
    构变化以及对力学性能的影响等。
     SBS经磨盘碾磨 18亿0次,变成粒度为 50l00 u m的粒子,继续碾磨使已
    破碎粒子重新聚集并形成纤维状结构。碾磨使SBS分子量下降。碾磨造成SBS
    分子链中PS分散相在纳米尺度出现畸变、拉伸、推移现象,部分区域相互连接,-
    相区尺寸增大,最大尺寸接近 100urn。碾磨对 SBS的力学性能影响不大。SBS中-.
    以玻璃态形式存在的分散相更易受磨盘的挤压和剪切作用,碾磨过程产生了力
    化学活化,促进了SBS分子链的断裂与交联,形成的自由基及分子中不饱和双
    键更易发生氧化反应。
     二、研究了多种塑料超微粉与甜S共混制备共混物的结构与性能,利用-_
    PP仔A6复合微粉在SBS中形成具有结构梯度和模量梯度的分散相,制备了高性
    能弹性体材料。。_
     研究了PP、PS微粉对SBS的改性效果,提出了在SBS中加入PS超微粉
    以代替合成工艺中改变SBS嵌段共聚物中PS嵌段比的新思想。
     研究了不同加工温度下SBSNP/PA6共混物的结构及性能,成功利用了两
    种塑料熔融温度及粘度的差异,首先使PP熔融包覆PA6粒子,又使PP粒子粘_-
    连,控制其在SBS中的相结构和分布,从而达到控制共混物性能的目的,制备-
    了高性能弹性体材料JP/PA6复合微粉含量为 4%,共混物拉伸强度从 12尸 MPa
    提高到 24 MPa,提高了近一倍,撕裂强度、定伸强度也大幅度提高,并保持橡
    胶的高弹性。微粉含量为6-8%时,共混物经48h热空气老化后的拉伸强度与_
    SBS未老化原料一样,撕裂性能高出原来SBS的一倍多。含量为10%l%时一
    老化后拉伸强度达到 23MPa,而纯 SBS老化后的拉伸强度从 12.7 MPa下降到 4
    MPa。微粉含量为4%时,10%材料热失重温度提高16.7℃,最大热失重温度提高_
    25℃。研究了简单机械混合、双辊炼胶机混合和磨盘碾磨混合三种加工方法制 一\
    备SBS”P/PA6共混物结构与性能。研究了四种不同粒径PP/PA6微粉制备共
    混物的结构与性能,在2个4%含量下,共混物拉伸强度随粒径增大而增加;在
    6叫%含量下,共混物拉伸强度差异不大;超过 10%含量,细粒子填充共混物力
    学性能较好。
     有机超细粒子粒度和粒度分布可调,且在温度场、应力场下具有更大的可
    变形性,可获得微纤、薄层等特殊相态结构。塑料相能够随橡胶链在外力作用
    下取向变形并保持与橡胶相良好的界面结合,共混物具有常规方法无法获得的
     2
    
     四川大学博士学位论文
     性能。
     三、通过SEM、TEM、TG、DSC分析及力学性能测试,研究了利用磨盘形
     力化学反应器独特的剪切、挤压作用,在固态下使粘土片层结构滑移、剥离,
     并与SBS复合,制备了高性能弹性体复合材料。
     研究了钠基蒙脱土、有机蒙脱土与SBS以及PS与粘土在磨盘中共碾磨后粘
     土片层剥离情况,以及与SBS共混制备复合材料的结构与性能,并与双辊共混
     做了比较。
     研究了PP与粘土共碾磨后粘土片层剥离情况,以及PP/粘土复合微粉填充
     SBS制备复合材料的结构与性能。发现PP与粘土共碾磨可使粘土剥离成纳米片
     层均匀分布于 SBS基体,大多数片层厚度为 30《,长度为 0.5 n m左右。PP/
     粘土复合微粉填充 SBS,可以制备出高性能弹性体复合材料。SBS中添加 2%PP/
     粘土复合微粉,材料的拉伸强度从 12.7MPa提
A novel technique, pan-milling mechanochemistry was developed to modify styrene-butadiene-styrene (SBS) triblock thermoplastic elastomer in solid state at ambient temperature.
    The unique press and shear stress of the self-designed pan type milling equipment was used to prepare different particle size and particle size distribution of plastic ultra fine powders to fill and modify the SBS, furthermore, the processing temperature was changed to control and optimize the microstructure and interfacial compatibility of plastics in elastomer.
    The shear stress produced by pan-mill was utilized to exfoliate the lamellar silicate clay mineral (montmorillonite) and the lamellar clay with sub-micron and nano meter particle size was produced, which was separated by the polymer fine powders. The problems of inorganic nano-powders aggregating in high viscosity polymeric matrix and bad interfacial compatibility between inorganic dispersing phase and organic polymeric matrix are therefore solved. This is a new idea to control the inorganic dispersing phase in polymeric matrix by capsulating clay particle with melted plastics and the co-particles deforming to form new gradient modulus and dispersing structure at the processing temperature.
    The SBS was modified in solid state by MAH, H2O2, CH3COOOH, epoxy resin, phenol and colophony. A new processing method is proposed to introduce a high efficiency and clean physic technique into the chemical modification of elastomer.
    1. By using TEM, AFM, DSC, XPS, SEM, FTIR, molecular weight
    
    
    Abstract
    determination and mechanical properties testing, the mechanochemical action of the thermopastic elastomer (SBS) was investigated systematically in unique press and shear stress produced by pan type milling equipment. The effects of stress on the pulverizing characteristic, particle shape variation, the change of phase structure, the breaking and crosslinking of molecular chain and the change of mechanical property of SBS were studied.
    After 18-20 cycles milling, the SBS was pulverized into the powder with the particle size of 50-100 um, the pulverized particle will aggregate to form fibrous structure by further milling. The molecular weight of SBS decreases in milling. The PS domains in SBS are distorted, stretched and moved after milling. The PS domain in some field forms partial continuous phase and the maximum phase size is nearly 100nm. The mechanical properties of SBS change little in milling. The mechanochemical activation of SBS is produced by pan milling, so that the breaking and crosslinking of the SBS molecular chain is accelerated and the SBS is easier oxidized.
    2. The structure and properties of SBS / different plastic powder blends were studied.
    The reinforcing effect of SBS filled PP and PS powder was investigated. A new method is proposed in filling PS powder into SBS to substitute the synthetic technological process to change the content of PS block in SBS triblock co-polymer.
    The structure and properties of SBS /PP/PA6 blends processed in different temperature were investigated. The aim of controlling the plastic microstructure is realized and thus to enhance the properties of the blend by capsulating PA6 particle with melting PP according to the different melting temperature and viscosity of PP and PA6. When the content of the PP/PA6 plastic co-powder is 4-10%, the tensile strengths of the blends enhance nearly double, reaching to 24 MPa, and the tear strength and modulus also increase obviously. The high elasticity of the elastomer is constant. After 48 hours thermo-oxidative aging, the tensile strength of the blend still is the same as that of the SBS before aging and the tear strength is double in the content of the plastic co-powder 6-8%. When the content of plastic co-powder is
    
    10-15%, the tensile strength of the blends reaches to 23 MPa after aging. When the content of the co-powder is 4%, the temperatures of 10% weight loss and the maximum weight loss of the blends in TG analysis increase 16.7 癈 and increases 25癈,respectively.
    Th
引文
1.焦书科,合成橡胶工业,1993,16:172
    2.陈中华,蔡书银,王斌,弹性体,1993,3:44
    3. Passagli E., Ghetti S., Macromolecules, 1989,22:662
    5.杨京伟,鲍浪,徐瑞清,合成橡胶工业,2000,23:31
    6.陈雪,张俊,杨昌正等,功能高分子学报,1998,11:39
    7.黄雪红,许国强,石油化工,1998,27:648
    8.叶林忠,刘新民,潘炯玺,特种橡胶制品,1997,18,17
    9.G de Boer(印尼),张永泰译,实用橡胶学,广卅热带作物杂志社,广卅,1958,25
    10.北京化工学院化工史编写组,化学工业发展简史,北京科学出版社,北京,1985,97
    11.杨清芝,现代橡胶工艺学,北京中国石化出版社,北京,1997,243
    12.朱敏,橡胶化学力物理,化学工业出版社,北京,1984,327
    13. Schidrowitz P., Dawson T.R., History of the rubber Industry, Published for Institution of the Rubber Industry by W Heffer Son, Cambridge, 1952
    14. Brydson J. A., Rubber Chemistry, Applied Science Publishers Ltd., London, 1978
    15. Herbert Morawetz, Rubber Chemistry and Technology, 2000,73(3):405
    17. Crain News Service, Europe Rubber Journal, 1994, 196(5):4
    18. Schollenberger C.S., Rubber World, 1958,137:549
    19. Anon A., Chemical and Engineering News, 1964,42(11):54
    20.何祚云,合成橡胶工业,1999,22:31
    21.洪古明,化工资讯月刊,1995,8(5):30
    22.金关泰,金日光,汤宗汤,热塑性弹性体,化学工业出版社,北京,1983,182
    23.陈国,刘文冰,王永利,化工新型材料,2001,29(8):8
    24.董汝秀,徐瑞清,合成橡胶工业,1999,3:232
    25. Holden G., Olefin hydrogenation catalyst, Rubber World, 1978,8:18
    26. Jennifer Shearman, Chemistry Engineering, 1992,99(8):61
    27. US.3795615
    28.日本特许(公开),昭58—17103
    29. US.4125569
    
    
    30.谢洪泉,李晓东,合成橡胶工业,1998,2:194
    31.陈滇宝,钟铃,张晓华,合成橡胶工业,1999,22:216
    32.陈中华,王斌,李士杰,弹性体,1993,3(2):44
    33.邹其超,张玉,何本桥,胶体与聚合物,2000,18:30
    34. Xigao Jian, Journal of Polymer Science, Part A, 1991,29:1183
    35. Udipi K., Journal of Applied Polymer Science, 1979, 23:245
    36.赵龙,穆瑞凤,王用成等,合成橡胶工业,1997,20:94
    37.贺小华,刘桂生,弹性体,1998,8(4):12
    38.张东亮,李锦春,罗士平等,化学与粘合,2000,(1):7
    39. Killman S.H., Adhesives Age, 1989, (24):24
    40.叶小薇,石炼石,朱级,合成橡胶工业,1995,18:8
    41.张长德,鲍浪,中国胶粘剂,1999,3(3):15
    42.杨建军,吴明元,查刘生,化学世界,1995,36:650
    43.于敏,李广宁,李子东,中国粘合剂,1996,5(5):29
    44. Ciair D.J.S., Rubber Chemistry and Technology, 1982, 55(1):208
    45.向福如,马兴明,粘合剂,1987,(4):4
    46.陈中华,李建宗,合成橡胶工业,1993,(4):18
    47.张琳,代模栏,成都科技大学学报,1988,(1):23
    48.伊田文子,科学与工业,1963,37:230
    49.系山谦治,日本接着协会志,1984,6:20
    50.姚壮为,王广佳,合成橡胶工业,1989,12(2):130
    51.王杰,王广待,合成橡胶工业,1991,14(5):369
    52.谈晓宏,中国胶粘剂,1998,7(2):10
    53.董建华,材料导报,1999,13(5):2
    54. Utracki L.A., Polymer Engineering and Science, 1995,35(1):2,
    55. Lemstra P.L., 16th Annual Meeting of PPS, Shanghai, 2000,75
    56. Franzheim 0., Stephan M., Advance in Polymer Technology, 1997,16:1
    57. Lacroix C., Grmela M., Carreau P.J., Fluid Mechanics, 1999,86:37,
    58. Potente H., Bastian M., 16th Annual Meeting of PPS, Shanghai, 2000,354
    59. Wetzel E.D., TouchC. L., International Journal of Multiphase Flow, 1999,25:25
    
    
    60. Noryl G.T.X, Commericial Product of General Electric, Catalog Handbook of Fine Chemicals, 1996-1997
    61. Champagne M.F., Huneault M.A., Polymer Engineering and Science, 1999,39:976
    62. Guo H.F., Gvozdic N.V., Polymer, 1997,38:785
    63. Corish P.J., Powell B,D., Rubber Chemistry and Technology, 1974,47:481
    64.邓本诚,合成橡胶工业,1991,14(1):66
    65.邓本诚,橡胶并用与橡塑共混技术,化学工业出版社,北京,1998,113
    66. Tokita N., Rubber Chemistry and Technology, 1975,48(4):631
    67. Tripathy A.R., Das C.K., Plastics, Rubber and Composite and Application, 1994,21(5):2830.
    68.王迪珍,徐筱丹,李航,合成橡胶工业,1996,19(3):171
    69.刘毓真,王军,周友生,橡胶工业,1996,43(1):20
    70. Nasir M., Choo C.H., European Polymer Journal, 1989,25, (4):355
    71.焦宁宁,王建明,合成橡胶工业,2001,24(1):5
    72.纪奎江,邓本诚,李俊山,丁腈橡胶加工与应用,化学工业出版社,北京,1978,324
    73.佐武邦夫,日本橡胶协会志,1968,41(2):31
    74.井上功一,橡胶工业,1987,(4):28
    75. Echte A., Rubber Toughene Plastics. Washington: ACS, 1989,15
    76. Chun J.H., Malny K.S., International Journal Polymeric Materials, 1988.12(2):165
    77. Keskkula H., Polymer, 1987,28(12):2063
    78. U.S.4335032
    79. B.P.1431194
    80.日本特许(公开),昭59—221353
    81. Okamoto Y., Miyagi H., Macromolecules, 1991,24(20):5639
    82. Shundo M., Hidaka T., Goto K., Journal of Applied Polymer Science, 1968,12:975
    83. Satake K., Journal of Applied Polymer Science, 1970,14:1007
    84. Michael Roland C., Rubber Chemistry and Technology, 1989,62:456
    85. Morton M.., Journal of Elastoplastics, 1971,3:112
    86. Satake K., Journal of Applied Polymer Science, 1971,15:1819
    
    
    87. Gary R. Hamed, Rubber Chemistry and Technology, 2000,73:524,
    88.马军,熊茂林,冯予星,合成橡胶工业,2000,23(5):365
    89. Ruffell J.F.E., History of rubber industry, Chapter5, Schidrowitz P, (Ed) Heffer, 1952
    90. Stern H.J., Rubber natural and synthetic, Mac-Claren and Sons Ltd., London, 1967
    91. Boonstra B.B., Rubber technology , Chapter3, Morton, M., (Ed) VNB, New York,1965
    92. Kraus G., Science and technology of Rubber, Chapter8, Eirich. F.R., (Ed) AP,New York, 1978
    93.朱玉俊,弹性体的力学改性,北京科学技术出版社,北京,1992,87
    94. Voet A., Rubber Woirld, 1962,164(2): 48
    95. Mullins L., Rubber Chemistry and Technology, 1969,42:339
    96. Blanhard A.F., Applied Science of Rubber, Naunton, W,J., (Ed),Edwaed Arnold,London, 1961
    97. Bueche F., Reinforcrment of Elastomers, Krauls, G, (Ed),Interscience Publishers, 1965
    98. Kaufman S.J., Polymer, Science, PartA, 1971,29(2):829
    99. Boonstra B.B., Journal of Polymer Science, 1969,11:389
    100.宋名实,胡桂贤,张元宁,橡胶工业,1989,36:37
    101. Young G.J., Journal of Colloid Science, 1960,15:361
    102. Dannenberg E.M., Rubber Chemistry and Technology, 1982,55:860
    103.潘伟,翟普,刘立志,材料研究学报,1997,11(4):397
    104.段先健,张立群,伍社毛,合成橡胶工业,2000,23(3):148
    105. Vondracek P., Rubber Chemistry and Technology, 1984,57:675
    106.章文贡,陈田安,苏光东,中国塑料,1989,3(4):30
    107.邹恩广,现代塑料加工应用,1996,(1):126
    108. Laurer J.H., Winey K.I., Macromolecules, 1998,31:9106
    109.张立群,吴友平,王益庆,合成橡胶工业,2000,23(2):171
    110.张惠峰,冯予星,吴友平,橡胶工业,2001,48(1):10
    111.刘景春,韩建成,硅酸盐通报,1998,(6):52
    
    
    112.孟翠省,化工新型材料,2001,29(2):3
    113.王立新,张楷亮,任丽,复合材料学报,2001,18(3):5
    114.郝爱,弹性体,2001,11(1):7
    115. Shinzo Kohjiva, Rubber Chemistry and Technology, 2000,73:534
    116.张乃娴,李幼琴,粘土矿物研究方法,科学出版社,北京,1990,69
    117.乔放,李强,漆宗能,高分子通报,1997,(3):135
    118. Vasia R. A., Chemistry Materials, 1993,5(12):1694
    119. U.S. 4889885
    120. Okada A., Arimitsu U., Materials Science and Engineering, 1993 ,C3:109
    121. Shengjie W., Chengfen L. , Journal of Applied Polymer Science, 1998,69:1557
    122. Laus M., Frencescangeli 0., Sandrolini F., Journal of Materials Research. 1997,12(11):3134
    123. U.S. 5840796A
    124.张立群,王一中,王益庆,特种橡胶制品,1998,19(2):6
    125.张立群,孙朝晖,王一中,橡胶工业,1999,46(4):213
    126. Wolff S., Rubber Chemistry and Technology, 1996,69:325
    127. Sun C.C., Mark J.E., Journal Polymer Science, Part B, 1987,25:1561
    128. Hashim A.S., Kojiya S., Journal Polymer Science,, Part A, 1994,32:1149
    129. Ning Y.P., Tang M.Y., Journal of Applied Polymer Science ,1984,29:3209
    130. Huang Z.H., Dong J.H., Qiu K.Y., Journal of Applied Polymer Science ,1997,66:853
    131. tanahashi H., Osanai S., Rubber Chemistry and Technology, 1996,69:325
    132. Burnside S. D., Giannelis, E.P.. Chemistry of Materials 1998,71:38
    133.王益庆,北京化工大学学报,2000,27(1):86
    134. Antonio Casale, Roger S Porter, Rubber Chemistry and Technology, 1971,44:534
    135.巴拉姆鲍伊姆(苏联),江畹兰译,高分子化合物力化学,化学工业出版社,1982,北京,147
    136.张士齐,塑料、橡胶的力化学反应,青岛出版社,1991,青岛,
    137. Baramboim N.K., Lejkaya Prou 10, 1950, (4):22
    138. Baramboim N.K., Zhur. Fiz. Khim. 1958,32:806,
    
    
    139. Baramboim N.K., Zhur. Fiz. Khim. 1958,32:1248,
    140. Bueche F., Journal of Applied Polymer Science ,1960,4:101
    141. Kusano T., Journal of Polymer Science, 1972,10:2823
    142. Tobolsky A.Y., Journal of Polymer Science, 1959,40:443
    143. Krotovd N.A., Adhesion, 1972,3:325
    144. Schnabel W., Schmidt W.F., Journal of Polymer Science, 1973, (42):273
    145. Korsukov V.E., Wettegren V.J., Angew. Chem, 1965,77(2):332
    146. Baramboim N. K, Polymer Science, 1963,4:41
    147. Watson W.F., Rubber Chemistry and Technology, 1960,33:80
    148. Porter R.S., Johnson J.F., Journal of Physics Chemistry, 1964,35:15
    149. Watson W.F., Industry Engineering Chemistry, 1955,47:1281
    150. Xu Xi, Guo Shaoyun, Polymer Plastics Technology Engineering, 1995,34(4):621
    151. Xu Xi, Qi Wang, Plastics, Rubber and Composites Processing and Application,1996,25:(3):152
    152. Qi Wang, Jizhuang Cao, Polymer International, 1996,41:245
    153. Changsheng Liu, Qi Wang, Journal of Applied Polymer Science, 2000,78:2191
    154.张士齐,邓知庆,周翠微,橡胶工业,1991,38(12):739
    155.张士齐,周翠微,邓知庆,橡胶工业,1988,35(10):616
    156. Staudinger h., Rubber Chemistry and Technology, 1932,5:278
    157. Kauzman W., Journal of American ChemistrySociety, 1960,62:3113
    158.张士齐,周翠微,黄爱华,橡胶工业,1990,(4):277
    159. Jamoroz M., Journal Polymer Science, Part A, 1977.15:1359
    160.刘约翰,展圣仙,叶林忠,橡胶工业,1989,36,(8):452
    161.张士齐,刘约翰,黄静贤,橡胶工业,1990,37(7):416
    162. Nagamura T., Journal of Polymer Science, 1973, A2,11:2357
    163.张士齐,黄爱华,戴庆平,橡胶工业,1990,(6):354
    164. Lake G.J., Rubber Age, 1972,104(8):30
    165. Garten V.A., Rubber Chemistry and Technology, 1956,29:1434
    166. Kyzminckii A.S., Rubber Chemistry and Technology, 1956,29:770
    167. Reztsove E. V. Rubber Chemistry and Technology, 1960,33:940
    
    
    168. DeVries K.L., Journal of Polymer Science, Part A, 1970,8:237
    169. Cunnen J.I., Rubber Chemistry and Technology, 1970,43:1215
    170. Lake G.J., Rubber Age, 1972,104(10:39
    171. Ceresa R..J., Block and Graft Copolymer, Chapter 5, Butterusorths, London,1962
    172. Casale A., Rubber Chemistry and Technology, 1971,44(2):534
    173. Angier D.J., Journal of Polymer Science, 1955,13:129
    174. Slonimskii G.L., Rubber Chemistry and Technology,1960,33:457
    175. Angier D.J., Trans. IRI, 1957,33:22
    176. Angler D.J., Journal of Polymer Science, 1957,25:1
    177. Kovarskaya B.M., Rubber Chemistry and Technology,,1960,33:964
    178. Ceran A. Y., Rubber Chemistry and Technology, 1982,55:116
    179.R.J.薛利沙(英),甘景镐译,嵌段与接枝共聚物,上海科学技术出版社,上海,1966
    180. Italian Patent 652608(1961)
    181. Allen P.E.M., Journal of Polymer Science, 1958,33:213
    182. Nakamo A., Journal of Applied Polymer Science , 1971,15:927
    183. Odrisco K. F., Journal of . Applied Polymer Symposium, 1975,26:135
    184. Wang Qi, Cao J.Z., Huang J. G., Xu Xi, Polymer Engineering and Science,1997,37:1091
    185.王琪,徐僖,高等学校化学学报,1997,8(7):1197
    186.陈哲,王琪,徐僖,高分子学报,2001,(1):13
    187. Zhe Zhen, Qi Wang ,Polymer Engineering and Science, 2001,41(7):1187
    188.刘才林,王琪,高分子材料科学与工程,1999,15:85
    189. Thomas P., Industry Engineering and Chemistry, 1940,28:216
    190.张士齐,郝立新,合成橡胶工业,1987,(4):277
    191.刘长生,四川大学博士学位论文,2000
    192. Staudinger H., Kautschuk, 1929,5:128
    193. Matsuo M., Polymer, 1968,9:425
    194.邓启明,陈淑琳,冯富嫱,合成橡胶工业,1980,3(6):378
    195.陈桂英,张彦,刘青,合成橡胶工业,1988,11(6):431
    
    
    196.徐建波,陈建和,陈京治,石油沥青,1999,13(4):26
    197. Holden G., Bishop E.T., Journal of Polymer Science, 1969,26C:37
    198. Mcintyre D.,Campos-Lopez, Macromolecules, 1970,3:322
    199.王靖,世界橡胶工业,1998,25(4):47
    200.高海银,周腊生,胡本坚,橡胶工业,1996,43:96
    201.贾红兵,金志刚,吉庆敏,橡胶工业,1999,46:590
    202.赵鸣,曲剑舞,煤炭学报,1999,24(6):648
    203.徐定宇,聚合物形态与加工,中国石化出版社:北京,1992:198
    204. Satake K., Journal of Applied Polymer Science, 1970,14:1007
    205. Satake K., Journal of Applied Polymer Science, 1971,15:2775
    206.贾少晋,张志成,刘卫,核技术,2000,23:540
    207.钱知勉,塑料性能应用手册,上海科学技术文献出版社,上海,1985:33—44
    208.叶林忠,刘新民,特种橡胶制品 1997,18(6):17
    209.叶林忠,刘新民,朱玉和,塑料科技,1998,(3):26
    210.邓洪,橡胶工业,1996,43:410
    211. Shi Ai Xu, Sie Chin Tjong, Polymer Journal, 2000,32:208
    212. Nitin Y. Vaidya, Chang Dae Hah, Do Kim, Macromolecules, 2001,34:222
    213. Smallwood H.M., Journal Applied Physics, 1944,15:758
    214. Medalia A.I., Journal of Colloid Interface Science, 1970,32:115
    215. Slonimskii G.L., Reztsova E. V., Journal of Physics Chemistry, 1959,33:480
    216.何道纲,橡塑并用技术及原理,四川大学出版社,成都,1991,52
    217.程俊,钱军民,卢凤纪,化工新型材料,2001,29(2):7
    218.马军,张宏宇,田兆兵,橡胶工业,2000,47(10):588
    219. Ceresa R.J., Polymer, 1960,1:72
    220.马军,张惠峰,赵阳,橡胶工业,2000,47(6):323
    221.孙文山,韩志东,张显友,电机与控制学报,2000,4(1):55
    222.苏伟梁,高分子材料科学与工程,2001,17(5):1
    223.赵卫兵,井新利,王扬勇,工程塑料应用,2001,29(2):16
    224.邹建龙,沈宁祥,周家敏,高分子材料科学与工程,2000,16(3):10
    225.方岱宁,复合材料学报,2000,17(2):1
    
    
    226. Cher C. C., Polymer Engineering and Science, 1993,33(14):923
    227.吴培熙,张留城,聚合物共混原理,轻工业出版社,北京,1996:96
    228.B.M.沃克(美),热塑性弹性体手册,化学工业出版社,北京,1984:219
    229.杨伏生,周安宁,葛岭梅,化工进展,2001,(8):9
    230.巩雄,郭永,杨宏秀,化学通报,1998,(3):19
    231.李泉,曾广赋,化学通报,1995,(6):29
    232.刘华蓉,葛学武,倪永红,化学进展,2001,13:403
    233.何恩广,材料导报,2001,15(5):40
    234.肖明艳,陈建敏,高分子材料科学与工程,2001,17(5):6
    235.陈国华,李明春,姚康德,高分子材料科学与工程,1999,16(3):9
    236. Okada a, Kawasui M, Polymer Preprint, 1987,28(2):447
    237.朱光明,化工新型材料,2001,29(9):18
    238.林鸿福,林峰,化工新型材料,2001,29(4):20
    239. Usuki A., Kojoma Y., Polymer Preprint, 1987,28:447
    240. Liu L.M., Journal of Applied Polymer Science, 1999,71:1133
    241.顾朝霞,橡胶工业,2001,48:45
    242.图托尔斯基(俄),中国石化出版社,北京,1998,5
    243.张长德,鲍浪,中国胶粘剂,1994,3(3):15
    244. Shing-Chung Wong, Yiu-Wing Mai, Polymer, 2000,41:5471
    245.陈绪煌,严海标,合成树脂与塑料,1999,16(3):41
    246.谢志民,张丁浩,盛京,中国塑料,2001,15(11):44
    247.姚似玉,黄素娟,高分子材料科学与工程,1994,(5):66
    248.Wang Xiaosong,合成橡胶工业,2000,23:13
    249.马三荣,合成树脂与塑料,1991,(2):60
    250.亓敏,王文才,合成树脂与塑料,2001,18:15
    251.晋日亚,贺增弟,现代塑料加工应用,2001,13(1):62
    252. Angier D.J., Journal of Polymer Science, 1959,34:699
    253. Waston W.F., Chemistry Age, 1958,79:450
    254.张南燕,陈立班,广卅化学,1999,(4):49
    255.邹其超,张玉红,胶体与聚合物,2000,18(3):30
    
    
    256.Hildon A.M.,Ger Offen,1976,:602
    257.杨科珂,孙红,四川大学学报,1999,36(1):166
    258.江畹兰,世界橡胶工业,2001,28(1):2
    259.邸明伟,张军营,化学与粘合,2000,(1):29
    260.肖发荣,刘芳,华南理工大学学报,1994,22(6):31
    261.邸明伟,姜兴盛,张军营,化学与粘合,2000,(3):35
    262.郭淑华,石油沥青,2000,14(2):6
    263.王涛夕,李梅,青岛化工学院学报,1993,14:37
    264.于进军,王燕飞,石化技术,2000,7(2):121
    265.刘国清,王文军,公路,1999,(6):34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700