用户名: 密码: 验证码:
松辽盆地北部深层天然气富集主控因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在调研了国内外天然气勘探理论与技术发展的基础上,针对松辽盆地深层天然气勘探所面临的基本理论问题,从天然气的特点出发,指出气源条件(生气量、生气强度、生气期)和保存条件(盖层、断层、天然气扩散)是决定天然气富集规模的主控因素,并重点对松辽盆地深层天然气在地质历史中的生成、扩散和保存进行了深入研究,为客观合理地获取深层天然气资源量奠定基础。
     在气源条件研究中,以化学动力学理论为主线对天然气的生成过程和生成量进行了动态、定量评价。这一工作包括:为标定有机质成油、成气的化学动力学模型,设计进行了恒速升温热模拟实验;为标定油成气的化学动力学模型,设计进行了等温的油裂解成气的热模拟实验;为建立油中各族组分(饱和烃、芳烃、非烃、沥青质)成气的化学动力学模型,进行了恒温或恒速升温模拟实验。在上述实验基础上,建立了松辽盆地北部深层源岩有机质初次裂解成油、成气的化学动力学模型,为评价深层源岩于不同时期的生油量、生气量奠定了基础;建立了不同性质原油及原油中各族组分二次裂解成气的化学动力学模型,为动态评价油裂解过程的成气量和耗油量提供了理论依据和实用方法;对盆地深层源岩的地化特征进行了系统评价;考虑到深层源岩的成熟度较高,实测地化指标(残余有机碳、氢指数等)不能客观反映源岩有机质的原始丰度和原始生烃潜力。本文利用化学动力学模型计算的生烃率,建立并实现了通过逐步递推来恢复有机质的原始生烃潜力和原始有机碳。研究结果表明,松辽盆地北部深层恢复后的生烃潜力可达到恢复前的46倍,原始丰度可达到恢复前的2.2倍。在上述工作的基础上,对深层源岩的生烃剖面、生烃史、生烃强度、不同时期的生烃量及累积生烃量进行了系统评价,结果表明:松辽盆地北部深层现今净生油量为67.76×1O~8t,排油量为43.99×1O~8t,累计生气量为74.27×1O~(12)m~3,排气量为62.3×10~(12)m~3。
     在天然气保存研究中,主要探讨了盖层封盖性与断层封闭性。在详细论述了松辽盆地北部深层天然气盖层宏观和微观发育特征的基础上,对研究区天然气的盖层封闭能力进行了综合评价,创造性地提出了利用天然气通过泥质岩盖层的渗滤速度综合评价盖层的方法。评价结果表明松辽盆地北部深层登娄库组盖层在古龙凹陷中心处为好的封盖区,肇州—肇源一双深4井一带为中等盖层分布区,其余地区皆为较好的封盖区,泉一、二段盖层在古龙断陷及长垣以东大部分地区为好的封盖区,中等封盖区主要分布于林甸和松基1井附近,泰康地区为差的封盖区,其余地区皆为较好的封盖区。断层的封闭性则利用砂泥对接概率方法和断面压力及断裂带泥质含量方法来进行评价的,用此方法全面评价了松辽盆地北部深层各个时期断层的侧向封闭性及垂向封闭性能,得到了令人满意的结果。
     在天然气扩散研究中,为了获取地层条件下天然气扩散系数,本文选取17块不同物性的人造石英粉砂岩样品利用封闭式方法在0.2MPa和20℃条件下进行干、湿样条件下天然气的扩散实验,利用实验获得的干、湿样天然气扩散系数的倍数与孔隙度之间的关系,对实测天然气扩散系数进行饱和介质转换,利用修正后的爱因斯坦方程对实测天然气扩散系数进行温度校正。根据气源岩空间分布关系,利用系统论的思想,首次提出了天然气扩散系统概念,并划分出三套深层天然气扩散系统(sh+yc~d_2、d_2~q_n和sh+yc~q_n),并以此为基础估算了松辽盆地北部深层天然气扩散损失量。扩散总量为16.35×10~(12)m~3,深层源岩的累计生气量为74.27×10~(12)m~3,扩散量占总生气量的22.2%。沙河子组~营城组扩散总量为10.80×10~(12)m~3,占该组生气量的16.1%。登二段气源岩的扩散量为55.55×10~(12)m~3,占该段生气量的81.6%。
     在以上工作基础上,对深层天然气源岩-盖层系统的时空配置进行了深入探讨。在天然气聚集系数的选取中综合考虑了构造运动、盖层条件、扩散作用及排气强度的影响,使深层天然气资源量计算更加合理可信。本次研究计算的深层天然气资源量为5650×1O~8m~3,同时,指出松辽盆地北部深层天然气成藏与分布的有利地区,主要分布于西部古龙断陷及其周围和东部徐家围子断陷及其周围。
This paper, in accordance with the basis theoretical problems for natural gas exploration in deep-formation in the north of Songliao basin, according to the practical features, point out that gas source condition(gas-generating amount, gas-generating intensity, gsa-generating period) and reservation condition(cap rocks, faults, dissipation of natural gas) are main controlling factors determining accumulation of natural gas, and emphatically studied generation, dissipation and conservation of natural gas in geologic history to acquire objectively and rationally the resource amount of deep-formation natural gas on the basis of investigating the development of natural gas exploration theory and technology from home and abroad.
    In study of gas source condition, the quantitative dynamic evaluation of generation of natural gas and gas-generating amount are made on the basis of chemical dynamics. This work include: In order to demarcate chemical kinetic model inwhich organic matter generate oil and gas, constant velocity, rising temperature thermal modeling experiment is designed; In order to demarcate chemical kinetic model inwhich oil crack into gas, isothermic thermal modeling experiment inwhich oil crack into gas is designed ; In order to establish chemical kinetic model inwhich family constituents in oil (saturated hydrocarbon, arene, non-hydrocarbon,bitumen ) change into gas, isothermic or constant velocity jsothermal modeling experiment is designed. On the basis of above experiments, the chemical kinetic model inwhich organic matter of source rock of deep-formation in the north of Songliao basin primarily crack into oil or gas is established, which set up a basis for evaluating oil-generating amount, gas-generating amount of source rock of deep formation in different periods; set up the chemical kinetic model inwhich different qualities of oil and family constituents in oil secondarily cracked into gas, which provide theoretical foundation and practical methods for dynamic evaluation of gas-generating amount and oil-consuming amount in process of oil cracking. The geochemical features of source rocks in deep-formation of basins are systematically evaluated. Considered that the maturity of deep-formation source rocks is relative high and the practical tested geochemical index (remnant organic carbon, hydrogen index etc)can not objectively reflect the original abundance and original hydrocarbon-generating potential of organic matter in source rocks, original hydrocarbon-generating potential and original organic carbon of organic matter are restored from progressive recurrence using chemical kenetic models to calculate hydrocarbon-generating rate in this paper. The studied results illustrate that the restored hydrocarbon-generating potential of deep-formation in the north of Songliao basin is as 46 times as that of unrestored , and the original abundance is as 2.2 times as that of unrestored .On the basis of above studies, the hydrocarbon-generating profiles, hydrocarbon-generating history, hydrocarbon-generating intensity, hydrocarbon-generating amount in different periods and total up hydrocarbon-generating amount in deep-formation source rocks are systematically evaluated. The results illustrate that the present net
    oil-generating amount of deep-formation in the north of Songliao basin was calculated, being 67.76 X 10 t,
    oil-discharging amount 43.99 X 10 t , accumulative total gas-generating amount 74.27 X 10 m ,
    gas-discharging amount 62.30 X 10 m ,
    In study of conservation condition of natural gas , the sealing property of cap rocks and faults are discussed. On the basis of brilliant exposition of macroscupic and microscupic features of cap rocks of deep-formation natural gas in Songliao basin, the sealing capacity of cap rocks of natural gas in studied area is comprehensively evaluated, and creatively put forward a comprehensive cap rock-evaluating method using percolating velocity which natural gas pass though mudstone cap rocks. The evaluating results illustrate that
    
    
    
    the cap
引文
1.付广,吕延防.1999.天然气扩散作用及其研究方法.石油工业出版社.23-88
    2.郝石生,黄志龙,杨家琦等.1994.天然气运聚动平衡及其应用.石油工业出版社.30-50
    3.郝石生,黄志龙,高耀斌.1991.轻烃扩散系数的研究及天然气运聚动平衡原理.石油学报.第3期.17-24
    4.黄志龙,柳广弟,郝石生等.1993.天然气资源评价的运聚动平衡模型.石油勘探与开发.第3期.16-20
    5.黄志龙,郝石生,杨家琦.1996.川西平落坝构造天然气运聚动平衡研究.天然气工业.第2期.9-11
    6.付广,王朋岩,陈章明.1997.利用间隙填充溶气浓度研究天然气扩散.石油勘探与开发.第3期.86-88
    7.付晓泰,王振平,卢双舫.1996.气体在水中溶解机理及溶解方法.中国科学(B辑).第2期.124-130
    8.张义纲.1991.天然气的生成聚集与保存.河海大学出版社.111-127
    9.张义纲.1991.天然气动态平衡成藏的四个基本条件.石油实验地质.第3期,210-221
    10.李明诚,李伟.1996.利用平衡浓度研究天然气的扩散—扩散量模拟的一种新方法.天然气工业.第3期.1-4
    11.吕延防,付广,高大岭等.1996.油气藏封盖研究.石油工业出版社.4-108
    12.付广,陈章明,万龙贵.1997.烃浓度盖层封闭天然气的有效性及其研究意义.沉积学报.第1期.147-151
    13.付广,姜振学,庞雄奇.1997.盖层烃浓度封闭能力评价方法及应用.石油学报.第1期,39-43
    14.郝石生,陈章明,高耀斌等.1995.天然气藏的形成与保存.石油工业出版社.91-187
    15.付广,吕延防,薛永超等.2000.泥岩盖层压力封闭的演化特征及其研究意义.石油学报.第3期.41-44
    16.付广,陈章明,王朋岩等.1998.松辽盆地三肇凹陷青山口组泥岩盖层封闭能力形成时期.地质论评.第3期.295-301
    17.吕延防,陈章明,陈发景.1995.非线性映射分析判断断层封闭性.石油学报.第2期.36-41
    18.吕延防,李国会,王跃文等.1996.断层封闭性的定量研究方法.石油学报.第3期.39-45
    19.付广,吕延防.1999.大庆长垣以东地区深层天然气扩散系统及扩散量.石油勘探与开发.第2期.101-104
    20.付广,张靖,李庆章.1998.断层侧向封闭模式及研究方法.中国海上油气(地质).第1期.42-46
    21.付广,王朋岩,孙洪斌.1998.断层垂向封闭模式及研究方法.新疆石油地质.第1期.7-10
    22.付广,王朋岩,付晓飞.1999.塔中地区石炭系主要含气区断层侧向封闭性.新疆石油地质.第5期.362-365
    23.王子文,赵锡嘏,卢双舫等.1991.原始有机质丰度的恢复及其意义.大庆石油地质与开发.第10卷.第4期.
    24.王铁冠,钟宁宁等.1990.树脂体成烃的地球化学研究.江汉石油学院学报.第12卷.第1期.
    25.王铁冠,钟宁宁等.1995.低熟油气形成机理与分布.石油工业出版社.
    26.卢双舫,刘晓艳,王子文等.1993.干酪根类型数值化的再探讨.大庆石油学院学报.第17卷.增刊.
    27.卢双舫,王子文,黄第藩等.1995.煤岩显微组分的成烃动力学.中国科学(B辑).第25卷.第1期.第101—107页.
    28.卢双舫,黄第藩,程克明等.1995.煤成油生成和运移的模拟实验研究Ⅲ.甾萜标记物特征及其意义.沉积学报.第13卷.第4期.第91—99页.
    29.卢双舫,付晓泰,王振平等.1996.煤岩有机质成油、成气热模拟动力学模型及其标定.地质科学.第31卷.第1期.第15—21页.
    
    
    30.石广仁等.1994.油气盆地数值模拟方法.石油工业出版社.
    31.吴肇亮,王剑秋,钱家麟.1990.最大反应速率法在生油岩生烃率计算中的应用.石油学报.第11卷.第1期.
    32.杨国华,吴肇亮,刘庆豪等.1990.不同类型干酪根热解生烃动力学研究(一).石油大学学报.第14卷.第1期.
    33.杨国华,吴肇亮,徐伟民等.1990.不同类型干酪根热解生烃动力学研究(二).石油大学学报.第14卷.第2期.
    34.庞雄奇,陈章明,陈发景.1993.含油气盆地地史、热史、生留排烃史数值模拟研究与烃源岩定量评价.地质出版社.
    35.庞雄奇.1995.排烃门限控油气理论与应用.石油工业出版社.
    36.赵锡嘏,党长涛,刘晓艳等.1991.有机质成气反应的表观动力学特征及其意义.石油学报.第12卷.第4期.
    37.黄第藩,王铁冠,秦匡宗等.1995.煤成油的形成和成因机理,石油工业出版社.
    38.程克明.1994.吐哈盆地油气生成.石油工业出版社.
    39.廖静娟,薜爱民.1993.合肥盆地生油岩动力学参数的确定.石油实验地质.第16卷.第3期.第301—307页.
    40. Jon S. Nelson and E. C. Simmons,Diffusion of methane and Ethane Through the Reservoir Caprock:Implication for the timing and Duration of Catagenesis,AAPG. 1995,79 (7) : 1064-1074
    41. Smith D A. Theoretical considerations of sealing and nonsealing faults,AAPG Bull. 1996,50 (2):363-374
    42. Smith D A. Sealing and nonsealing faults in Louisiana Gulf coast salt basin,AAPG Bull 1980,64(1)~15-172
    43. Weber K J. The role of faults in hydrocarbon migration and trapping in Nigerian growth-fauk structures,offshore Technology conference, 1978,2643-2653
    44. Harding T. P., and Lowell J. D. ,1979,Structural styles, their plate tectonic habitats and hydrocarbon traps in petroleum provinces. AAPG Bull,63(9): 1016~1058
    45. M. W. Doney. Evaluating seals for hydrocarbon accumulations,AAPG Bulletin, 1984, 68(2): 1752~1768
    46. H. R. Grunau:A worldwide look at the cap-rock problem,Journal of Petroleum Geology, 1987, 10 (3):245-266
    47. N. L. Watts. Theoretical aspects of cap-rock and fault seals for single and two-phase hydrocarbon cohumns,Marine and Petroleum Geology. 1987, 4 (4) :247-307
    48. Krooss,B. and Schaefer, R. C. Experimental measurements of the diffusion parameters of light hydrocarbons in water-saturated sedimentary rocks:Ⅰ,Results and geochemical significance. Org,Geochem. 1987, T1(3) :193-199
    49. Krooss,B. and Leythaeuser,D. Experimental measuremensts of the diffusion parameters of light hydrocarbons in water-saturated sedimentary rocks:Ⅱ,Results and sig nificance. Org, Geochem. 1988, 72(2): 91-108
    50. Leythaeuser, D. Schaeffer, R. G. and Yuekler, A. Diffusion of light hydrocarbons through near surface rocks. Nature. 1980. 28 (4): 522-525
    51. Leythaeuser,D. Schaefer, R. G. and Yuekler, A. Role of diffusion in primary migration of hydrocarbons. AAPG Bull. 1982, 66 (4): 408-429
    52. Alexander R. ,Fisher S. J. and Kagi R. I., 1988.2,3-Dimethylbiphenyl:Kinetics of its cyclisation reaction
    
    and effects of maturation upon its relative concentrations in sediments. Org. Geochem. 13 (4-6) . 833-837
    53. Behar F. and Vandenbroucke M. ,1987. Chemical modeling of kerogens. Org. Geochem. 11,15-24
    54. Behar,F. ,S. Kressmann J. L. Rudkiewicz et al. ,1992;Experimental simulation in a confined System and kinetic modeling of kerogen and Oil cracking;Org. Geochem. Vol. 19,Nos. 1-3,173-190
    55. BurnhamA. K. ,R. L. Braun and A. M. Samoun,1988;Further Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Org. Geochem. 13 (4-6) ,839-846
    56. Bumham A. K. and R. L. Braun,1990;Development of a detailed model of petroleum Formation,destruction,and expulsion from lacustrine and marine source rocks,Org. Geochem. ,Vol. 16 Nos. 1-3,27-40
    57. Burnbam A. K. and J. Sweeney, 1989;A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta 53,2649-2657
    58. Castelli,A. ,M. A. Chiaramonte,P. L. Beltrame,1990;Thermal degradation of kerogen by hydrous pyrolysis. Akinetic study;Org. Geochem. Vol. 16,Nos. 1-3,75-82
    59. Delvaux D. .Martin H. .Leplat P. and Paulet J. ,1990;Comparative Rock-Eval pyrolysis as an unproved tool for sedimentary organic matter analysis. Org. Geochem. 16,Part II.
    60. DelvauxD. H. Martin,P. Leplatand J. Paulet,1990;Geochemical characterization of sedimentary organic matter by Means of pyrolysis kinetic Parameters ;Org. Geochem. ,Vol. 16,Nos. 1-3,175-187
    61. Domine F. ,1989;Kinetics of hexane pyrolysis at very high pressures. I. experimental study. Energy and Fuels 3,89-96
    62. Duppenbeckev.S. and B. Horsfield,1990;Compositional information for kinetic modelling and petroleum typeprediction;Org. Geochem. ,Vol. 16,No. 1-3,259-266
    63. Enguehard,F. ,S. Kressmann and F. Domine, 1990;kinetics of dibutylether pyrolysis at high pressure:experimental study;Org. Geochem. ,Vol. 16,Nos. 1-3,155-160
    64. Espitalie J. ,P. Ungerer,I. Irwinand F. Marquis,1988;Primary cracking of kerogens. Experimenting and modeling C1,C2-C5. C6-C15 and C15+ classes of hydrocarbons formed. Org. Geochem. 13 (4-6) ,893-899
    65. Horsfield,B-,H-J-Schenk,N. Mills and D. H. Welte,1992;An Investigation of the In-reservoir conversion of oil to gasxompositional and kinetic findings from closed-system programmed-temperature pyrolysis;Org. Geochem. Vol. 19,Nos. 1-3,191-204
    66. Khorasani,G. K. and J. K. Michelson,1991;Geological and laboratory evidence for early generation of large amounts of liquid hydrocarbons from suberinite and subereous components;Org. Geochem. ,Vol. 17,No. 6. 849-864
    67. Klomp.U. C. and P. A. Wright, 1990;A New Method for the Measurement of kinetic Parameters of Hydrocarbon Generation from Source Rocks;Org. Geochem. ,Vol. 16,Nos. 1-3,49-60
    68 . Mackenzie A and T . M . Quigley,1988;Principles of geochemical prospect appraisal,AAPG,Vol. 72,No. 4,P. 399-415
    69 . Mango F . D . ,1990;Pre-steady-state kinetics at the onset of Petroleum generation,Org. Geochem. Vol. 16,Nos. 1-3,41-48
    70. Marzi,R. J. Rullkotter and W. S. Perriman, 1990;Application of the change of sterane isomer ratios to the reconstruction of geothermal historiersrlmplications of the results of hydrous purolysis experiments;Org. Geochem. Vol. 16,Nos. 1-3,91-102
    71. Monin, J. C. J. Connan, J. L. Oudin and B. Durand,1990;Quantitative and qualitative experimental
    
    approach of oil and gas generation:application to the North Sea source Rocks;Org. Geochem. ,Vol. 16,Nos. 1-3,133-142
    72. Rullkotter J. and R. Marzi, 1988;Natural and artificial maturation of biological makers in a Toarcian shale from northern Germany. Org. Geochem. 13 (4-6) ,639-648
    73. Schaefer,R. G. ,H. J. Schenk,H. Hardelauf and R. Harms, 1990;Determination of Gross kinetic parameters for petroleum formation from Jurassic source rocks of different maturity levels by means of laboratory experiments;Org. Geochem. ,Vol. 16,Nos. 1-3,115-120
    74. Sweeney,J, et al. ,1987;A model of hydrocarbon generation from type I kerogen application to Uinta Basin,Utah;AAPG,Vol. 71,No. 8,967-985
    75. Sweeney,J, et al. ,1990;Pyrolysis kinetics applied to prediction of oil generation in Maracaibo Basin,Venezuela;Org. Geochem. ,Vol. 16,No. 1-3,189-196
    76. Sweeney,J. J. ,S. Talukdar,R. L. Braun,et al,1995;Chemical kinetic model of hydrocarbon generation,expulsion,and destruction applied to the Maracaibo basin,Venezuela;AAPG,Vol. 79,No. 10,1515-1532
    77. TissotB. P. JR. Peletand P. Ungerer, 1987 ;Thermal history of sedimentary basins,maturation indices,and kinetics of oil ad gas generation. AAPG Bull. 71 (12) ,1445-1466
    78. Ungerer P. and R. Pelet,1987;Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327, (6117) ,52-54
    79. Ungerer,P. ,F. Behar,M. Villalba,et al. , 1988;Kinetic modelling of oil cracking;Org. Geochem. ,Vol. 13 Nos. 4-6,857-868
    80 . Ungerer,P . ,1990;State of the art of research in kinetic modelling of oil formation and expulsion;Org. Geochem. ,Vol. 16,No. 1-3,1-25
    81. Zhao Chenglin,Liu Menhui.l991;Sedimentology of low-permeability Clastic gas reservoirs:a case from the lower Tertiary, Dongpu depression. Energy Source, Copyright,New York,13:pl37-158
    82. Johnson,R.C., and Rice, D.D., 1990, Occurrence and geochemistry of natural gases, Piceance Basin , northwest Colorado: American Association of Petroleum Geologists Bulletin,v.74,p805-829.
    83. Iohnson,R.C., Crovelli, R.A., Spencer, C.W., and Mast, R.F.,1987, An assessment of gas resources in low-permeability sandstones of the Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado: U.S.Geological Survey Open-File Report 87-357,105p.
    84. Law, B.E., Pollastro, R.M., and Keighin, C.W.,1986,Geological chacterization of low-permeability gas reservoirs in selected wells, Greater Green River Basin, Wyoming, Colorado, and Utah, in Specer , C.W., and Mast R.F.,eds., Geology of tight gas reservoirs : American Association of Petroleum Geologists in Geology no.24,p.253-269.
    85. Masters, J.A., 1979, Deep basin gas trap, western Canada: American Association of Petroleum Geologists Bulletin,v63,p.l52-181.
    86. Barker, G., and Takach, N.E.,1992, Prediction of natural gas composition in ultradeep sandstone reservoirs: American Association of Petroleum Geologists Bulletin,v.76,p.l859-1873.
    87. Takach, N.E., Barker, C, and Kemp, M.K.,1987, Stability of natural gas in the deep subsurface-Thermodynamic calculation of equilibrium compositions: American Association of Petroleum Geologists Bulletinv.71. ,p.323-333.
    88. Welte, D.H., Schaefer, R.G., and Yalcin, M.N.,1988, Gas generation from source rocks-Aspects of a quantitative teratment: Chemical Geology,v.71,p.l05-116.
    89. Baranoski, M.T., and Riley, R.A.,1988, Analysis of stratigraphic and production relationships of Devonian-shale gas reservoirs in Lawrence County, Ohio:Ohio Division of Geologic Survey Open-File
    
    Report 88-2,30p.
    90. Decker, D., Coates, J-M.P, and Wicks, D.,1992, Stratigraphy.gas occurrence,formation evaluation and fracture characterization of the Antrim Shale,Michigan Basin: Gas Research Institute Topical Report GRI-92/0258,101R
    91. Jacobeen, F.J., Jr.,1992,Oil and Gas well analyses of hydrocarbon potenial of Buchanan,Dickson, and Wise Counties, Virginia: Virginia Division of Mineral Resources Open-File Report 91-2,15p.
    92. Kepferle, R.C., 1993, A depositional model and basin analysis for the gas-bearing black shale (Devonian and Mississippian) in the Appalachian Basin, in Roen,J.B., and Kepferle, R.C., eds., Petroleum geology of the Devonian and Mississippian black shale of eastern North America:U.S.Geological Survey Bulletin 1909,p.F1-F23.
    93. Manger, K.G., and Curtis, J.B.,1991, Geologic influences on location and production of Antrim shale gas,in Devonian gas shales technology review: Gas Research Institute v.7,n.2p.5-16.
    94. Clayton, J.L., Spencer, C.W., Koncz,I., and Szalay, A., Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary: Organic Geochemistry v.15,p.233-247.
    95. Charpentier, R.R., deWitt, Wallace,Jr., Claypool, G.E., Harris, L.D., Mast, R.F.,Megeath, J.D., Rogen, J.B., and Schmoker, J.W., 1993, Estimates of unconventional natural gas resources in the Denvonian shales of the Appalachian Basin, in Roen, J.B., and Kepferle, R.C., eds., Petroleum geology of the Devonian and Mississippian black shale of eastern North America: U.S.Geological Survey Bulletin 1909,p.N1-N20.
    96. Lockridge, J.P., and Pollastro, R.M., 1988, Shallow Upper Cretaceous Niobrara gas fields in the eastern Denver Bawin, in Goolsby, S.M., and Longman,S.M., eds., Occurrence and petrophysical properties of carbonate reservoirs in the Rocky Mountain region: Denver, Rocky Moiuntain Association of Geologists Carbonate Symposium [Proceedings], p.63-74.
    97. Shumaker, R.C.,1993, Structural param that affect Devonian shale gas production in West Virgivia and eastern Kentucky, in Roen, J.B., and Kepferle, R.C.,eds., Petroleum geology of the Devonian and Mississippian black shales of caster North America: U.S. Geological Survey Bulletin 1909,p.kl-k38.
    98. Makogon,Y.F., 1988, Natural gas hydrates-The state of study in the USSR and perspectives for its use: Paper presented at the Third Chemical Congress of North America, Toronto, Canada,June5-10,18p.
    99. Peterson,J.A., and Clarke,J.W., 1989, west Siberian oil-gas province: U.S.Geological Survey Open-File Report 89-192,142p.
    100. Sloan,E.D..,1990,Clathrate hydrates of natural gases:New York,Marcel Dekker,641p.
    101. Yousif,M.H., Abass,H.H., Selim,M.S.,and Sloan, E.D., 1988, Experimental and theoretical investigation of methane gas hydrate dissociation in porous media: Preceedings of the 63rd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, October 2-5, Houston, Tex.,p.571-583.
    102. Augenstein,D., and Pacey, J., 1991, Landfill methane models, in Hickman, H.L., Jr.,ed., Proceedings from the technical sessions of SWANA's 29th Annual International Solid Waste Exposition:Silver Spring, Md., Solid Waste Association of North America, p. 1-25.
    103. Barlaz,M.A., and Ham, R.K., 1990, The use of mass balances for calculation of the methane potential of fresh and anaerobically decomposed refuse, in Maxwell, G., Walsh, J., and Hirshfeld,S., eds., Prodeedings from the GRCDA 13th Annual International Landfill Gas Symposium: Government Refuse Collection and disposal Association, Silver Spring, Md., p.231-241.
    104. BarlazvM.A.,Ham, R.K., and Schaefer, D.M.,1992, microbial, chemical and methane production characteristics of anaerobically decomposed refuse with and without leachate recycling: Waste Management and Research,v.10,p.257-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700