用户名: 密码: 验证码:
GPS在地球物理方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GPS是二十世纪七十年代美国宇航局根据军事的需要建立的卫星导航定位系统,目前己发展成为工程测量、大地测量、数字地球、地籍管理、地球物理和环境监测等许多方面监测和研究的工具和手段。由于它的应用的广泛和许多应用的相互联系,作者力图对GPS在地球物理各方面的应用给予较全面和较深入的研究,为今后更深入的研究GPS甚至空间技术在地球物理方面及其它方面的研究和应用奠定基础。这些研究包括GPS在参考系的实现和板块运动的研究;GPS在地壳水平形变监测方面的应用以及它与地震、地质的某些信息相结合对地壳水平运动特点的揭示:GPS对垂直运动监测的研究;GPS对电离层活动的监测和GPS气象学。除了这些研究以外,GPS在地球物理方面的应用还包括GPS在地心运动监测和地球定向参数监测方面的应用以及GPS在潮汐监测方面的应用等,它们所反映的物理现象和信息也是很丰富和重要的。GPS在地球物理众多领域的应用,与传统的地球物理监测手段有很大不同,很多方面都可近实时、大面积监测,这无疑是地球物理监测手段的一次革命。它们与传统地球物理、地质、地震等监测手段从不同角度、不同尺度反映了地球各圈层的活动和运动情况,只有这些信息充分结合才能较好的研究运动的地球。
     本文作者从科学研究的角度出发研究了GPS在地球物理方面的多种应用。首先介绍了GPS测量的基本原理和目前国际国内GPS在地球物理方面的应用情况,进而研究了GPS数据处理的模型和方法,为得到高精度的可靠GPS结果打下基础,初步给出了数据处理的规范。在此基础上研究了由空间技术建立和实现参考系的方法以及板块运动的情况。并利用多个全国性的GPS监测网、中国地壳运动主要活动带区域性GPS监测网以及亚太地区动力学计划(APSOP)GPS监测网自1991年以来近10年的GPS监测资料研究中国及其亚太地区现时地壳形变,基于一个现时板块运动模型ITRF97VEL给出了三类网大约260多个站的形变速度场。从这些结果,我们可以看出中国地壳运动有明显的不均匀性,以南北地震带为界,西强东弱;中国西部受印度板块强烈的冲挤地壳运动由南向北逐渐减慢,呈现南北向缩短,东西向伸展,有明显的块体特征;喜马拉雅和天山西部分别提供了大约15mm/a和9~13mm/a的汇聚速率;拉萨块体有一个20.2±1.2mm/a的伸长;喀喇昆仑-嘉黎断裂的右旋走滑速率和阿尔金断裂的左旋走滑速率分别为2~3mm/a和4~6mm/a,而且穿过龙门山断裂带的缩短小于7mm/a,这些都支持地壳增厚学说;在沿阿尔金断裂带到喜马拉雅存在一个NNE弥散带,它是形变速度有东和西分量的分界线。东部以走滑为主,东北块体是中国最稳定的地区,华北块体具有较大走滑性,是东部较易变形区。在这些GPS数据处理结果和其它作者对中国及其周围GPS测量结果的基础上结合地震矩数据和地质第四纪滑动速率资料对中国大陆地壳运动学和动力学特点进行了初步研究,发现地震资料得到的平均应变率比地质资料得到的应变率大3-4个量级,而地质的结果与GPS在一定的模型近似和条件假设下的量级相当,故仅给出地质和GPS结合的结果,其与William holt等用238个GPS结果结合第四纪滑动速率的结果较一致,反演的连续速度场与我
    
    们的观测值非常一致,而这样的速度场将为大尺度地壳形变的详细研究和地球动力
    学研究奠定基础。随着人们认识的深化,连续GPS测量也可监测地壳的垂直运动和水
    平的非线性运动,包括长期项、周年项和半年项,其中水平的周期性运动振幅远远
    小于其长期项运动大小,而垂直向周年项振幅与长期项运动大小相当或更大,这也
    是过去用几期测量能得到可靠的水平运动速度而不能得出可靠的垂直运动速度及
    GPS高程测量重复率低的原因。在减少基墩的不稳定性下,完全连续的高质量GPS测
    量可给出可靠的高程长期运动、周年运动和半年运动,还可能监测其它频段的运动。
    GPS通过监测电离层总电子含量及其变化来反映电离层的电子密度变化研究电离层
    活动,本论文从GPS监测电离层的原理和方法出发,介绍了GPS对电离层活动监测的
    现状和进展,并通过对1998年8月27日GPS数据处理,研究和监测了中尺度移动电离
    层扰动TID,探测了电离层闪烁效应的存在。GPS在气象学上的应用从原理到试验结
    果,给予了充分的介绍和研究,指出nS可以监测天气变化过程,减少天气漏报的次
    数,并可用于数值天气预报提高天气预报的准确度,另外还可有助于提高可降水量
    与实际降雨量之间关系的研究和认识一总之,GPS在地球物理各个领域的应用是非常
    厂泛和重要的,它提供了从电离层到中性大气层、地壳甚至地球内部的物理信息,
    反映了整个地球各圈层的运动情况,对我们认识和监测地球的许多物理现象是非常
    重要的。
     本论文的主要贡献是:
    (1)基于最新的地球参考架ITRF2000研究和建立了现时板块的绝对和相对运动模型
     ITRF2000VEL和REL—ITRF2000VEL,指出新的模型能更好地反映现时全球板块运
     动的特征,可作为现时地壳形变的背景场。发现板块运动的确存在时变,特别是
     欧亚一北美和非洲一欧亚板块对的相对运动变化明显,且板块相对运动欧拉极分
     布集中。经研究发现ITRF200
GPS is a satellite navigation and positioning system aiming at the military needs, developed by America National Aeronautics and Space Administration in 1970's. Since GPS techniques were born, it has so many widespread and far-reaching applications such as on geodesy, geophysics, engineering, cadastre, digital Earth and environment monitoring and so forth. It has become one of the most important tools and means in these fields. Because the applications of GPS are very wide and these applications are interrelated, this author has made efforts to carry out a comprehensive and deep study of the application of GPS on geophysics. It will be useful to establish a basis for further study on the applications of GPS
    and space techniques to geophysics and other fields. The applications of GPS on geophysics include the realization of reference frame and the study of plate motion, the detection of crustal horizontal deformation and strain characteristics by GPS, the study of crustal vertical motion by GPS, the ionosphere activities monitored by GPS and GPS meteorology. In addition, GPS monitoring of the geocentric motion, Earth Orientation Parameters (EOP) and tides are also the content of GPS applications on geophysics. The geophysics information reflected by them is also very rich and important. The application of GPS on geophysics is very different from the traditional means of geophysics study. In many fields, the near real-time and wide
    area detection are done by GPS. It could be regarded as a revolution in detection means of geophysics. Both GPS based means and the traditional means of geophysics studies, such as earthquakes monitoring, geological detection and so on, reflect the
    activities and motions of individual terrestrial sphere from different viewpoints and different scales. Only when this information is fully combined, can the Earth in motion be well studied.
    The author studies the GPS applications on geophysics from the scientific viewpoints. At first, elementary theory of GPS measurement and GPS applications on geophysics at home and abroad are introduced. Then, the models and methods of
    
    
    GPS data processing are studied in detail. It will be beneficial to obtain high accuracy and reliable GPS results. The preliminary standard for GPS data processing is drafted. Based on these studies, the methods of carrying out and establishing the terrestrial reference frame from space techniques are studied, and also the absolute plate motion model and relative motion model are studied and established. In addition, using recent 10-year GPS measurement data from some nationwide GPS networks, several regional GPS monitoring networks and the Asia-Pacific Regional Geodetic Project (APRGP), the crustal deformation in China and Asia-Pacific Region is studied in this thesis. Based on present-day plate motion model ITRF97VEL, a deformation velocity
    field of more than 260 sites in the three kinds of GPS networks is presented. From these results, we can see the crustal motion is evidently inhomogeneous. The crustal deformation in west China is far stronger and more complicated than that in east China, with the N-S seismic belt in China as a boundary. The displacement velocity gradually reduces from south to north and it shows shortening in north-south direction and extending in west-east direction due to the strong pushing of the Indian plate. The shortening of about 15 mm/yr and 9-13 mm/yr is accommodated across the Himalayan block and the west Tian Shan respectively. Within southern Tibet, between the longitudes 80?E and 91, there is E-W extension of 20.2 ?1.2 mm/yr. The slip rates of KJFZ in
    south Tibet and Altyn Tagh fault are 2-3 mm/yr and 4-6 mm/yr respectively. Our GPS results indicate there is a less than 7 mm/yr shortening across the Longmen Shan fault. These results support the supposition of crustal thickening. Along the Altyn Tagh fault to the Himalayan block, there is a NNE dispersive belt which is the boundary line of westward and eastward motions. East China is dominated by strike-slip motion and North
引文
[1]丁月蓉,郑大伟.天文测量数据的处理方法。南京大学出版社,南京,1990.
    [2]马杏恒主编。中国岩石圈动力学纲要(1:400万中国及邻近海域岩石圈动力学图说明书)。北京:地质出版社,1987。
    [3]任金卫,Holt W E.中亚及东南亚变形运动学及其动力学问题.活动断裂研究,1999,7:109-146。
    [4]王小亚,朱文耀,符养等.CPS监测的中国及周边现时地壳形变.地球物理学报,2002,待发表。
    [5]王小亚,朱文耀,严豪健,丁金才。地面CPS观测探测大气可降水汽量的方法和前景。天文学进展,1998,16(2):135-142.
    [6]王小亚,朱文耀,严豪健,丁金才。地面CPS探测大气的最新进展。地球科学进展,1997,12(6):519-527.
    [7]王小亚,朱文耀,严豪健,丁金才等。地面6PS观测探测大气可降水汽量的初步结果。大气科学,1999,23(5):605-612。
    [8]王小亚硕士论文,地面GPS探测大气可降水量的研究和在气象学上的应用。上海天文台,1998年7月。
    [9]吴斌,彭定波,许厚泽。地心变化的测定。科学通报,1999,44(10):1106-1108。
    [10]谢世杰,韩明锋.论电离层对GPS定位的影响.测绘工程,2000,第9卷,第1期。
    [11]叶叔华,黄城主编。天文地球动力学。山东科学技术出版社,2000,267-282。
    [12]叶叔华。运动的地球,湖南出版社,1997。
    [13]游新兆,王琪。中国大陆现今地壳运动的GPS测量。见:朱文耀主编。现代地壳运动的空间技术监测和资料处理,上海:上海科技出版社,2001。38-44。
    [14]张东和,萧佐.利用CPS技术对1998-11-22太阳耀斑引起的电离层TEC变化的观测研究。北京大学学报,2000,第36卷,第3期:415-421。
    [15]周硕愚,帅平,郭逢英等。中国福建及其边缘海域现时地壳运动定量研究,地震学报,2000,22(1):66-72。
    [16]周旭华,高布锡。地心变化及其原因。地球物理学报,2000,43(2):160-165。
    [17]朱文耀,程宗颐,熊永清等。利用GPS技术监测青藏高原地壳运动的初步结果。中国科学(D辑),1997,27(5):385-389.
    [18]朱文耀,韩继龙,马文章。基于ITRF96和ITRF97的全球板块运动模型。天文学报,2000,41(3):312-319.
    [19]朱文耀,程宗颐,王小亚等。中国地壳运动的全球背景场。科学通报,1999,44(14):1537-1540。
    [20]Abdrakhmatov K Y, Aldazhanov S A, Hager B H, et al.. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature, 1996, 384:450-453.
    [21]Argus D F,Gordon R G. No-Net-ROTATION model of current plate velocities incorporating plate motion model NUVEL-1. Geophys. Res. Lett., 1991,18(11):2039-2042.
    [22]Argus D F,Gordon R G. Pacific-North American plate motion from very long baseline interferometry compared with motion inferred from magnetic anomalies,
    
    transform faults, and earthquake slip vectors. J. Geophys. Res., 1990,95(611) :17315-17324.
    [23] Argus D F, Heflin M B. Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System, Geophys. Res. Lett. , 1995, 22 (15) :1973-1976.
    [24] Askne J, Nordius H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci ,1987,22 : 379-386.
    [25] Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia. Geophys. Res. Lett., 1993, 20:895-898.
    [26] Banyan L. Treatment of Rotation Errors in the Final Adjustment of GPS Baseline Components. Bulletin Geodesique,1991,65:102-108.
    [27] Bar-Sever Y E . Strategies for near real time estimation of precipitable water vapor. In: Neilan R E, et al(eds). IGS 1996 Analysis Center Workshop. IGS Central Bureau,Jet Propulsion Laboratory, 1996. 165-176.
    [28] Bassiri S, Hajj G A. Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscripta Geodaetica, 1993, 18:280-289.
    [29] Bendick R, Bilham R, Yin G, et al.. Slip rate of the Altyn Tagh fault at 90 degrees east. EOS Trans. AGU, 79(45) , Fall Meet, Suppl., F203, 1998.
    [30] Bevis M ,Businger S .Herring T A, et al. GPS Meteorology: remote sensing of atmospheric water vapour using the Global Positioning System. J G R ,1992,97: 15787-15801.
    [31] Bevis M, Businger S , Chiswell S, et al. GPS Meteorology : mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology, 1994 , 33 :379-386.
    [32] Bilham R, Larson K, Freymueller J, et al. . GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 1997, 386:61-64.
    [33] Bock Y. Reference systems, In:Kleusberg A, Teunissen P(eds) GPS for Geodesy, Springer-Verlag Berlin Heidelberg,1996:3-36.
    [34] Boucher C, Altamimi Z, Sillard P. The 1997 International Terrestrial Reference Frame (ITRF97) . In: IERS technical note 27, May, 1999.
    [35] Businger S, Chiswell S R, Bevis M, et al. The promise of GPS in atmospheric monitoring. Bulletin of the American Meteorological Society, 1996, 77: 5-18.
    [36] Calais E. Continuous GPS measurements across the Western Alps, 1996-1998. Geophys. J. Int. , 1999, 138:221-230.
    [37] Calais E, Amarjargal S. New constrains on current deformation in Asia from continuous GPS measurements at Ulan Baatar, Mongolia. Geophys. Res. Lett., 2000, 27:1527-1530.
    [38] Calais E,Lesne O, Deverchere J, et al. . Crustal deformation in the Baikal rift from GPS measurements. Geophys. Res. Lett.,1998, 25:4003-4006.
    [39] Calais E, Minster J B. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophysical Research Letters, 1995, 22(9) :1045-1048.
    
    
    [40] Chen Z, Burchfiel B C, Liu Y, et al.. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J. Geophys. Res., 2000, 105:16215-16227.
    [4l]Cheng Minkang. Geocenter variations from analysis of Topex/Poseidon SLR data, IERS technical note 1999,25:39-44.
    [42] Cretaux J F, Soudarin L, Cazenave A, Bouille F. Present-day tectonic plate motions and crustal deformations from the DORIS space system. J. Geophys. Res., 1998, 103(B12) :30167-30181.
    [43] Davis J L, Herring T A .Shapiro II, et al. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci , 1985,20(6) :1593-1607.
    [44] DeMets C, Dixon T H. New kinematic models for Pacific-North America motion from 3 Ma to present, I:Evidence for steady motion and biases in the NUVEL-1A model. Geophys. Res. Lett., 1999, 26(13) : 1921-1924.
    [45] DeMets C,Gordon R G, Argus D F, et al.. Effects of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 1994,21:2191-2194.
    [46] DeMets C.Gordon R G,Argus D F, et al.. Current plate motions. Geophys. J. Int.,1990, 101:425-478.
    [47] Denys V A, Bingley R, Kahle H G, et al. Crustal strain in Central Greece from repeated GPS measurements in the interval 1989-1997. Geophys. J. Int., 1998, 134(4) :195-214.
    [48] Dick G, Gendt G, Reigber C. Operational water vapor estimation in a dense German Network. In: IGS 1999 Technical Reports,Nov.,2000:375-384.
    [49] Dong D, Dickey J O, Chao Y, Cheng M K. Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys. Res. Lett., 1997, 24(15) :1867-1870.
    [50] Dong D, Herry T A, King R W. Estimating regional deformation from a combination of space and terrestrial geodetic data. J. Geod., 1998, 72:200-214.
    [51] DuanJ, BevisM, Fang P, et al. GPS Meterology: direct estimation of the absolute value of precipitable water. J Appl Meteor, 1996, 35(6) :830-838.
    [52] England P, Houseman G A. Finite strain calculations of continental deformation 2. Comparision with the India-Asia collision. J. Geophys. Res., 1986, 91:3664-3677.
    [53] England P, Molnar P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 1990, 344:141-142.
    [54] England P, Molnar P. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys. J. Int., 1997, 130:551-582.
    [55] Engler E, Sardon E, Jakowski N, et al. Real-time monitoring of the ionosphere. 1995.
    [56] Fang P, Bock Y. Scripps Orbit and Permanent Array Center 1995 report to IGS, In: Zumberge J F, et al(eds). International GPS Service for Geodynamics 1995 Annual Report.IGS Central Bureau, Jet Propulsion Laboratory, 1996. 103-124.
    [57] Feltens J, Schaer S. IGS products for the ionosphere, in: IGS 1998 Analysis
    
    Center Workshop, eds by Dow J M, Kouba J, Springer T, 1998a, 225-232.
    [58] Feltens J. Chapman profile approach for 3-D global TEC representation. in: IGS 1998 Analysis Center Workshop, eds by Dow J M, Kouba J,Springer T, 1998b.
    [59] Feltens J, Schaer S. 1999 IGS Activities in the Area of the Ionosphere. In: IGS 1999 Technical Reports, Nov. , 2000:263-268.
    [60] Ferland R. IGS reference frame pilot project. In: IGS 1999 Technical Reports, Nov. ,2000:257-261.
    [61] Gendt G, Fang P, Zumberge J F. Moving IGS products towards real-time. In: IGS 1999 Technical Reports, Nov. , 2000:391-404.
    [62] Gregorious T. GIPSY-OASIS II: How it works. Department of Geomatics, University of Newcastle upon Tyne, October, 1996.
    [63] Gutman S. Real and near-real-time products and applications: Ground-based GPS Meteorology. In: IGS 1999 Technical Reports,Nov., 2000:415-416.
    [64] Haines A J, Holt W E. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J. Geophys. Res. , 1993, 98:12057-12082.
    [65] Haines A J, Jackson J A, Holt W E, et al.. Representing distributed deformation deformation by continuous velocity fields. Sci. Rep. 98/5, Inst. Of Geol. and Nucl. Sci.,1998, Wellington, New Zealand.
    [66] HeflinM, Bertiger W, Blewitt G, et al. Global Geodesy Using GPS Without Fiducial sites. Geophysical Research Letters, 1992,19(2) :131-134.
    [67] Heki K. Horizontal and vertical crustal movements from three dimensional very long baseline interferometry kinematic reference frame: Implication for the reversal timescale revision, J. Geophys. Res., 1996,101:3187-3198.
    [68] Heki K, Miyazaki S, Takahashi H, et al. . The Amurian plate motion and current plate kinematics in Eastern Asia. J. Geophys. Res., 1999, 104:29147-29155.
    [69] Herring T A. GLOBK: Global Kalman filter VLBI and GPS analysis program, version 4. 3. Mass. Inst. of Technol. , Cambridge, 1999.
    [70] Ho C M, Mannucci A J, Lindqwister U J, Pi X, Tsurutani B T. Global ionosphere perturbations monitored by the worldwide GPS network. Geophysical Research Letters, 1996, 23 (22) :3219-3222.
    [71] ] Holt W E, Chamot-Rooke N, Le-Pichon X, et al. . The velocity field in Asia inferred from Quaternary fault slip rates and GPS observations. /. Geophys. Res., 2000, 105:19185-19210.
    [72] Holt W E, Li M, Haines A J. Earthquake strain rates and instantaneous relative motions within central and eastern Asia. Geophys. J. int. , 1995a, 122:569-593.
    [73] Holt W E, Haines A J. The kinematics of northern South Island, New Zealand, determined from geologic strain rates. J. Geophys. Res., 1995b, 100(B9) :17991-18010.
    [74] Holt W E, Haines A J. Velocity field in deforming Asia from inversion of earthquake released strains, Tectonics,1993a, 12:1-20.
    [75] Holt W E, Haines A J. The kinematics of northern South Island New Zealand determined from geologic strain rates. J. Geophys. Res., 1993b, 100:17991-18010.
    
    
    [76] Ichikawa R, Hatanaka Y, Mannoji N, et al. GPS Meteorology in Japan. Technical Workshop APT & APSG 1996 (TWAA96) , Japan, December, 1996.
    [77] IERS, ITRF2000 datum definition, http://lareg.ensg.ign.fr/ITRF/ITRF2000, May, 2001
    [78] IGS 1998 Analysis Center Workshop,eds by Dow J M, Kouba J, Springer T, 1998.
    [79] Jackson J A, Haines A J, Holt W E. The horizontal velocity field in the deforming Aegean Sea region determined from the moment tensors of earthquakes, J. Geophys. Res., 1992, 97:17657-17684.
    [80] Jackson J A, Haines A J, Holt W E. The accommodation of Arabia-Eurasia plate convergence in Iran. J. Geophys. Res., 1995,100:15205-15219.
    [81] Johnson H O, Agnew D C. Monument motion and measurements of crustal velocities. Geophysical Research Letters, 1995, 22(20:2905-2908.
    [82] Kahle H G, Cocard M, Peter Y,et al. The GPS strain rate field in the Aegean Sea and western Anatolia. Geophys. Res. Lett.,1999, 26(16) :2513-2516.
    [83] King R W and Bock Y. Documentation for the MIT GPS analysis software:GAMIT, version 9. 94. Mass. Inst. of Technol., Cambridge, 1999.
    [84] KingRW, Shen F, Burchfiel B C, et al.. Geodetic measurement of crustal motion in southwest China, Geology. 1997,25:179-182.
    [85] Kogan M G, Steblov G M, King R W, et al.. Geodetic constraints on the rigidity and relative motion of Eurasia and North America. Geophys. Res. Lett., 2000, 27, 2041-2044.
    [86] Kostrov V V. Seismic moment, energy of earthquakes, and the seismic flow of rock, Izv. Acad. Sci. USSR Phys. Solid Earth, Engl. Transl., 1974, 10:23-44.
    [87] Kouba J, Mireault Y. Analysis Coordinator Report. eds:Zumberge J F, Fulton D E, Neilan R E. in:IGS for Geodynamics 1996 Annual Report. 1997, 55-74.
    [88] Kouba J, Ray J, Watkins M M. IGS reference frame realization, in: IGS 1998 Analysis Center Workshop, eds by Dow J M,Kouba J, Springer T, 1998:139-171.
    [89] Larson K M, Burgmann R,Bilham R, et al.. Kinematics of the India-Eurasia collision zone from GPS measurements. J. Geophys. Res. , 1999, 104:1077-1093.
    [90] Larson K M, Freymueller J T and Philipsen S. Global plate velocities from the Global Positioning System. J. Geophys. Res., 1997, 102(85) :9961-9981.
    [91] MacMillan D S, Gipson J M. Atmospheric pressure loading parameters from very long baseline interferometry observations. Journal of Geophysical Research, 1994, 99(B9) :18081-18087.
    [92] Mannucci A J, Wilson B D, Yuan D N. Global monitoring of ionospheric total electron content using the IGS Network, 1995.
    [93] McClusky S, Balassanian S, Barka A, et al. Global Positioning System constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res., 2000, 105 (B3) : 5695-5719.
    [94] Molnar P, Deng Q. Fauting associated with large earthquakes and the average rate of deformation in central and eastern Asia. J. Geophys. Res. , 1984, 89(B7) :6203-6227.
    [95] Molnar P, Lyon-Caen H. Fault plane solutions of earth-quakes and active
    
    tectonics of the northern and eastern parts of the Tibetan Plateau. Geophys. J. Int., 1989, 99:123-153.
    [96] Peltzer G, Saucier F. Present-day kinematics of Asia derived from geologic fault rates. J. Geophys. Res., 1996, 101 (B12) :27943-27956.
    [97] Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during India-Asia collision: An experiment approach. J. Geophys. Res. , 1988, 93:15085-15117.
    [98] Pi X, Mannucci A J, Lindqwister U J, et al. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophysical Research Letters , 1997, 24 (18) :2283-2286.
    [99] Priestley M B. Spectral analysis and time series. Academic, San Diego, Calif. ,1981.
    [100] Rabbel W, Zschau J. Static deformations and gravity changes at the Earth's surface due to atmospheric loading. 1985,
    [101] Rocken C, Ware R H, Van-Hove T, et al. Sensing atmospheric water vapor with the Global Positioning System. Geophys Res Letters, 1993, 20(23) :2631-2634.
    [102] Rocken C, Van-Hove T, Johnson J, et al. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology. Journal of Atmospheric and Oceanic Technology, 1994, 12:468-478.
    [103] Rocken C et al. Nearl real-time GPS sensing of atmospheric water vapor. Geophysical Research Letters, 1997, 24(24) :3221-3224.
    [104] Rocken C, Solheim F S, Ware R H , et al. Application of IGS data to GPS sensing of the atmosphere for weather and climate research. In: Gendt G, et al (eds). IGS Special Topics And New Directions. Potsdam,Germany, 1995. 93-103.
    [105] Rothacher M, Mervart L. Bernese GPS Software Version 4. 0. Switzerland, 1996.
    [106] Sardon E, Rius A, Zarraoa N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Science, 1994,29(3) :577-586.
    [107] Sato K. Tectonic plate motion and deformation inferred from very long baseline interferometry. Tectonophysics, 1993,220:69-87.
    [108] Shen-Tu B, Holt W E, Haines A J. Intraplate deformation in the Japanese Islands:A kinematic study of intraplate deformation at a convergent plate margin. J. Geophys. Res., 1995, 100(612) :24275-24293.
    [109] Shen-Tu B, Holt W E, Haines A J. Contemporary kinematics of the western United States determined from earthquake moment tensors, very long baseline interferometry, and GPS observations. J. Geophys. Res., 1998, 103:18087-18117.
    [110] Shen Z, Zhao C, Yin A, et al.. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J. Geophys. Res., 2000, 105(B3) :5721-5734.
    [111] Sillard P, Altamimi Z, Boucher C. The ITRF96 relization and its associated velocity field. Geophys. Res. Lett., 1998, 25:3223-3226.
    [112] Simons W M F, Ambrosius A C, Noomen R, et al.. Observing plate motions in SE Asia: Geodetic results of the GEODYSSEA project. Geophys. Res. Lett., 1999, 26:2081-2084.
    
    
    [113] Skone S H. The impact of magnetic storms on GPS receiver performance. Journal of Geodesy, 2001,75:457-468.
    [114] Smith D E, et al. . Tectonic motion and deformation from satellite laser ranging to LAGEOS. J. Geophys. Res., 1990, 95:22013-22041.
    [115] Smith D E, Kolenkiewicz R, Nerem R S, Dunn P J, Torrence M H, Robbins J W, Klosko S M, Williamson R G, Pavlis E C. Contemporary global horizontal crustal motion. Geophys. J. Int. , 1994, 119:511-520.
    [116] Springer T A. Common Interests of the IGS and the IVS. In: International VLBI Service for Geodesy and Astrometry 2000 General Meeting Proceedings, 2000, Germany, p. 296-305.
    [117] Tapponnier P, PeltzerG, Le-Dain A Y, et al.. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 1982, 10:611-616.
    [118] Tinnon M J, Holt W E, Haines A J. Velocity gradients in the northern Indian Ocean inferred from earthquake moment tensors and relative plate velocities. Journal of Geophysical Research, 1995, 100(82) :24315-24329.
    [119] Tsedilina E E, Weitsman O V. Time delay of transionospheric radio signals in a horizontally inhomogeneous ionosphere. Radio Science, 1994, 29(3) :625-630.
    [120] Tsuji H, Hatanaka Y, Sagiya T, et al. Coseismic crustal deformation from the 1994 Hokkaido-Toho-Oki earthquake monitored by a nationwide continuous GPS array in Japan. Geophys. Res. Lett. , 1995,22(13) :1669-1672.
    [121] Warnant R. The study of the TEC and its irregularities using a regional network of GPS stations, in: IGS 1998 Analysis Center Workshop, eds by Dow J M, Kouba J,Springer T,1998.
    [122] Watkins M M, Eanes R J. Diurnal and semidiurnal variations in Earth Orientation determined from LAGEOS laser ranging. J. Geophys. Res., 1994, 99(B9) :18073-18079.
    [123] Watkins M M, Eanes R J. Observation of tidally coherent diurnal and semidiurnal variations in the geocenter. Geophys. Res. Lett.,1997, 24(17) :2231-2234.
    [124] Wessel P, Smith W. The Generic mapping Tools(GMT) Version 3. School of Ocean and Earth Science, Technology University of Hawaii, 1995.
    [125] Wilson B D, Mannucci A J, Edwards C D. Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers. Radio Science, 1995, 30(3) :639-648.
    [126] Wolf S K, Dixon T H, Freymueller J T. The Effect of Tracking Network Configuration on GPS Baseline Estimates for the CASA UNO Experiment. Geophysical Research Letters, 1990, 17(5) :647-650.
    [127] Yu S B, Kuo L C, Punongbayan R S, et al.. GPS obervation of crustal deformation in the Taiwan-Luzon. Geophys. Res. Lett., 1999,26:923-926.
    [128] Yuan L I , Anthes R A , Ware R H, et al. Sensing climate change using the Global Positioning System. J. Geophys. Res. , 1993,98: 14925-14937.
    [129] ZhangJ, Bock Y, Johnson H, et al. . Southern California Permanent GPS Geodetic Array:Error analysis of daily position estimates and site velocities. Journal of Geophysical Research, 1997, 102(B8) :18035-18055.
    [130] Zhang Q, Zhu W, Xiog Y. Global plate motion models incorporating the velocity
    
    field of ITRF96. Geophys. Res. Lett., 1999, 26(18) :2813-2816.
    [131] Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. J. Geophys. Res., 1997,102(B3) :5005-5017.
    [132] Zhu Wenyao, Wang Xiaoya, Cheng Zongyi, et al. . Crustal motion of Chinese mainland monitored by GPS. Science in China(Series D), 2000, 43(4) :394-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700