用户名: 密码: 验证码:
新型六自由度正交并联机器人设计理论与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提出四种新颖的具有正交位姿的六自由度三维平台并联机器人,它们是2-2-2-SPS三维平台并联机器人、3-2-1-SPS三维平台并联机器人、2-2-2-PSS三维平台并联机器人和3-2-1-PSS三维平台并联机器人。这四种三维平台并联机器人处于正交位姿时,都具有受力变形无耦合的特点,对于2-2-2-SPS三维平台和2-2-2-PSS三维平台并联机器人,同时具有运动学与力学各向同性的特点,这些特点使它们特别适合于作为六自由度微操作手和机器人六维力传感器结构。
     基于2-2-2-PSS三维平台并联机器人和3-2-1-PSS三维平台并联机器人机构,提出两种新颖的六自由度三维平台并联微操作手,推导出显式的位置正反解方程,分析微位移传递性、运动传递性能、静力传递性能及其与结构几何参数关系,这对微操作手的结构设计和驱动器的选择非常有意义。这两种微操作手用柔性铰链替代球铰,用柔性框架替代直线移动副,本体为整体式结构,具有结构紧凑灵巧、分辨率高、微位移解耦、算法和控制简单等优点。
     针对以Stewart平台为原型的六自由度并联机床各向同性和工艺性差等问题,提出一种基于2-2-2-SPS三维平台并联机器人机构的新型六自由度三维平台并联机床。分析其结构和装配工艺性,研究其定位姿工作空间及机床结构参数对工作空间大小的影响,基于Jacobian矩阵和力Jacobian矩阵中同量纲元素构成的子阵,提出该并联机床在任意位姿的运动/力学传递各向同性评价指标、运动学传递能力评价指标和承载能力评价指标;基于柔度矩阵中同量纲元素构成的子阵,提出该并联机床在任意位姿的力-位置柔度评价指标、力-姿态柔度评价指标、力矩-姿态柔度评价指标和力矩-位置柔度评价指标;研究各性能指标在定位姿工作空间内的分布情况。
     提出该并联机床的全域运动/力学传递各向同性性能评价指标、全域运动学传递能力评价指标、全域承载能力评价指标和全域柔度评价指标,在建立的几何空间模型中研究机床结构参数与各全域性能指标的关系并给出性能图谱。应用模糊信息处理技术,研究基于性能图谱的机床结构参数的模糊决策方法,这种决策方法对机床结构参数可能选取的值进行了科学的分析与定量的比较,决策出的机床结构参数更合理,为实现并联机床全局最优的结构参数的计算机辅助优化设计提供了一条新途径。
     提出并分析三种新颖的并联结构六维机器人手指/腕力传感器,它们是基于2-2-2-SPS三维平台并联机器人机构的各向同性结构六维机器人腕力传感器、基于3-2-1-SPS三维平台并联机器人机构的六维机器人腕力传感器和基于等平台Stewart机构的六维机器人手指/腕力传感器。研究基于等平台Stewart机构的六维机器人手指/腕力传感器的参数设计方法,研制了多种并联结构六维机器人手指/腕力传感器样机和可实现三维力和三维力矩加载的六维力传感器的标定装置,对基于等平台Stewart机构的六维机器人手指力传感器样机进行了标定实验与分析。
     本论文的研究工作为具有自主知识产权的并联机器人技术的产业化奠定了基础。
The unique design and analysis for four novel types of 6-DOF 3-dimensional platform parallel robot (3-D PPR) are presented. They are 2-2-2-SPS 3-D PPR, 3-2-1-SPS 3-D PPR, 2-2-2-PSS 3-D PPR and 3-2-1-PSS 3-D PPR. Each 3-D PPR has an orthogonal configuration. At the orthogonal configuration, all of them are characterized by uncoupling deflection. Furthermore, the 2-2-2-SPS 3-D PPR and the 2-2-2-PSS 3-D PPR are characterized by mechanics and kinematics isotropy. These properties make them particularly suitable for certain applications in 6-DOF micromanipulators and 6-axis force robot's transducers.
    Two novel 6-DOF parallel micromanipulators (6-DOF PMs) based on the 2-2-2-PSS 3-D PPR and the 3-2-1-PSS 3-D PPR are presented, respectively. Their direct and inverse displacement equations are derived explicitly and their properties of the micro-displacements transmission, the motion transmission and the static force transmission and the relationships between the properties and the link lengths are analyzed, which is significant for the architecture design and the selection of the actuators of the micromanipulators. In the micromanipulators, flexure hinges and flexible frames are used to replace real spherical joints and prismatic joints, respectively. The micromanipulators are manufactured from one single solid. The resulting monolithic structure produces the micromanipulators with high resolution, decoupling micro-displacements, simple algorithm and control.
    To the problem that the isotropy and the technological efficiency of the parallel kinematic machine based on Stewart platform are not satisfactory, a novel architecture of 6-DOF 3-dimensional platform parallel kinematic machine (6-DOF 3-D PPKM) based on the 2-2-2-SPS 3-D PPR is presented. The technological efficiency of design of the parallel kinematic machine is analyzed. Its workspace and the effect of design parameters to the workspace volume are studied. By using the submatrices of Jacobian matrix and force Jacobian matrix, the kinematics/mechanics transmission isotropic indices, kinematics transmission indices, load-bearing capacity indices at any configuration of the parallel kinematic machine are proposed, respectively. By using me submatrices of the flexibility matrix, the force-translation flexibility index, the force-rotation flexibility index, the moment-rotation flexibility index and the moment-translation flexibility index at any configuration of the parallel kinematic machine are proposed, respectively. Each submatrix consists of elements having same dimension. The distributions of the indices in constant-orientation workspace are presented.
    The glob kinematics/mechanics transmission isotropic indices, glob kinematics transmission indices, glob load-bearing capacity indices and glob flexibility indices of the parallel kinematic machine are proposed. The relationships between the glob indices and the link lengths of the parallel kinematic machine are analyzed within the geometric model of the solution space defined by us. The index atlases are presented. By using fuzzy information processing technology, the fuzzy decision method based on the atlases for the
    
    
    
    link lengths setting is researched. In this method, all the possible link lengths selected are analyzed scientifically and compared quantitatively, which makes the decision of the link lengths even more rational. The method provides a new way for the computer-aide glob optimal design of parallel kinematic machines.
    The design and analysis for three novel types of 6-axis robot's finger/wrist force transducer (6-A RF/WFT) with parallel architecture are presented. They are the isotropic 6-A RWFT based on the 2-2-2-SPS 3-D PPR's orthogonal configuration, the 6-axis robot's wrist force transducer (6-A RWFT) based on the 3-2-1-SPS 3-D PPR's orthogonal configuration and the 6-A RF/WFT based on the mechanism of the Stewart with equal platforms. The research on design theory of the force transducer based on the mechanism of the Stewart with equal platforms is presented. Several 6-A RFAVFT prototype
引文
1 D. Stewartn. A platform with six degrees of freedom. Proceedings of the Institute of Mechanical Engineering. 1965, 180(1):371~386
    2 B. Dasgupta, T. S. Mruthyunjaya. The Stewart platform manipulator: a review. Mechanism and Machine Theory. 2000, 35: 15~40
    3 黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社.1997
    4 C. M. Gosselin, J. Sefrious. On the direct kinematics of general spherical 3-DOF parallel manipulator. Proceedings of the ASME Mechanisms Conference. 1992, b:7 11
    5 R.I. Alizade. N. R. Tagiyev. A forward and reverse displacement analysis of a 6-dof in-parallel manipulator. Mechanism and Machine Theory. 1994, 29(1): 115~124
    6 J. P. Merlet. Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data. Proceedings of the IEEE International Conference on Robotics and Automation. Atlanta, 1993: 200~204
    7 R. D. Gregorio. Position analysis in analytical form of the 3-PSP mechanism. Proceedings of the 1999 ASME Design Engineering Technical Conferences. DETC99/DAC-8689
    8 H. Bruyninckx. Forward kinematics for hunt-primrose parallel manipulators. Mechanism and Machine Theory. 1999, 34: 657~664
    9 文福安,梁崇高,廖启征.并联机器人机构位置正解.中国机械工程.1999,10(9):1011~1013
    10 C. M. Gosselin. Determination of the workspace of 6-DOF parallel manipulators. Journal of Mechanical Design. 1990, 112:331~336
    11 J. P. Merlet, C. M. Gosselin, N. Mouly. Workspace of planar parallel manipulators. Mechanism and Machine Theory. 1998, 33: 7~20
    12 L. A. Bonev, J. Ryu. Orientation workspace analysis of 6-DOF parallel manipulators. Proceedings of the 1999 ASME Design Engineering Technical Conferences. DETC99/DAC-8646
    13 L. A. Bonev, J. Ryu. Workspace analysis of 6-PRRS parallel manipulators based on the vertex space concept. Proceedings of the 1999 ASME Design Engineering Technical Conferences. DETC99/DAC-8647
    14 J. W. Jeong, S. H. Kim, Y. K. Kwak. Kinematics and workspace analysis of a parallel wire mechanism for measuring a robot pose. Mechanism and Machine Theory. 1999,34:825~841
    15 A. Bajpai, B. Roth, Workspace and mobility of a closed-loop manipulator. The International Journal of Robotics Research. 1986,5(2):131~142
    16 C. Marco, S. Massimo. The effects of design parameters on the workspace of a parallel robot. The International Journal of Robotics Research. 1999, 17(8): 886~901
    17 J. P. Merlet, C. M. Gosselin, N. Mouly. Workspaces of planar parallel manipulators.
    
    Mechanism and Machine Theory. 1998, 33 (1/2) : 7-20
    18 X. J. Liu, J. S Wang, F. Gao. Performance atlases of the workspace for planar 3-DOF parallel manipulators. Robotica. 2000, 18(5) : 563-568
    19 C. M. Gosselin, J. Angeles. Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation. 1990, 6 (3) : 281-290
    20 P. Choudhury, A. Ghosal. Singularity and controllability analysis of parallel manipulators and closed-loop mechanisms. Mechanism and Machine Theory. 2000, 35: 1455-1479
    21 J. P. Merlet. Singular configuration of parallel manipulators and grassman geometry. The International Journal of Robotics Research. 1989, 8 (5) : 45-56
    22 沈惠平,杨廷力,K.L.Ting.一种求解复杂平面机构奇异位置的分析图解法.机械 设计.2001,18(5) :9~11
    23 C. M. Gosselin, J. Angeles. A Global performance index for the kinematic optimization of Robotic Manipulators. Journal of Mechanical Design. 1991, 113(9) : 220-226
    24 C. M. Gosselin, E. Lavoie. On the kinematic design of spherical 3-DOF parallel manipulators. International Journal of Robotics Research. 1993, 12 (4) : 394-402
    25 K. E. Zangganeh. Kinematic isotropy and the optimum design of parallel manipulators. International Journal of Robotics Research, 1997, 16 (2) : 185-197
    26 H. R. Wang, F. Gao, Z. Huang. Design of 6-axis force/torque sensor based on Stewart platform related to isotropy. Chinese journal of mechanical engineering. 1998, 11 (3) :217-222
    27 H. S. Kim, Y. J. Choi. The analysis of forward /inverse force transmission capabilities of the Stewart platform. Proceedings of the 1999 ASME Design Engineering Technical Conferences. DETC99/DAC-8648
    28 T. Farhad, L. W. Tsai. On the stiffness of a novel 6-DOF parallel minimanipulator. Journal of Robotic Systems. 1995, 12(12) : 845-856
    29 C. M. Gosselin. Stiffness map for parallel manipulators. IEEE Transaction on Robotics and Automation. 1990, 6 (3) : 377-382
    30 L. Sylvie, C. Reboulet, Optimal design of a redundant spherical parallel manipulator. Robotica. 1997, 15:399-405
    31 L. Romdhane. Design and analysis of a hybrid serial-parallel manipulator. Mechanism and Machine Theory. 1999, 34:1037-1055
    32 C. Marco. A new 3-DOF spatial parallel mechanism. The International Journal of Robotics Research. 1997, 32(8) : 895-902
    33 L. W. Tsai. Design of a parallel manipulator with an orthogonal configuration. Proceedings of the 1999 ASME Design Engineering Technical Conferences. DETC99/DAC-8667
    34 K. H. Hunt. Structural kinematic of in-parallel-actuated robot-arms. ASME Journal of Mechanisms, Transmissions and Automation in Design. 1983, 105:705-712
    35 G. L. Long, C. L. Collins. A pantograph linkage master hand controller for force reflection. Proceedings of the IEEE International Conference on Robotics and Automation-1992, : 390-395
    
    
    36 C. R. Tischler, K. H. Hunt, A. e. Samual. On optimizing the kinematic geometry of a dextrous robot finger. The International Journal of Robotics Research. 1998, 17(10):1055~1067
    37 J. Mariappan, S. Krishnamurty. A generalized exact gradient method for mechanism synthesis. Mechanism and Machine Theory. 1996, 31(4):413~421
    38 赵铁石.空间少自由度并联机器人机构分析与综合理论研究.燕山大学博士学位论文.2000
    39 K. M. Lee, D. K. Shah. Dynamic analysis of a 3-DOF in-parallel actuated manipulator. IEEE Journal of Robotics and Automation. 1988, 4(3):361~367
    40 L. Beji, M. Pascal. The kinematics and the full minimal dynamic model of a 6-DOF parallel robot manipulator. Nonlinear Dynamics. 1999, 18:339~356
    41 F. J. Xia, C. L. Zhang. Finite element dynamic analysis of spatial parallel mechanisms. Chinese journal of mechanical engineering. 1999. 12(3):224~229
    42 Y. R. Zhang, F. Gao. W. A. Gruver. Dynamic simplification of three degree of freedom manipulators with closed chains. Robotics and Autonomous Systems. 1999, 28:261~269
    43 刘敏杰,李(?)心,刘海峰.基于速度变换的Stewart平台机械手动力学分析.机械工程学报.2000,36(5):38~41
    44 高山,徐礼钜,林光春.6-SPS并联机器人动力学解析模型.四川联合大学学报.1998,2(2):34~39
    45 吕崇耀,熊有伦.Stewart并行机构位姿误差分析.华南理工大学学报.1999,27(?):4~6
    46 Z. Huang, Modeling formulation of 6-DOF multiloop parallel manipulators part (?) modeling and evampe. Proceedings of 4th IFToMM Conferences on mechamsins and CAD. 1985, Romania
    47 Z. Huang, Y. F. Fang. Kinematic characteristics of 3-DDF in-parallel actuated platform mechanisms. Mechamism and Machine Theorv. 1996, 31(8):1009~1018
    48 黄真,高峰.从并联机器人研究看知识创新和技术创新,机械工程学报,2000,36(2):18~20
    49 黄真.空间机构学.北京:机械工业出版社.1991
    50 T. Huana, J. S. Wang, C. Gosselin. Design of hexapod-based machine tools with specified orientation capability and well-conditioned dexterity. The 10th World ongress for Theory of Machines and Mechanisms. Finland, 1999. 6:20~24
    51 汪劲松,黄田,杨向东等,6-THS型并联机床结构参数设计理论与方法.清华大学学报.1999,39(8):25~30
    52 汪劲松,黄田.并联机床——机床行业面临的机遇与挑战.中国机械工程.1999,10(10):1103~1107
    53 黄田,汪劲松,D.J.Whitehouse. Stewart并联机器人局部灵活度和各项同性条件解析.机械工程学报.1999,35(5):41~46
    54 黄田,曾宪菁,曾子平等.等顶锥角3自由度球面并联机构的全参数解析尺度综合.机械工程学报.2000,36(8):15~19
    
    
    55 F. Gao, X. J. Liu. The relationships between the shapes of the workspaces and the link lengths of 3-DOF symmetrical planar parallel manipulators. Mechanism and Machine Theory. 2001, 36(2):205~220
    56 F. Gao, X. J. Liu, W. A. Gruver. Performance evaluation of 2-DOF planar parallel robots. Mechanism and Machine Theory. 1998, 33(6) 661~668
    57 F. Gao, X. Q. Zhang, Y. S. Zhao. A physical model of the solution space and the atlases of the reachable workspaces for 2-DOF parallel planar manipulators. Mechanism and Machine Theory. 1996, 31(2): 173~184
    58 F. Gao, Y. S. Zhao, Z. H. Zhan. Physical model of the solution space of 3-DOF parallel planar manipulators. Mechanism and Machine Theory. 1996, 31(2): 161~171
    59 F. Gao, W. A. Gruver. A geometric model for the analysis and design of Delta parallel robots. ASME Design Engineering Technical Conferences and Computers in Engineering Conference. California, 1996, 8:18~22
    60 F. Gao, W. A. Gruver. Criteria based analysis and design of three degree of freedom planar robotic manipulators. IEEE ICRA'97, New Mexico, 4:20~25
    61 F. Gao. Physical model technique for design of robotic manipulators in manufacturing system. Computer aided and integrated manufacturing systems techniques and applications. (Chapter) The Gordon and Breach Science Publishers. USA, 1999
    62 N. Akihiko, H. Shigeo. Walking and running of the quadruped wall-climbing robot. Proceedings of the IEEE International Conference on Robotics and Automation. 1994, 1005~1012
    63 V. Peter, C. Reymond. Argos: A.novel 3-DOF parallel wrist mechanism. The International Journal of Robotics Research. 2000, 19(1): 5~11
    64 刘辛军.并联机器人机构尺寸与性能关系分析及其设计理论研究.燕山大学博士学位论文.1999
    65 C. M. Gosselin, J. F. Hamel. The agile eye: a high-performance 3-DOF camera-orienting device. Proceedings of the IEEE International Conference On Robotics and Automation. 1994, 3:781~786
    66 C. M. Gosselin, S. G. Pierre. On the development of the agile eye: Mechanical design, control issues and experimentation. IEEE Robotics and Automation Society, Magazine. 1996, 3(4):29~37
    67 曾宪箐.球面并联机构的运动学设计理论与方法.天津大学博士学位论文.2000
    68 Y. X. Su, B. Y. Duan. The mechanical design and kinematics accuracy analysis of a fine tuning stable platform for the large spherical radio telescope. Mechatronics. 2000, 10:819~834
    69 黄亚楼,卢桂章.微机器人和精微操作的研究与发展.机器人.1992,14(4):52~59
    70 杨宜民,程良伦.微细作业系统的现状、构成及其应用.机器人.1998,20(1):32~35
    71 G. W. Ellis. Piezoelectric Micromanipulators. Science Instruments and Techniques. 1962, 138:84~91
    72 R. Stoughton. Kinematic Optimization of a chopsticks-type micromanipulator. ASME Japan/USA Symp. on Flexible Automation. 1992, 1: 151~157
    
    
    73 J. C. Hudgens, D. A. Tesar. Fully-parallel six degree-of-freedom micromanipulator: kinematic analysis and dynamic model. Proc. 20th Biennal ASME, Mechanisms Conf. Trends and Development in Mechanisms Machines and Robotics. 1988, 15(3): 29~37
    74 K. W. Grace, J. E. Colgate, M. R. Glucksberg. A six degree of freedom micromanipulator for ophthainic surgery. IEEE International Conference on Robotics and Automation. 1993, 2: 630~635
    75 K. M. Lee, S. A. Arjunan. Three-DOF micro-motion-in-parallel actuated-manipulator. IEEE Int. Conf. On Robotics and Automation. 1989,1698~1703
    76 孙立宁,安辉,张涛等.微动机器人运动学分析的基础研究.仪器仪表学报.1998,19(5):465~470
    77 毕树生,宗光华.微操作机器人系统的研究开发.中国机械工程.1999,10(9):1024~1027
    78 毕树生,王守杰,宗光华.串并联微动机构的运动学分析.机器人.1997,19(4):259~264
    79 徐卫平,张玉茹.六自由度微动机构的运动分析.机器人.1995,17(5):298~302
    80 陈恳,李嘉,董怡等.并联操作手的运动学分析.中国机械工程.1998,9(7):57~59
    81 张定会,邵惠鹤.柔性框架式爬行驱动器.自动化仪表.2000,21(2):16~18
    82 蔡鹤皋,孙立宁,安辉.压电/电致伸缩微位移器与应用.高技术通讯.1994,6:37~40
    83 刘建琴,张策.微进给机构综述.机械传动.1999,1:47~51
    84 王祁,于航.传感器技术的新发展.传感器技术.1998,17(1):56~58
    85 王国泰,易秀芳,王理丽.六维力传感器发展中的几个问题.机器人 1997,19(6):474~478
    86 D. R. Kerr. Analysis, properties and design of a Stewart-platform transducer. Automation and Design. 1989, 111: 25~28
    87 C. C. Nguyen. Analysis and experimentation of a Stewart platform-based force/torque sensor. International Journal of Robotics and Automation. 1993, 7(3):133~140
    88 C. Ferraresi. Static and dynamic behavior of a high stiffness Stewart platform-based force/torque sensor. Journal of Robotic Systems. 1995, 12(12): 883~893
    89 M. Uchiyama. Evaluation of robot sensor structure using singular value decomposition. Journal of the Robotics Society of Japan. 1987, 5(1): 4~10
    90 熊有伦.机器人力传感器的各项同性.自动化学报.1996,22(1):10~17
    91 E. Bayo. Six-axis force sensor evaluation and a new type of optimal frame truss design robotic application. Journal of the Robotic Systems. 1989, 6(2): 191~208
    92 D. Dirk, R. Dominiek, V. B. Hendrik. Design of a ring-shaped 3-axis micro force/torque sensor. Sensors and Actuators. 1995, A(46-47):225~232
    93 M. M. Svinin, M. Uchiyama. Optimal geometric structures of force/torque sensors. The International Journal of Robotics Research. 1995, 14(6):560~573
    
    
    94 G. S. Kim, D. L. Kang, S. H. Rhee. Design and fabrication of a 6-component force/moment sensor. Sensors and Actuators. 1999, 77:209~220
    95 黄心汉,胡建元,王建.一种非径向三梁结构六维力传感器弹性体及其设计.机器人.1992,14(5):1~6
    96 徐科军,李成.多维腕力传感器静态解耦的研究.合肥工业大学学报.1999,22(4):1~7
    97 周廷佑,林益耀.发展中的六条腿机床.机械制造.1998,10:4~8
    98 J. L. Zhang, J. M. zhang. Mathematics model study of parallel connected machine tool based Stewart mechanism. 5th International Conference on Mechatronics and Vision in practice. China, 1998, 57~60
    99 汪劲松,段广洪,杨向东.VAMTIY虚拟轴机床.制造技术与机床.1998,2:42~43
    100 黄田,王洋,3-HSS并联机床总体布局及运动学设计理论浅析.第一届并联机器人及机床设计理论与关键技术研讨会论文.清华大学,1999,5
    101 赵明扬,余晓流,王启义等.一种并联机床运动平台位姿测量方法.中国机械工程.1999,10(10):1112~1113
    102 王知行,李建生.BJ—1型并联机床.制造技术与机床.1999,8:55
    103 李兵.并联机床原形样机设计及性能分析.哈尔滨工业大学博士学位论文.1999
    104 蔡光起,原所先,胡明等.三自由度虚拟轴机床力学及动力学的若干研究.中国机械工程.1999,10(10):1108~1111
    105 曲继方,安子军,曲志刚.机构创新原理.北京:科学技术出版社.2001
    106 熊有伦.机器人技术基础.武汉:华中理工大学出版社.1997
    107 E. E. Kerre. Fuzzy sets and approximate reasoning. Xian: Xian Jiaotong University Press. 1995
    108 P. Zhang, D. G. Lu, G. Y. Wang. Intuitionistic fuzzy, optimization. Journal of Harbin Institute of Technology. 2000, 7(2):52~57
    109 王彩华,宋连天.模糊论方法学.北京:中国建筑工业出版社.1988
    110 黄崇福,王家鼎.模糊信息优化处理技术.北京:北京航空航天大学出版社.1995
    111 张志勇.掌握和精通MATLAB.北京:北京航空航天大学出版社.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700