用户名: 密码: 验证码:
多卫星测高数据应用于海底构造动力研究——以中国边缘海及邻区为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文系统、深入地探讨了多卫星测高数据的误差分析处理、地球重力场推
    算及地球物理解释方面的原理和方法,形成了一套较完整的卫星测高数据分析、
    处理、解释方法,并在计算机上编程实现,应用于中国边缘海及邻区的0—45°N、
    100—150°E范围内的Geosat ERM、ERS-1/2和Topex/Poseidon测高数据处理,
    提供的4'×4'网格间距的大地水准面及残差、重力异常、布格/格莱尼/均衡大地
    水准面及重力异常、海底地形、Moho面埋深、大/中/小尺度地幔流应力场,分
    层次、多尺度地展示了研究区丰富的海底构造动力信息。论文的研究要点归纳
    如下:
     通过解剖ERS-1/2测高数据结构,并在对Geosat的单星交叠差调差的基础
    上,实现ERS-1/2相对于T/P的双星交叠差调差,重点利用ERS-1两个168天
    长周期的分辨率优势;实现适合研究区的平均海平面的海面地形改正;实现无
    共线平均的所有海面高数据的权重配赋网格插值,在反推重力异常的垂线偏差
    计算中,共线平均推迟到对轨迹向海面高斜率和角度来作;在推算重力异常、
    海底地形和Moho面埋深中,均采用参考模型的“移去—恢复”处理技术,实
    现简化运算的滑动窗口FFT,有效发挥了测高数据的精度和分辨率优势。展示
    大地水准面在深部构造动力研究方面的优势,实现大地水准面(位)及重力异
    常的全球性地形/均衡改正、小尺度地幔流应力场推算。引入地幔流位场概念,
    使地幔流应力场推算与垂线偏差计算获得统一而简化。
     由获得的各级测高数据数字模型,刻画研究区沟—弧—盆系的构造动力格
    局和特征,分辨出地形上难以确定的不同于一般海岭的扩张脊构造特征、沟弧
    构造形迹和各段沟弧系俯冲作用及反向挤压强度的差异等。反映欧亚板块东南
    向蠕散、太平洋板块北西向扩张的大尺度地幔流应力场,展现出北端左旋压扭、
    南端右旋压扭和中间滑移的哑铃状构造动力格局,南强北弱的能量汇聚与印度
    洋板块北向推挤有关。中尺度和大尺度地幔流应力场的共同作用,可以解释日
    本海盆北西向和南海海盆东南向的不对称扩张特性,及各段沟弧系的构造活动
    差异。南海海盆往东强度变大和年代趋新的构造活动特征,冲绳海槽和马里亚
    纳海槽的地幔流作用方式,体现了海盆及海槽演化的地球动力学过程及特点。
Through systematically, thoroughly studying theories and techniques of error correction,
     gravity field computation and geophysical interpretation for multi-satellite altimetry data, the
     dissertation has established a series of processing methods, which is realized in computer and
     applied to Geosat ERM, ERS- 1/2 and Topex/Poseidon altimetry data in the China marginal seas
     and its vicinity located between 0?50N~ 100?l500E . In order of depth and scale, plenty of
     information on submarine tectonics and geodynaniics in the interested region can be extracted
     from 4抶4?grid data models. These models include geoid undulation and its residual high-
     frequency components, gravity anomaly, other forms of geoid undulation or gravity anomaly,
     submarine topography, Moho discontinuity, stress field from various scales of mantle convection.
     Main achievements of the dissertation can be summed up as follows.
     On the basis of a complete dissection for ERS-l/2 OPR data structure and a single-satellite
     crossover adjustment for Geosat ERM, a dual-satellite crossover adjustment for ERS- 1/2 relative
     to TopexlPoseidon has been implemented in order to take advantage of two 168-day long cycles of
     ERS- 1 altimetry data. The sea surface topography is calculated and removed from geoid
     undulation according to oceanographic measurements and estimations. The stacking collinear
     average is excluded from modeling geoid undulation directly in the way of weighting grid
     interpolation for sea surface height, and it is applied to the along-track slope and direction instead
     of sea surface height in the process of calculating vertical deflection for gravity anomaly recovery.
     The remove-restore procedure of reference models is used to calculate gravity anomaly, submarine
     topography and Moho discontinuity, thus FF1?available in flowing window simplifying algorithm
     operation. These improvements above all efficiently guarantee precision and resolution of
     altimetry data. Matching with the privilege of geoid undulation in studying deep structural
     dynamics, not only gravity anomaly but also geoid undulation are corrected for global topography
     and isostacy, and their results are convenient for inversing Moho discontinuity and stress field
     from small scale of mantle convection respectively. The concept of mantle convection potential
     field is introduced to calculate stress field as easily as calculating vertical deflection.
     Various kinds of digital models from altimetry data have figured the tectonic and
     geodynamic pattern and features of the trench-arc-basin system in the interested region, such as
     spreading ridges different from common seamount chains, trench-arc tectonic trails hardy
     discovered by topography, difference of subducting function and its resistant compression
     occurring along different trench-arcs. Consistent with the rift of the Eurasian plate and the
     northwestward spread of the Pacific plate, the stress field from large scale of mantle convection
     displays a skeleton of dumbbell shaped with sinistral compresso-shear at the north, dextral
     compresso-shear at the south and slip in the middle. Energy converge strong at the south is
     attributed to the northward movement of the Indian ocean. The stress fields from middle and large
     scales of mantle convection may jointly lead to the northwestward rifling of Japan, the
     southeastward rifling of Sea South China Sea, and specific tectonic features of the Ryukyu and
     Philippine arcs. Activation of the South China Sea basin could become stronger and later
     eastwards, and stress fields from small scale of mantle convection appear to converge in Okinawa
     Trough and Mana Trough. These evidences above
引文
[1] Fubara D.M.J.,Result of geodetic processing and analysis of Skylab altimeter data.Proceedings of International Symposium on Applications of Marine Geodesy,1974.
    [2] Rapp R.H.,Geos-3 data processing for recovery of geoid undulations and gravity anomalies. J.Geophys.Res.,1979,84(B8) .
    [3] Rapp R.H.,The determination of geoid undulations and gravity anomalies from Seasat altimeter data.J.Geophys.Res.,1983,88(C3) .[
    4] Rapp R.H.,Detailed gravity anomalies and sea surface heights derived from Geos/Seasat altimeter data.OSU Report No.365,1985.
    [5] NODC Laboratory for Satellite Altimetry,The Geosat Altimeter JGM-3 GDRs on CD-ROM.U.S.Navy Geosat Enhanced JGM-3 GDRs from the Geodetic & Exact Repeat Missions,Silver Spring,MD,1997.
    [6] Douglas B.C.and Cheney R.E.,Geosat:Beginning a new era in satellite oceanography.J. Geophys.Res.,1990,95 (C3) :2 833-2 836.
    [7] Scharroo R.,Wakker K.F.and Mets G.J.,The orbit determination accuracy of the ERS-1 mission.Proceedings of the Second ERS-1 Symposium-Space at the Service of our Environment,Hamburg,Germany,1993,ESA SP-361:735-740.
    [8] CNES AVISO,AVISO user handbook-corrected sea surface heights.AVI-NT-011-311-CN, Edition 2. 0,1996.
    [9] Le Traon P.Y.,Caspar P.,Bouyssel F.and Makhmara H.,Using Topex/Poseindon data to enhance ERS-1 orbit.J.Atm.Ocean.Tech.,1995,12:161-170.
    [10] Duchossois G.and Zobl R.,ERS-2:A Continuation of the ERS-1 Success,http: //esapub.esrin.esa.it /bulletin / bullet83 /ducho83. htm,1995.
    [11] Finkelstein Jay L.,Navy Geosat Follow-On(GFO) Altimetry Mission,http://ibis.grdl.noaa.gov /SAT / gdrs /gfo.html,2001.
    [12] ESA,Envisat Introduction,http://envisat.esa.int/envisat-welcome.html,1999.
    [13] CNES,Jason-1 Satellite,http:/aviso.jason.oceanobs.com/ html /mission /satellite_uk.html,2001.
    [14] Rapp R.H.,Wang Y.M.and Pavlis N.K.,The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models.OSU Report No.410,1991.
    [15] Sandwell D.T.and Smith W.H.F.,Marine gravity anomaly from Geosat and ERS-1 satellite altimetry.J.Geophys.Res.,1997,102:10 039-10 054.
    [16] Hwang C.,Inverse Vening Meinesz formula and deflection-geoid formula:applications to the prediction of gravity and geoid over the South China Sea.Journal of Geodesy,1998, 71:304-312.
    [17] Watts A.B.,On geoid heights derived from Geos-3 altimeter data along the Hawaiian-Emperor Seamount chain.J.Geophys.Res.,1979,84(B8) :3 817-3 826.
    [18] Wessel,P.:Observational constraints on models of the Hawaiian hot spot swell.J.Geophys. Res.,1993,98(89) :16095-16 104.
    [19] 王广运、王海瑛、许国吕:卫星测高原理.科学出版社,1995.
    [20] Demets C.et al.,Current plate motion.Geophys.J.Int.,1990,101:425.
    [21] Haxby W.F.and J.K.Weissel,Evidence for small-scale mantle convection from Seasat
    
     altimeter data.J.Geophys.Res.,1986,91:3 507-3 520.
    [22] Buck W.R.and Parmentier E.M.,Convection beneath young oceanic lithosphere: Implications for thermal structure and gravity.J.Geophys.Res.,1986,91:1 961-1 974.
    [23] Cazenave A.,Houry S.,Lago B.and K.Dominh,Geosat-derived geoid anomalies at medium wavelength.J.Geophys.Res.,1992,97:7 081-7 096.
    [24] McAdoo D.C.and Sandwell D.T.,On the source of cross-grain lineations in the central Pacific gravity field.J.Geophys.Res.,1989,94:9 341-9 352.
    [25] Wessel P.,Kroenke L.W and Bercovici D.,Pacific plate motion and undulations in geoid and bathymetry.Earth Planet.Sci.Lett.,1996,140:53-66.
    [26] Runcom,S.K.,Flow in the mantle inferred from the low degree harmonics of the geopotential.Geophys.J.R.Astr.Soc.,1967,14,:375-384.
    [27] 黄培华、傅容珊,应用卫星重力数据研究全球岩石圈层下的地幔流应力场.中国科学 技术大学学报,1982,12(2) :98-103.
    [28] 许厚泽、王海瑛、陆洋、王广运,利用卫星测高数据推求中国近海及邻域大地水准 面起伏和重力异常研究.地球物理学报,1999,42(4) :465-471.
    [29] Bowin C.,Gravity and geoid anomalies of the Philippine sea:evidence of the depth of compensation for the negative residual water depth anomaly.Memoir of the Geological Society of China,1981,4:103-119.
    [30] 雷受旻,重力广义地形改正值和均衡改正值的一种计算方法.海洋地质与第四纪地 质,1984,4 (1) :101-111.
    [31] Parker R.L.,The rapid calculation of potential anomalies.Geophys.J.R.Astr.Soc., 1973,31:447-455.
    [32] 傅容珊、黄建华、刘文忠、常筱华,区域重力异常和上地幔小尺度对流相关方程及 对流拖曳力场.地球物理学报,1994,37(5) :638-646.
    [33] Douglas B.C.and Cheney R.E.,Ocean mesoscale variability from repeat tracks of Geos-3 altimeter data.J.Geophys.Res.,1981,86(C11) ,10 931-10 937.
    [34] Smith Dru A.,There is no such thing as“the”EGM96 geoid:Subtle points on the use of a global geopotential model.IGeS Bulletin No.8,International Geoid Service,Milan,Italy, 1998:17-28.
    [35] Arabelos D.,Intercomparisons of the global DTMs ETOPO5,TerrainBase and JGP95E. Presented at the XXIV General Assembly of the EGS,The Hague,19-23 April,1999.
    [36] Nataf H.C.and Richard Y,3SMAC:An a priori tomographic model of the upper mantle based on geophysical modelling.Phys.Earth Planet.Inter.,1996,95:102-122.
    [37] Brown G.S.,The average impulse response of a rough surface and its applications.IEEE Transactions on Antennas and Propagation,1977,AP-25(1) .
    [38] ESA,ESA ERS-1 product specification.1993,ESA SP-1149.
    [39] CERSAT, Altimeter product user manual.1994,C1-EX-MUT-A21-01-CN.
    [40] Tai C.K.,Geosat crossover analysis in the tropical Pacific,I.Constrained sinusoidal crossover adjustment.J.Geophys.Res.,1988,93:10 621-10 629.
    [41] 陈习军,中国近海卫星测高数据处理研究.中国科学院测量与地球物理研究所硕士论 文,1994.
    [42] 潘家祎、袁业立、郑全安,用 Geosat 高度计数据提取东海大地水准面.海洋学报,1995, 17(6) :48-57.
    [43] Gaspar P.,Ogor F.,Le Traon P.Y.et al.,Joint estimation of the Topex and Poseidon sea-state biases.J.Geophys.Res.,1994,99(C12) :24 981-24 994.
    
    
    [44] Chelton D.B.,The sea state in altimeter estimates of sea level from collinear analysis of Topex data.J.Geophys.Res.,1994,99(C 12) :24 995-25 005.
    [45] 陆洋,利用卫星测高数据改善地球重力场模型的研究.中国科学院测量与地球物理研 究所博士论文,1997.
    [46] Cheney R.E.et al.,The complete Geosat altimeter handbook.NOAA Manual NOS NGS 7, Rockville,MD,1991.
    [47] Dubrule O.,Computing splines and kriging.Computer & Geosciences,1984,10(2-3) :327-338.
    [48] Nerem R.S.,Tapley B.D.and Shum C.K.,Determination of the ocean circulation using Geosat altimetry.J.Geophys.Res.,1990,95(C3) :3 163-3 179.
    [49] Hwang C.W.,Kao E.-C.and Parsons B.,Global derivation of marine gravity anomalies from Seasat,Geosat,ERS-1 and Topex/Poseidon altimeter data.Geophys.J.Int.,1998,134: 449-459.
    [50] Yi Y.,Determination of gridded mean sea surface from altimeter data of Topex,ERS-1,and Geosat.Ph.D.Thesis.Dept.Geodetic Science and Surveying,Ohio State Univ.,Columbus, OH,1995.
    [51] Engelis T.,Spherical harmonics expansion of the Levitus sea surface topography. OSU Report No.385,1987.
    [52] Engelis T.,Analysis of sea surface topography using Seasat altimeter data.OSU Report No.343,1983.
    [53] 赵明才、高贵绪,中国近海海面地形机制研究.海洋测绘,1999,74(3) :23-30.
    [54] Moritz H.,Advanced physical geodesy(1979) .中译本:高等物理大地测量学 (宁津生、 管泽霖等译),测绘出版社,1984.
    [55] Tscherning C.C.and Rapp R.H.,Closed covariance expressions for gravity anomalies, geoid undulations and deflections of the vertical implied by anomaly degree variance models.OSU Repoa No.208,1974.
    [56] Heiskanen W.A.and Moritz H.,Physical geodesy(1967) .中译本:物理大地测量学(卢福 康、胡国理译),测绘出版社,1979.
    [57] Rummel R.,Sjoberg L.E.and Rapp R.H.,The determination of gravity anomalies from geoid heights.OSU Report No.269,1977.
    [58] 黄谟涛、翟国君、管铮、欧阳永忠等,利用卫星测高数据反演海洋重力异常研究.第 十二届海洋测绘综合性学术研讨会论文集,中国测绘学会海洋测绘专业委员会, 2000:304-321.
    [59] Haagmans R.E.and Gelderen M.,Fast evaluation of convolution integral on the sphere using I D FFT and a comparison with existing methods for Stokes' integral.Manuscripta Geodaetica,1993,18:227-241.
    [60] Hotine M.,Mathematical geodesy. ESSA Monograph No.2,U.S.Department of Commerce, 1969.
    [61] Zhang C.and Blais J.A.R.,Recovery of gravity disturbances from satellite altimetry by FFT techniques:A synthetic study.Manuscripta Geodaetica,1993,18:158-170.
    [62] Zhang C.and Blais J.A.R.,Comparison of methods for marine gravity determination from satellite altimetry data in the Labrador Sea.Bulletin Geodesique,1995,69:173-180.
    [63] Zhang C.and Sideris M.G.,Oceanic gravity by analytical inversion of Hotine's formula,Manuscripta Geodaetica,1996,19,115-136.
    
    
    [64] 王海瑛,中国近海卫星测高数据处理与应用研究.中国科学院测量与地球物理研究所 博士论文,1999.
    [65] White J.V.,Sailor R.V.,Lazarewics A.R.and LeSchack A.R,Detection of seamount signatures in Seasat altimeter data using matched filters.J.Geophys.Res.,1983,88(C3) :1 541-1 551.
    [66] Watts A.B.,An analysis of isostasy in the world's oceans:1,Hawaiian-Emperor seamount chain.J.Geophys.Res,1978,83:5 989-6 004.
    [67] McKenzie D.P. and Bowin C.,The relationship between bathymetry and gravity in the Atlantic Ocean.J.Geophys.Res.,1976,81,1 903-1 915.
    [68] Cochran J.R.,An analysis of isostasy in the world's oceans:2,Midocean ridge crests.J. Geophys.Res,1979,84:4 713-4 729.
    [69] 高金耀,实验均衡理论及其对青藏高原均衡补偿的解释.地球物理学报,1990, 33(Supp.Ⅱ):543-550.
    [70] 李斐,物理大地测量学与地球物理学结合中的有关问题评注.地球物理进展,1997, 12(1) :15-23.
    [71] 等,地球重力场和大地构造.海洋地质译丛,1992,5:74-80. 陈邦彦译自《莫斯科大学报:地质学》,1991,3:3-16.
    [72] 陈邦彦,南海中央海盆格莱尼重力异常.中国地球物理学会年刊 (第 6 届年会),中 国地球物理学会编,地震出版社,1990.
    [73] Dziewonski A.M.and Anderson D.L.,Preliminary reference Earth model(PREM).Phys. Eaah Planet.Interior,1981,25,289-325.
    [74] Cook A.H.,Sources of harmonic of low order in external gravity field of the Earth.Nature, 1963,198(4688) .
    [75] Allen,R.R.,Depth to sources of gravity anomalies.Nature.Phys.Sci.,1972,236(36) :22-23.
    [76] Mcqueen H.W.S.and Stacey F.D.,Interpretation of low degreen components of gravitational potential in terms of undulations of mantle phase boundaries.Tectonophysics, 1976,34(1-2) .
    [77] Khan M.A.,Depth of sources of gravity anomalies.Geophys.J.R.Astr.Soc.,1977,48: 197-209.
    [78] 傅容珊,地球重力异常源的深度.地壳形变与地震,1983,4:19-23.
    [79] Bowin C.,Topography at the core-mantle boundary.Geophysical Research Leaers,1986, 13(3) :1 513-1 516.
    [80] Su W.-J.and Dziewonski A.M.,Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle.Phys.Earth Plnet.Inter.,1997,100:135-156.
    [81] Soller D.R.,Ray R.D.and Brown R.D.,A new global crustal thickness model.Tectonics, 1982,1,125-149.
    [82] Mooney W.D.,Laske G. and Masters T.G.,CRUST5. 1:A global crustal model at 5°×5°.J. Geophys.Res.,1998,103(B1) :727-747.
    [83] Laske G. and Masters G.,A global digital map of sediment thickness.EOS Trans.AGU, 1997,78,F483.
    [84] Dziewonski A.M.,Mapping the lower mantle:Determination of lateral heterogeneity in P velocity up to degree and order 6. J.Geophys.Res.,1984,89,5 929-5 952.
    
    
    [85] Woodhouse J.H.and Dziewonski A.M.,Mapping of the upper mantle:Three-dimensional modeling of Earth structure by inversion of seismic waveforms.J.Geophys.Res.,1984, 89, 5 953-5 986.
    [86] Humphreys E.et al.,A tomographic image of mantle structure beneath Southern California. Geophys.Res.Lett.,1984,11:625-627.
    [87] Yamaji A.,Periodic hotspot distribution and small-scale convection in the upper mantle. Earth and Planet.Sci.Lett.,1992,109:107-116.
    [88] 傅容珊,地幔热动力学模型.地球物理学进展,1993,8(2) :13-26.
    [89] Parsons B.and McKenzie D.P.,Mantle convection and the thermal structure of the plates.J. Geophys.Res.,1978,83:4 485-4 496.
    [90] Hayes D.E.and Taylor B.,Tectonics.In:A Geophysical Atlas of the East and Southeast Asian Seas (edite by Hayes,D.E.),The Geological Society of America,1978.
    [91] 吕文正、柯长志、吴声迪,南海中央海盆条带磁异常特征及构造演化.海洋学报,1987, 9(1) :69-78.
    [92] 曾维军,南海磁异常对比方法的改进.热带海洋,1999,18(2) .
    [93] Watanabe T.,Langseth W.G.and Anderson R.N.,西太平洋弧后盆地的热流.岛弧、海沟 和弧后盆地(Island Arcs,Deep Sea Trenches and Back-Arc Basins,edited by Talwani M. and Pitman W.C.,1977) ,海洋出版社,1984.
    [94] Anderson R.N.et al.,Heat flow,thermal conductivity,thermal gradient.In:A Geophysical Atlas of the East and Southeast Asian Seas (edite by Hayes,D.E.),The Geological Society of America,1978.
    [95] 高金耀,冲绳海槽及附近地区地热场.东海海洋地质(金翔龙主编),海洋出版社,1992, 367-379.
    [96] 许薇龄等,东海陆架区地热研究.地球物理学进展,1995,10(2) :32-38.
    [97] Fukao Y.,Maruyama S.et al.,Geologic implication of the whole mantle P-wave tomography.Jour.Geol.Soc.Japan,1994,100(1) :4-23.
    [98] 高金耀、李家彪、林长松,南冲绳海槽岩石圈构造动力特征分析.国家重点基础研究 发展规划项目《中国边缘海形成演化及重大资源的关键问题》第一次学术研讨会及 论文集,海洋出版礼,2001.
    [99] 高金耀、金翔龙、林长松,中国东部陆缘及大陆构造动力作用源的探讨.海洋可持续 发展论文集,海洋出版社,1998:216-221.
    [100] Jolivet L.,Davy P and Cobbold P.R.,Right-letaral shear along the northwest Pacific margin and the India-Eurasia collision.Tectonics,1990,9:1 409-1 419.
    [101] Wessel P. and Smith W.H.,New version of the generic mapping tools released.EOS Trans. AGU, 1995,76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700