用户名: 密码: 验证码:
种植耐盐植物改良盐碱土的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黑龙江省的大庆地区为研究中心,通过对碱斑土壤以及种植耐盐植物后的盐
    碱土壤中的不同时期,不同土壤条件下土壤物理性质、土壤化学性质、土壤酶、土壤的
    营养成分和土壤微生物等各项生理生化指标的测定、分析,阐述了不同条件下,碱斑裸
    地和种植耐盐植物的碱斑土壤产生各种变化的原因,结合土壤的动态变化,探讨耐盐植
    物改良盐碱土的可行性极其生理机制。首次对自然碱斑土壤和人工种植的碱斑土壤中土
    壤酶的变化动态进行分析、研究,而在实验碱斑土壤中加入不同的添加剂如磷石膏、糠
    醛渣等以研究分析在不同的人工条件下,碱斑土壤的理化性质和营养动态变化,更为国
    内首次报道。
     (一)种植耐盐植物对土壤营养成分的影响
     土壤有机质含量、全氮含量、无机磷和全磷含量的变化与耐盐植物的种植年限呈正
    相关。其中,与有机质形成密切的相关的腐殖质含量也呈这种正相关的变化。在改良后
    的碱斑土壤上,土壤的氨化强度和固氮强度增加,硝化强度降低;此外,土壤有机质的
    含量与土壤全氮含量之间有良好的相关性。土壤的全钾含量在耐盐植物种植三年后,略
    有增加。土壤全钙含量含量与种植耐盐植物的年限呈负相关。土壤全钠含量在耐盐植物
    种植后略有降低。土壤Na~+和K~+在种植耐盐植物的碱斑土壤上都呈下降趋势;而土壤
    Ca~(2+)的含量在经耐盐植物改良的土壤中略有不同程度的上升。
     (二)种植耐盐植物对土壤理化性质的影响
     种植耐盐植物后,土壤的容重与耐盐植物种植的年限呈负相关,即随着植物在碱斑
    土壤种植年限的增加,土壤容重逐年减少,当耐盐植物在盐渍土壤种植以后,土壤质地
    变得疏松,单位体积内的土体重量减小,容重变小。土壤的机械组成逐渐由粘土向粗粉、
    中粉和细粉转化,土壤结构良好,通气透水性能加大。同时,庞大根系的生长,也改善
    了土壤的结构和渗透性能,从而明显降低了土壤积返盐的速度,这对盐分向土壤下层的
    淋洗是非常有利的。土壤内有机质对增进土壤的团聚作用,改善土壤的物理性质也起着
    积极的作用。种植耐盐植物后的土壤中的含水量有明显提高,这主要是由于耐盐植物植
    入后,土壤的物理性质发生了相应的改变,土壤中粘粒减少,土壤孔隙状况比较好,使
    水分有较高的入渗率,这也是水分在改良后的土壤中积聚起来的一个原因。
     反应土壤盐碱化程度的重要指标即土壤全盐含量和土壤pH值在种植耐盐植物后都
    有不同程度的降低,其中土壤含盐量在种植耐盐植物3年后比碱斑裸地的含盐量可降低
    近50%。
     (三)种植耐盐植物对土壤酶的影响
     土壤纤维素酶、土壤脲酶、土壤磷酸酶和土壤多酚氧化酶的活性在碱斑土壤中随
    
     着种植耐盐植物年限的增加而呈上升趋势。而土壤转化酶变化就不明显。
     (四)种植耐盐植物对土壤微生物的影响
     在碱斑土壤上种植耐盐植物羊草、星星草和碱蓬后,土壤微生物(包括细菌、真菌
     和放线菌)的数量组成在不同的植物群落变化有所不同,以羊草植物群落中土壤微生物
     的数量最高,其呼吸速率和生物量也高于其他两个植物群落。土壤的这种生物特征变化
     与植物群落的正向演替是相一致的。
     (五)不同的改良方式对上壤营养成分及理化性质的影响
     我们还在碱斑土壤中,在种植耐盐植物的同时,加入了一定量的磷石膏、糠醛渣等
     物质,根据各个实验样地的添加量的不同,对土壤含水量、土壤pH值,土壤腐殖质含
     量、土壤全氮含量、土壤全磷含量和土壤碱解氮含量的变化进行比较,总的来说浅耕+
     磷石膏+糠醛渣+星星草+羊草的样地各项改良指标都高于其他实验样地,即化学试剂和
     人工种植耐盐植物共同改良碱斑土壤可取得比较好的改良效果。
In the present paper, the nutrient dynamic changes of soil salinity on planting
     salt-enduring plants in various period , in Daqing of HeiLongJiang province are studied.
     Including the dynamic changes of ameliorated soil salinity of physics and chemistry
     characters , enzyme , nutrition composition , microbe etc. The feasibility and physiological
     mechanism about planting salt-enduring plants to ameliorated soil salinity are discussed. The
     changes of soil salinity by fertilizing various additive in the experimental soil are first
     reported.
    
    
     1. The influence of salt-tolerant plants on nutrition composition of soils
     With the time increasing of planting salt-enduring plants organic matter content and total
     nitrogen and humus content are trend to raised , total phosphorus content are raised a little;
     total potassium content are changed no clearly , total sodium content , total calcium content
     and total magnesium are reduced in varying degrees. After planting salt-enduring plants , the
     intensity of amination and nitrogen fixation are raised, and the intensity of nitrification
     intensity trend to cut down . The content of Na~ and K~ reduced in various degrees and the
     2+
    
     content of Ca are trend to raised.
    
     2.. The influence of salt-enduring plants on physical and chemical characters of soils
     Negative correlation exist between unit weight of soil and fixed number of year of
     planting salt-enduring plants . After planting salt-enduring plants , soil getting more loosen,
     per unit volume of weight and unit weight get to reduce . The component of soil gradually
     transformed clayey soils into coarse soils, middle granule and fine soils. With the growth of
     giant fibre system and structure of soils getting more improved and, porosity of soil,
     permeable stratum and the osmosis of soils getting more increase. Meantime, the rate of salt
     amassed and returned getting reduced, it is more advantaged to salt drip washing and
     physical character.
     It is obviously that the content of water of soils could influence the growth of plant and
     the physical character of soils. With the planting salt-enduring plants , mucosity of soils
     getting more reduced and porosity of soils getting more improved.
     After planting salt-enduring plants, the content of full salt of soils and pH reduced in
     various degrees;
    
    
    
    
     iii
    
    
    
    
    
    
    
    
    
     3 .~ The influence of salt-enduring plants on enzyme of soils
     With fixed number of year of planting salt-enduring plants , cellulolytic enzyme , urease,
     phosphatase and polyphenoloxidase of soils are increased , transforming enzyme of soils
     changes no clearly.
    
    
     4~ The influence of salt-enduring plants on microorganism of soils
     After planting Puccinellia tennjflora and Suaeda glauca , the numbers of microbe of soils
     including bacteria, fungi and actinomyces in Aneurolepidium chinese flora are the most, the
     velocity of breath and biomass are better than other two plant communities. The changes of
     biology characters of soils are in keeping with positive succession of plant community.
    
    
     5. The influence of various mode of ameliorating soil salinity on nutrition composition of
     soils, physical and chemical characters. The best effects are planting salt-enduring plants and
     fertilizing various additive in soil salinity at the same time.
引文
1. 毕英轩,1984,松嫩草原中部改良效果的调查报告。中国草原,(3):44-46
    2. 毕英轩.1984.松嫩草原中部改良效果的调查报告.中国草原,(3):44~46
    3. 包纯志等.1992.内蒙古河套平原盐碱土耐盐优良牧草引种及改土效益研究,中国草地,(1):16-21
    4. 陈恩凤等.1957.吉林省前郭旗灌区碱化草甸盐土及其改良.土壤专报,第30号
    5. 程伯容.1959.松嫩平原盐渍土概况及其改良问题.黑龙江流域综合考察学术报告,第二集
    6. 陈恩凤等.1984.有机质改良盐碱土的作用.土壤通报,15(5);193~196
    7. 陈宝书等.1988.红豆草各生育期营养元素的动态规律.中国草地,(3):53~56
    8. 陈佐中等,1989,自然条件下大针茅草原几种主要植物氮、磷、钾、铁含量的季节动态。植物生态学学报,13(4):325-331。
    9. 陈佐忠等.1989.自然条件下大针茅草原几种主要植物氮、磷、钾、铁含量的季节动态.植物生态学与地植物学学报,13(4):325~331
    10. 崔志祥等.1993.内蒙古土默川平原盐碱荒地旱植碱茅技术的研究.中国草地,(4):27~30
    11. 杜晓光等.1994.松嫩平原主要盐碱植物群落生物生态学机制的初步探讨.植物生态学报,18(1):41~49
    12. 高金方.1987.松辽(嫩)平原苏打盐土的发生与改良.土壤通报,18(3):100~102
    13. 郭树林等.1988a.河西走廓盐渍化土地特征及其改良.中国草业科学,增刊:1~6
    14. 郭树林等.1988b.栽培碱茅草生长发育过程中的若干特点.中国草业科学,增刊:40~46
    15. 郭树林等.1988c.河西硫酸盐盐碱荒地碱茅草栽培技术.中国草业科学,增刊:57~60
    16. 葛莹等.1990.盐生植被在土壤积盐-脱盐过程中作用的初探.草业学报,1(1):70~76
    17. 郭继勋等.1992.羊草草原植物.土壤之间主要营养元素动态的研究.植物生态学报,18(1):17~22
    18. 郭继勋,1994,羊草草原分解这者亚系统,吉林大学出版社。
    19. 高琼等.1994.松嫩平原碱化草地植物-环境系统的仿真模拟.植物生态学报,18(1):56~57
    20. 黄峻等.1990.我国牧草耐盐碱研究进展.植物学通报,7(4):24~26
    21. 侯彦林.1993.退化苏打盐渍草地土壤特性研究.中国草地,(1):28~32
    22. 焦杰.1980.国内外盐碱土改良研究概况.山东农业科学,(1):44~50
    23. 贾恢先等.1988.西北盐生草甸上几种主要牧草的化学成分分析.中国草地(3):57~59
    24. 贾明.1993.提高盐化草甸改良效果的研究.草业科学,10(1):13
    25. 李昌华等.1963.松嫩平原盐渍土主要类型、性质及其形成过程.土壤学报,11(2):197~209
    26. 刘孝义,1982,土壤物理及土壤改良研究法,上海科学技术出版社。
    27. 李景信等.1985.种植星星草改良碱斑地的研究.中国草原,(2):53~55
    28. 李景信等.1992.松嫩草地资源生态现状与发展草地生态畜牧业.植物研究,12(生态地理专刊):1~6
    
    
    29. 李景信,孙国荣,阎秀峰.1996.松嫩盐碱草地植物生理生态学研究.哈尔滨:东北林业大学出版社
    30. 李锋瑞等.1988a.河西走廓盐化草甸改良利用效益的研究.中国草业科学,增刊:61~65
    31. 李锋瑞等.1988b.河西走廊几种盐生禾草营养成分研究.中国草业科学,5(2):19~25
    32. 龙显助等.1993.苏打盐渍化土壤水盐动态规律及改良措施研究.土壤肥料,(1):22~25
    33. 李建东,郑慧莹,1997,松嫩平原盐碱化草地治理及其生物生态机理,科学出版社。
    34. 鲁如坤,1998,土壤——植物营养学原理和施肥,化学工业出版社。
    35. 毛玉林等.1988a.河西硫酸盐盐化土壤人工碱茅草地产量动态.中国草业科学,增刊:28~31
    36. 毛玉林等.1988b.河西盐渍化土地资源开发耐盐植物筛选与匹配.中国草业科学,增刊:47~50
    37. 马瑞萍等.1992.松嫩平原植被的研究.植物研究,12(生态地理专刊):72~76
    38. 那守海,孙国荣,阎秀峰等.1996.松嫩草地六种牧草地上部分养分含量与土壤因子的关系.黑龙江畜牧兽医,(3):1~4
    39. 秦嘉海等.1989.碱茅草对盐碱土改土效应的研究.甘肃农业科技,(4):26~29
    40. 秦嘉海等.1990.种植碱茅草改良河西走廊草甸盐土的初步研究.土壤通报,21(2):58~59
    41. 任继周,朱兴运,1998,河西走廊盐渍地的生物改良与优化生产模式,科学出版社。
    42. 孙泱.1987.苏打碱化盐渍土种植星星草的条件和技术.土壤通报,18(2):63~65
    43. 桑以琳.1989.内蒙古河套平原种植牧草改良碱化盐土的试验.中国草地,(5):48~53
    44. 桑以琳.1990.内蒙古河套平原碱化盐土牧草引种实验.中国草地,(1):63~66
    45. 孙国荣,阎秀峰等.1995a.磷素营养对星星草幼苗抗碱性的影响.草业科学,12(1):17~19
    46. 孙国荣,阎秀峰等.1995b.氮素营养对星星草幼苗抗碱性的影响.中国草地,(6):33~36
    47. 孙国荣,阎秀峰等.1996a.碳酸钠逐级驯化对星星草幼苗抗碱性的影响.武汉植物学研究,14(1):67~40
    48. 孙国荣,阎秀峰等.1996b.土壤保水剂对星星草幼苗抗旱性的影响.草业科学,13(3):29~31
    49. 孙国荣,阎秀峰等.1996c.钾素营养对星星草幼苗抗碱性的影响.草业科学,13(5):20~23
    50. 孙国荣,阎秀峰.1997.星星草抗盐碱生理机制初步研究.武汉植物学研究,15(2):162~166
    51. 吴青年.1983.种碱茅改良草原碱斑植被效果的研究.饲料研究,(2):17~20
    52. 武之新等.1988.碱谷耐盐性的研究报告.植物学通报,5(3):156~160
    53. 武之新等.1989.几种牧草耐盐性的初步研究.草业科学,6(5):43~47
    54. 王晓燕.1989.松嫩平原南部盐碱植被的初步研究.中国草地,(3):32~38
    55. 万长贵等.1990.碱茅草耐盐和脱盐机理初探.草业科学,7(3):3~8
    56. 吴晓海等.1991.黑龙江省松嫩草场的退化原因及其治理.中国草地,(4):66~69
    57. 翁森红等.1992.牧草耐盐性鉴定指标和方法的初步研究.中国草地,(1):30~34
    58. 王仁忠等.1992.放牧对松嫩平原羊草草地影响的研究.草业科学,9(2):11~14
    59. 田忠孝等.1993.有机质改良盐碱土的初步研究.土壤肥料,(1):16~19
    60. 徐文富等.1982.松嫩平原草原盐渍土的特性及其改良.中国草原,(4):41~48
    
    
    61. 许光辉,郑洪元,1986,土壤微生物分析方法手册,农业出版社。
    62. 谢承陶等.1987.有机肥改良盐碱土试验研究.土壤通报,18(3):97~99
    63. 谢承陶等.1993.有机质与盐分的相关作用及其原理.土壤肥料,(1):19~22
    64. 许鹏,1998,新疆荒漠区草地与水盐植物系统及优化生态模式,科学出版社。
    65. 俞仁培等,1984,土壤碱化及其防治,农业出版社。
    66. 袁可能,1983,植物营养元素的土壤化学,1983,科学出版社。
    67. 杨国荣等.1986.松嫩平原苏打盐渍土数值分类的初步研究.土壤学报,23(4):291~297
    68. 杨豁林等.1984.松嫩平原西部土壤盐碱化特点及其改良途径.土壤通报,15(6):250~253
    69. 阎顺国等.1990a.碱茅草对土壤盐分动态及盐量平衡的影响.水土保持学报,4(1):44~48
    70. 阎顺国等.1990b.碱茅草对河西盐渍化土壤理化性质的影响.草业科学,7(3):26~29
    71. 阎顺国.1991a.河西走廊盐渍化草地土壤生态指标的选择与分类.草业科学,8(3):22~25
    72. 阎顺国等.1991b.河西走廊硫酸盐盐渍地的改良途径及效果.中国草地,(2):37~42
    73. 杨劲松.1991.土壤盐渍地球化学研究的进展及发展趋势.土壤,23(4):206~209
    74. 阎顺国等.1992.河西盐渍化草地盐分组成及pH与有机质关系的通径分析.草业科学,9(1):31~34
    75. 阎秀峰、孙国荣,2000,星星草生理生态学研究。科学出版社。
    76. 中国科学院内蒙古草原生态系统定位站,1985,草原生态系统研究 (第一集),科学出版社。
    77. 中国科学院南京土壤研究所,1978,土壤理化分析,上海科学技术出版社。
    78. 张俊民等,1984,我国的土壤,商务印书馆。
    79. 张俊民等,1990,中国土壤地理,江苏科学技术出版社。
    80. 张福锁等,1992,土壤与植物营养研究新动态(第一卷),中国农业出版社。
    81. 张福锁等,1995,土壤与植物营养研究新动态(第二卷),中国农业出版社。
    82. 张福锁等,1995,土壤与植物营养研究新动态(第三卷),中国农业出版社。
    83. 张福锁等,1998,环境胁迫与植物根际营养,中国农业出版社。
    84. 郑慧莹,李建东,1993,松嫩平原的草地植被及其利用保护,科学出版社。
    85. 郑慧莹,李建东,1999,松嫩平原盐生植物与盐碱化草地的恢复。科学出版社。
    86. 赵可夫等,1999,中国盐生植物,科学出版社。
    87. 王敬国,1995,植物营养的土壤化学,北京农业大学出版社。
    88. 王遵亲,1993,中国盐渍土,科学出版社。
    89. A.A.沙霍夫.1956.植物的抗盐性.韩国尧译.北京:科学出版社,1958
    89. B.A.柯夫达.1960.中国之土壤与自然条件概论.北京:科学出版社
    90. B.A.柯夫达.1973.土壤学原理(下册).陆宝树等译.北京:科学出版社,1981
    91. Kovda,V.A.等.1979.土壤盐化和碱化过程的模拟.中国科学院土壤研究所盐渍地球化学研究室译.北京:科学出版社,1986
    92. Kylin,A.等.1975.见:A.波杰科夫-梅伯等编.赵可夫译.盐渍环境中的植物.112~129.北京:科学出版社,1980
    93. M.L.杰克逊.1964.土壤化学分析.蒋柏藩等译.北京;科学出版社
    
    
    94. Abrol, I. P. and I. S. Dahiya. 1974. Flow associated precipitation reaction in saline sodic soils and their significance. Geoderma, 11: 1-9
    95. Abrol, I. P. et al. 1975. On the method of determining gypsum requirement of soils. Soil Science, 120:30-36
    96. Abrol, I. P. and D. R. Bhumbla. 1979. Crop responses to differential gypsum applications in a highly sodium soil and the tolerance of several crops to exchangeable sodium under field conditions. Soil Science, 127: 79-85
    97. Amzallay, G. N., Lerner, H. R., Poljof-Mayber. 1990. Exogenous ABA as a modulater of the responses of sorhgum to high slinity. J Exp. Bot., 41:1529-1534
    98. Aspinall, D. 1986. Metabolism effects of water and salinity stress in relation to expansion of the leaf surface. Aust. J. Plant Physiol., 13: 59-73
    100. Begum, F., Karmoker, J. L., Fattah, Q. A. 1992. The effect of slinity on germination and correlation with K.+, Na+, Cl-accumulation in germination seeds of Tricum aestivum L. W. Akbar. Plant Cell Physiol, 33(7) : 100-114
    101. Chawla, K. L. and I. P. Abrol. 1982. Effects of gypsum fineness on the reclamation of sodium soils. Agriculture and Water Management, 5: 41-50
    102. Cheeseman, J. M. 1988. Mechanism of salinity tolerance in plants. Plant Physiol., 87: 547-550
    103. Clarke, G. L. 1954. Elements of Ecology. 560. New York: Wiley
    104. Black, C. A. 1968. Soil-plant relationships. New York: John Wiley and Sons Inc.
    105. EL-Sharkawi, H. M. et al. 1975. Effects of soil salinity and air humidity on CO2 exchange and transpiration of two grasses. Photosynthetica, 9(3) : 277-283
    106. Epstein, E. and D. W. Rains. 1987. Advances in salt tolerance. Plant and Soil, 99: 17-29
    107. Gale, J. and M. Zeroni. 1985. The cost to plants of different strategies of adaptation to stress and the alleviation of stress by increasing assimilation. Plant and Soil, 89: 57-67
    108. Galizzi, F. A. and N. Peinemann. 1989. Soil surface salty crusts and water loss by evaporation. Soil Sci. Soc. Am. J., 53: 1605-1607
    109. Gatti, M. et al. 1991. Influence of soil properties on the distribution and availability of Zn, Cu, Mn and Fe. Agriculture Med., 121: 272-281
    110. Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide dismutase: Occurrence in higher plants. Plant Physiol., 74: 506-509
    111. Greenway, H. and C. B. Osmond. 1972. Salt responses of enzymes from species differing in salt tolerance. Plant Physiol., 49: 256-259
    112. Greenway, H., R. Munns. 1980. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol., 31: 149-190
    113. Gupta, R. K. et al. 1985. Dissolution of gypsum in alkali soils. Soil Science, 140: 382-386
    114. Gupta, R. K. and I. P. Abrol. 1990. Reclamation and management of alkali soils. Indian J. Agrie. Sci.,
    
    60: 1-16
    115. Hajibagheri, M. A. and Yeo, A. R. 1985. Salt tolerance in Suaeda maritima (L.), Dum, Fine structure and ion concentration in the apical region of roots. New Phytologist, 99: 331-343
    116. Hegarty, T. 1978. The physiology of seed hydration and dehydration and the relation between water stress and the control of germination: a review. Plant Cell and Environment, 1: 101-119
    117. Hira, G. S. and N. T. Singh. 1980. Irrigation water requirement for dissolution of gypsum in sodium soils. J. Soil Sci. Soc. Am., 44: 353-358
    118. Hoffman, G. J., C. J. Phene. 1971. Effect of constant salinity Ievels on water use efficiency of bean and cotton. Trans. Am. Soc. Agriculture Eng., 14: 1103-1106
    119. Huang, C. X. and Van steveninck, R. F. M. 1990. Salinity induced structural changes in meritematic celis of barley roots. New Phytologist, 115: 17-22
    120. Hyder, S. Z. and Yasmin, S. 1972. Salt tolerance and cation interaction in alkali sacation at germination. J. Range Management, 25: 390-392
    121. Jacoby, B. 1964. Function of bean roots and stems in sodium retention. Plant Physiol., 39: 445-449
    122. Jacoby, B. 1974, In J. Wehrmann ed. plant analysis and fertilizer problems.175-184. German Society of Plant Nutrition Hannover
    123. Jennings, D. H. 1976. The effects of sodium chloride on higher plants. Biol. Rev., 51: 453-486
    124. Karimian, N. and K. Razmi. 1990. Influence of perennial plants on chemical properties of and calcareous soils in Iran. Soil Science, 150: 717-721
    125. Kramer, P. J. 1983. Water relations of plants. Now York: Academic Press
    126. Lapina, L. P., B. A. Popov. 1970. Effect of sodium chloride on the photosynthetic apparatus of tomatoes. Soviet Plant Physiol., 17: 477-481
    127. Lauchli, A. 1984. Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In R. C. Staples and Toenniessen G. H. ed. Salinity tolerance in plants. 171-187. Strategies for crop improvement
    128. Levitt, J. 1980. Responses of plants to environmental stress. Now York: Academic Press
    129. Lin Guanghai, et al. 1993. Effects of salinity fluctuation on photosynthesis gas exchanges and plant growth of the red mangrove. J. Exp. Bot., 44: 9-16
    130. Long, S. P. and Baker, N. R. 1986. Saline terrestrial environment. In Baker, N. R. and long, S. P. ed. Photosynthesis in contrasing environment. 63-102. Netherlands: Elsevier science publishers B. V. (Biomedical Divison)
    131. Louwerse, W. et al. 1969. An assembly for routine and transpiration of intact plants under controlled conditions. Photosynthetica, 3(4) : 305-315
    132. Louwerse, W. et al. 1975. A mobile laboratory for measuring photosynthesis, respiration and transpiration of field crops, Photosynthetica, 8(3) : 201-213
    
    
    133. Loveday, J. 1984. Amendments for reclaiming sodium soils. In Shainberg I. and J. Shalhevet ed. Soil salinity under irrigation processes and managernent. New York: Spring-Verlag
    134. Macke, A. J. and Polyakoff-Mayber, A. 1971. The effects of salinity on germination and early growth of Puccinellia nuttalliana. Can. J. Bot., 49: 515-520
    135. Manchanda, H. R. and S. K. Sharma. 1990. Influence of different chloride: sulphate ratios on yield of chickpea (Cicer arietinum) at comparable salinnity Ievels. Indian J. Agrie. Sci., 60: 553-555
    136. McCord, J. M. and Fridovich, I. 1969. Superoxide dismutase, an enzymic function for erythrocuprein (Hemocuprein). J. Biol. Chem., 244: 6049-6055
    137. McKimmie, T. and A. K. Dobrenz. 1987. A method for evaluation of salt tolerance during germination, emergence and seedling establishment. Agron. J., 79: 943-945
    138. Mitera, T. S., Vaklinova, S. G. 1991. Photosynthesis, photorespiration and respiration in young barley plants upon influence of NaCl. Acad. Bulg. Sci., 44(4) : 89-92
    139. Munns. R. et al. 1982. Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. 2. Cause of the growth reduction. J. Exp. Bot., 33: 574-583
    140. Munns, R., A. Termaat. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol., 13: 143-160
    141. Nicholas, C. C. et al. 1990. Cellular mechanisms of salt and water stress tolerance in plants, Acta Horticulturae, 280: 341-352
    142. Osmond, C. B. and H. Greenway. 1972. Salt reponses of carboxylation enzymes from species differing in salt tolerance. Plant Physiol., 49: 260-263
    143. Oster, J. D. and H. Frenkel. 1980. The chemistry of the reclamation of sodium soils with gypsum and lime. J. Soil Sci. Am., 44: 41-45
    144. Pearch-Pinto, G. V. N., Van Der Moezel, P. G. and Bell, D. T. 1990. Seed germination under slinity stress in western Australia Eycalytus. Seed Science and Technology, 18: 113-118
    145. Redmann, R. E. 1973. Photosynthesis, plant respiration and soil respiration measured with controlled environment chambers in the field. Canadian Committee for the International Biological Program, Matador Project, Technical Report. No.18, 1-34
    146. Redmann, R. E. 1974. Osmotic and specific ion effects on the germination of alfalfa. Can. J. Bot., 52: 803-808
    147. Richard, D. et al. 1984. Changes in plasmalemma organization in cowpea radicle during imbition in water and NaCl solutions. Plant Cell and Environment, 7: 601-606
    148. Roberts, C. H. 1973. Oxidative process and the control of seed germination, In Heydecker, W. ed. Seed Ecology. 187. London: Butter worth
    149. Sanches-Agllago, I., Gonzalez-Ultor, A. L., Medina, A. 1991. Cytochemical location of ATPase activity in salt-treated and salt free grown Lycopersicon esculentum roots. Plant Physiol., 96:153-158
    
    
    150. Serrato Valenti, G. Ferro, M., Ferrara, D. and Riyeros, F. 1991. Anatomical changes in Prosopis tamarogophil seedlings growing at different Ievels of NaCl salinity. Ann. Bot., 68: 47-53
    151. Schwarz, M. and J. Gale. 1981. Maintenance respiration and carbon balance of plants at low Ievels of sodium chloride salinity. J. Exp. Bot., 32: 993-941
    152. Sharma, B. M. and S. N. Jha. 1989. Comparative studies on some salt affected soils. J. Indian Soc. Soil Sci., 37:524-531
    153. Sharma, P. K. and Hall, D. O. 1991. Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J. Plant Physiol., 138: 614-619
    154. Shone, M. G. T. and J. Gale. 1983. Effect of sodium chloride stress and nitrogen source on respiration, growth and photosynthesis in lucerne (Medicago sativa L.). J. Exp. Bot., 34: 1117-1125
    155. Shuman, L. M. 1988. Effect of organic matter on the distribution of manganese, copper, iron, and zinc in soil fractions. Soil Science, 146: 192-198
    156. Siegel, B. Z. et al. 1964. The isoperoxidses of Disum sativum. Plant Physiol., 42: 221-226
    157. Singh, N. K., Handa, A. K., Hasegawa, P. M. and Bressan, R. A. 1983. Electrophoretic protein paterns in cultured cells of tobacco adapted to NaCl. Plant Physiol., 72: 533-535
    158. Solomon, M., Gedalovich, E., Mayer, E. R., and Polakoff, M. A. 1986. Changes induced by salinity to the anatomy and morphology of excised Pea roots in culture. Ann. Bot., 57: 811-818
    159. Soshinskii, A. A. and Antonov, Y. A. 1990. Dissociation of alfalfa ribulase-1,5-disphosphate carboxylase under alkaline conditions. Biochemistry, 55: 100-104
    160. Strogonov, B. P. 1962. Physiological bases of salt tolerance in plants. Moskva: Akademia Nauk. SSSR
    161. Strogonov, B. P. et al. 1970. Structure and function of plant cells under salinity. Moskva: Nauka
    162. Strogonov, B. P. 1973. Structure and function of plant cells in saline habitats. New York: Halsted Press
    163. Stuart, P. H. and William, E. E. 1990. Partitioning water potential and specific salt effects on seed germination of four grasses. Ann. Bot., 66: 587-595
    164. Termaat, A. et al. 1985. Shoot turgor does not limit shoot growth of NaCl affected wheat and barley. Plant Physiol., 77: 869-872
    165. Thomson, W., W. Faraday C. D., Oross, J. W. 1988. Salt glands. In D. A. Baker and J. L. Hall ed. Solute transport in plant cells and tissues. 498-537. New York: John Wiley and Sons
    166. Torello, W. A. and L. A. Rice. 1986. Effects of NaCl stress on proline and cation accumulation in salt sensitive and tolerant turf grasses. Plant and Soil, 93: 241-247
    167. Turner, N. C. and P. J. Kramer. 1980. Adaptation of plants to water and high temperature stress. New York: Wiley
    168. Waisel, Y. 1972. Biology of halophytes. Now York, London: Academic Press
    169. Weimberg, R. 1970. Enzyme Ievels in pea seedlings grown on highly salinized media. Plant
    
    Physiol., 46: 466-470
    170. Wilson, S. H., W. O. Bonner. 1971. Studies of electron transport in dry and imbibed peanut embryos. Plant Physiol., 48: 340-344
    171. Winter, E. 1988. Salt-induced hypodermal transfer celis in roots of Prosopis farcta and ion distribution within young plants. Botanica, 101: 174-181
    172. Woodstock, L. W. 1973. Physiological and biochemical tests for seed vigor. Seed Sci. and Tech., (1) : 127-157
    173. Yentur, S., A. C. Leopold. 1976. Respiratory transition during seed germination. Plant Physiol., 57: 274-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700