用户名: 密码: 验证码:
深孔台阶爆破应力场及若干设计参数的数值分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过采用三维动力有限元法和激光全息动光弹试验对半无限
    介质中柱状药包的应力场、台阶爆破应力场和若干爆破设计参数进行了
    初步数值分析研究。
     首先阐述了三维动力有限元DYNA3D系统的数值计算方法,对有
    限元计算中的几个关键处理:沙漏控制、应力波与人工体积粘性、接触
    碰撞仅滑移(Sliding-only)边界、无反射边界等做了说明。为了应用三
    维动力有限元DYNA3D系统进行模拟计算,本文依据相似原理,采用1:
    10的几何相似比进行计算模拟。由于单值条件与物理相似条件在模拟上
    存在具体困难,因此完全满足现象相似的充要条件不太可能。在本文计
    算中主要应用了几何相似、边界条件相似和部分动力相似条件,在本论
    文中取C_μ=1,C_ι=10,C_ρ=1,C_Ε=1,C_ε=1,C_σ=1,C_ι=C_ι=10。
    由于岩体在动载作用下的破坏特征以及塑性特征的研究仍处在十分初浅
    的百家争鸣的阶段,尚未上升到数学描述阶段,故岩石在爆炸作用下的
    强动载荷作用特性还不是很清楚,为简化计算,本章将岩石材料假设为
    线弹性体,采用Mises屈服条件来描述岩石材料的破坏特性。
     三维动力有限元数值分析和全息动光弹试验结果表明:半无限介质
    中柱状药包爆炸应力场在底部点火起爆后,应力波呈水滴状向外扩展,
    其波阵面与炮孔轴线所形成的角度基本不变,直到爆轰结束。此后有效
    应力场逐渐呈近似椭球体向四周传播并开始衰减。半无限介质中柱状药
    包的端部应力场与水平条形药包的应力场都存在着有效应力为零的“应
    力空洞”区,但是,条形药包端部应力场两端是对称分布的,而柱状药
    包的上下端部应力场是不对称的,且柱状药包底部零畸变范围要比顶部
    大,这个现象同样被动光弹试验所证实。双自由面的单孔台阶爆破数值
    计算表明,在应力波传播的初期,初始应力场的发展规律是和半无限体
    
    
     铁道部科学研究院博士论文2001
     中柱状药包爆炸应力场的发展规律是相似的,在有效应力场的传播过程
     中,两端部的无畸变区由炮孔中心线处向最小抵抗线方向偏移。无超深
     爆破时,由于底部受到柱状药包端部效应的影响,在炮孔附近距轴线相
     等距离上,中部有效应力要比底部大1一2倍。
     对深孔台阶爆破若干设计参数(炸药单耗、超深、填塞长度)的数
     值计算表明,炸药单耗的变化对应力场有显著的影响,单耗增加42%时,
     在抵抗线方向的有效应力相应增加1 .57一3.1倍。超深改变对台阶爆破时
     底部应力场的变化影响很大,台阶爆破最大超深约为0.3倍最小抵抗线
     长度。这个结论与深孔台阶爆破的工程实践相吻合。数值计算验证了填
     塞长度对深孔台阶爆破破碎效果的影响,虽然无填塞爆破对孔底抵抗线
     位置的破坏应力基本没有影响,但对于台阶上部岩体中的应力场影响较
     大,在相同条件下无填塞爆破填塞区中有效应力减小约60%,说明无填
     塞不利于孔口区的破碎,从理论上证实了无填塞爆破对爆破能量是相当
     大的浪费,并且得到最佳填塞长度Ls=(0一1.0)万,这个结论与工程
     实际经验也是相符的。
In this paper, Effective stress field distribution of semi-infinite and bench blasting in rock mass and some design parameters of deep hole bench blasting are analyzed by the method of photo-elastic holography and 3-D dynamic element method.
     Firstly the digital compute method of 3-dimisional dynamic finite element method of DYNA3D system is introduced The typical question of hourglass control, artificial bulk viscosity, contact-impact algorithm and non-reflecting boundary is explained. In order to use DYNA3D system to simulate deep hole bench blasting, the simulation rule is used. The geometry ratio is 1:10. the geometry simulation , boundary simulation and some dynamic simulation rule is used here. In this paper C,~ =1, C,=10,
    (7~=1, CE=l, C~=1, C,.=l, C1=C1=10. For the reason that the
    character of rock under dynamic stress is unknown, the rock mass is considered to be lineal elastic and the Mises stress rule is used to descript the breakage of rock mass.
     The photo-elasticity holographic test and 3-0 dynamic element method shows that the shape of Mises effective stress field of deep hole blasting in the semi-infinite media is water-like (ignition at the bottom of the hole ) and the angle of the face of stress wave and the axle of the hole is not changed in the process. The shape of stress wave is quasi-ellipsoid and the tip effect appears at both ends. The zero distortion energy field appears at the both ends of the hole in the propagation process of stress field which means that the stress field of the ends of cylinder shaped charge can dense the rock. The
    
    
    
    initial stress field of deep hole blasting is quasi-cylinder with hemisphere at
    both ends and the stress field at both ends is attenwted quickly. The effective
    stress field of deep hole bench blasting propagation is simulate to that of
    semi-finite rock mass. The zero distortion energy field aPpears both in the
    tip of the charge of bench blasting and linear charge. The difference is tha the
    distribution of zero distortion energy field of linear charge is sytnrnetric and
    the distribution of the zero distOrtion energy field of bench blasting is
    unsyrnmetrical. For the affection of the tip effect at the bottom When blasting
    with non-sub-drill, the effeetive stress in the model is one hundred to two
    hundred percent bigger than tha at the bottom.
    The digital computation of some design parameters(explosive
    consumption, sub-drill and steedng length) of deep hole bench blasting
    shows that the change of explosive consumPtion is deeply affect the Mises
    stress field. When 42% of the consumPtion is increased, the effective stress
    field in the direction of the least resistant increase l57 to 3l0 percent. The
    change of the sub-drill affect the bottom stress field greatly and the biggest
    sub-drill is about 30 Percent of the length of the least resiStan. This
    conclusion is accordan tO the engineering experience. The digital
    computation also shows the affection of the sternrning length to the
    fragInentaion of deep hole bench blasting. Although the blasting of
    non-StCmming alinost has no thection to the breakage of the rock mass at the
    bottom, it heavily affect the Stress field in the uPper rock mass in bench
    blaning. Under the same condition the stress field of the non-stemrning
    blasting in the stenuning region decrease 60 Percent, which explains that the
    non-Sternrning blasting is not advtuge to the fragmentation of the rock at
    the collar. It shows that blasting energy of non-stemming blasting is wasted.
    The optimal stenuning length is (0.9-l .0) of the least resistant, which is also
    accordan to the experience.
引文
1. 陈寿如.国内外露天矿台阶爆破设计.矿山技术,1989(3) :18~24
    2. 冯叔瑜.深孔爆破和石方施工机械化.冯叔瑜爆破论文选集,北京: 北京科学技术出版社,1994. 5:84-91
    3. 郑州铝厂泵房进水口土体围堰深孔微差抛掷爆破试验报告.铁道部 科学研究院研究报告,1988
    4. 高台阶深孔控制爆破技术研究鉴定会报告.冶金部长沙矿冶研究院 北京科技大学,等.1997
    5. 邹定祥.计算露天矿台阶爆破块度分布的三维数学模型.爆炸与冲 击,1984,Vol.4
    6. Starfield A.M and Puglies J.M..Compression waves generated in rock by cylindrical explosive charge;A comparison between a computer model and field measurements. Int.J.Rock Medch. Min.Sci.,1968
    7. Harries G. .Development of a dynamic blasting simulation.Proc 3rd international fragmentation Blasting, Brisbane Australia 1980
    8. 条形药包硐室爆破技术及其特性的研究(总报告).铁道部科学研究 院研究报告院,1995. 12
    9. 条形药包硐室爆破技术及其特性的研究(分项研究报告).铁道部科 学研究院研究报告,1995. 12
    10. 条形药包硐室爆破技术及其特性的研究(分类试验报告).铁道部科 学研究院研究报告,1995. 12
    11. Jinjun jiang&Grahan R.Baird. 地下爆源引起的地表振动.第 四届爆破国际学术会议.冶金工业出版社,1995
    12. Baird G.R.Blair.K.P.and Jiang.Particle motions on the surface of an elastic half-space due to a vertical column of
    
    explosives.Proc.Western Australian Conference on Mining Geomechanics:367-374 Kalgoorlie,Australia,1992
    13. 冯叔瑜.延长药包爆破现状的分析研究.冯叔瑜爆破论文选集北京: 北京科学技术出版社,1994. 5:146-153
    14. G.Harries,A mathematical model of catering and blasting National Symposium on Rock Fragment by Blasting Adelaide, 1973
    15. D.R.Curran,etc.Dynamic Failure in Solids.Phys Today, 1977,30:46-55
    16. L.Seaman Curran,etc.Computational Model for Ductile and Brittle Fracture.J.Appl.Phys.,1976,47:4814-4826
    17. D.A.Shicky and D.R.Curran etc. Fragmentation of Rock Under Dynamic Load.Int.J.Rock Mech.Sci.Geomech. Abstr., 1974,11:303-317
    18. L. Davison.A.L.Stevens.Thermomechanical Constitution for Spalling Bodies.J.Appl.,1973. 44:588~674
    19. S.McHugh.Computational Simulation Of Dynamically Induced Fracture and Fragmentation.1st Int.Symp.on Rick Frag.by Blasting,Lulea,Sweden,1983,1:347~360
    20. L.G.Margolin etc.Numerical Simulation of Fracture.1st Int. Symp.on Rock Frag.by Blasting.Lulea,Sweden,1983:1:347~ 360
    21. R.E.Danell,L.Leung.Computer Simulation of Blast Fracture and Fragmentation of Rocks. 2nd Int.Symp.on Rock Frag.by Blasting.Keystone,Colorado,987
    22. D.E.Grady.The Mechanics of Fracture Under High-Rate Stress Loading.The William Prager Symp.on Mech.of Geomaterials: Rocks. Concrete and Soils.Northwestern University Evanston,IL,1983
    
    
    23. B.J.Thorne.A Damage Model for Rock Fragmentation and Comparison of Calculations with Blasting Experiments in Granite,SAND-901389,1990
    24. J.A.Sanchidrian,etc.Damage in Rock Under Explosive Loading:Implementation in DYNA2D of a TCK Model.Int.J.of Surface Min.and Reclamation,1992,6:109~114
    25. J.A.Inkas.碰撞动力学张志云译.兵器工业出版社,1989
    26. Hallquist. LS-DYNA3D USER MANUL ANSYS Corp., 1997
    27. Hallquist.LS-DYNA3D THEORY MANUAL ANSYS Corp..1997
    28. R.F.Favrean等.台阶爆破的岩石位移速度.第一届国际爆破学 术会议论文集.
    29. Jinjun Jiang & G.R.Baird. 地下爆源引起的地表振动.第四届 爆破国际学术会议.冶金工业出版社,1995
    30. Baird,G.R.,Blair,K.P.and Jiang.Particle motions on the surface of an elastic half-space due to a vertical column of explosives.Proc.Western Australian Conference on Mining Geomechanics:367-374,Kalgoorlie,Australia.1992
    31. Liqing Liu,a numerical study of the effects of accurate timing on rock fragmentation.Int.J.Rock Mech.MinSci.,1997
    32. Rossmanith,H.P.,and Shukla.A Dynamic Photoelastic Investigation of Interaction of Stress Wave With Running Cracks.Exp.Mech.,Nov.1981,PP415-422
    33. Holloway D.C..Application of holographic interferometry to stress wave and crack propagation problems. Optical Engineering,1982,Vol21,468~473
    34. 朱振海,杨永琦.多火花式动力光弹仪在爆炸力学试验中的初步应 用.爆炸与冲击,1985(3)
    35. 杨永琦,朱振海.起爆时差对光面爆破效果的影响.煤炭科学技术, 1985(9) :19-21
    
    
    36. 朱振海,魏有志.爆炸应力场的动力光弹分析.力学与实践,1987(6)
    37. 朱振海,应力波与随机径向裂纹相互作用的动力光弹研究.煤炭学 报,1988(2)
    38. 龚敏,于亚伦,等.全息干涉与动力光弹法结合进行相信炮孔动态 应力场的定量分析.工程爆破文集<五>,1997:39-42
    39. 杨年华,邓志勇.条形药包爆炸应力波场特征,《工程爆破文集 (五)》,1997:76-80
    40. R.F.Favrean.Development and utilitization of the BLASPA Blasting Simulation.Program Industrie Mineral, Vol.66 No.2,1984
    41. 王肖钧,等.HELP方法在浅埋爆炸计算中的应用.爆炸与冲击, 1985. 4
    42. 刘殿书.岩石爆破破碎的数值模拟.中国矿业大学博士学位论文, 1992
    43. 杨军.岩石爆破分形损伤模型研究.中国矿业大学博士学位论文, 1994
    44. 金乾坤.脆性岩石冲击损伤数值模拟研究(博士后).北京理工大学, 1999
    45. 徐全军,深孔微差爆破振动预报研究.北京理工大学, 1997
    46. Langefors.岩石爆破现代技术.煤炭工业出版社,1979
    47. J.henrych. 爆炸动力学及其应用.科学出版社,1981
    48. 惠鸿斌.露天矿大区微差爆破孔网数设计的研究.爆破器材,1986 (3) :15~19
    49. A.J.Rorke,A Scientific approch to blast design-the influence of rock characteristics.Quarry management,1988
    50. 杨祖光.炮孔爆破堵塞问题的研究.爆破, 1985(4) :6~11
    51. John W.Kopp. Stemming Ejection and Burden Movement of Small Borehole Blasts.Int.-Bu,of MINES,PGH.PA.28478
    52. 刘舍宁.铁道科学院研究报告,1987
    
    
    53. 长沙矿山研究院,等.水厂铁矿大区多排微差爆破技术的研究.矿 冶工程,1991,11(4) :6~10
    54. 于亚伦,等.高台阶靠邦减震爆破技术(鉴定报告),1997
    55. 黄政华,左廷英.高台阶爆破过程的调整摄影观测.矿冶工程, 1997,27(4) :1~5
    56. 邓正道.宽孔距微差爆破技术机理及其合理的孔距和排距.爆炸与 冲击,1988(2) :152~157
    57. 何广沂.宽孔距爆破技术在梯段爆破中的应用.爆破,1985(3) :39-43
    58. 布亨德勒S.. 在爆破中通过减小抵抗线和加大孔距改善破碎效 果.国外采矿(爆破专辑),1977(3) :23
    59. 佐佐宏一.大孔距爆破原理.国外金属矿采矿,1980,18(10)
    60. 长沙矿山研究院,等.水厂铁矿大区多排微差爆破技术的研究.矿 冶工程,1991,11(4) :6~10
    61. Anderson D.A.,et al.A method for Site-Specific Prediction and Control of Ground Vibration From Blasting.Proc.1st Symp. Explosive and Blast Research,1985
    62. Devine J.F.,et al. Effect of Charge Weight On Vibration Levels From Quarry Blasting.US Bureau of Mine RI6774,1996
    63. Siskind D.E., et al.Structural Response and Damage Produced By Ground Vibration From Surface Mine by Blasting.USBM RI 8507,1980
    64. 林学圣.土石爆破.工程兵工程学院教材,1983
    65. 林学圣,等.广东珠海炮台山万吨级大爆破工程简介.工程爆破文 集(五).中国地质大学出版社,1995
    66. Siskind D.E.,et al.Structural Response and Damage Produced By Ground Vibration From Surface Mine Blasting. USBM RI, 8507,1980
    67. Carlos Lopez.Drilling and Blasting of Rocks.Printed in
    
    Nether lands, 1995
    68. Gosh A.& Deamen J.K..A simple new blast vibration predictor based on wave propagation laws.24th US Symposium of Rock Mechanics, 1983
    69. Gosh A.& Deamen J.K..Statistics-A Key to better blast vibration predictions.Proc.27th US Symposium on rock mechanics, 1985,114l-1149
    70. Dave Lity Neural, network simulation:Charting the future of blast process control.ISEE, Volume 13 No2 1995
    71. 王勖成,邵敏.有限单元法基本原理和数值方法.清华大学出版社, 1995
    72. 冯叔瑜,马乃耀.爆破工程(上),中国铁道出版社, 1980
    73. Carlos Lopez.Drilling and blasting of Rocks.Printed in Netherlands,1995
    74. Dave Lilly.Neural Network Simulation charting the future of blasting process control. ISEE,Vol3 No2 Sep/Oct.1995
    75. 丁刚毅.北京理工大学博士学位论文.1993
    76. 徐小荷,余静.岩石破碎学. 煤炭工业出版社,1984
    77. 殷绥域.弹塑性力学.中国地质大学出版社,1990 78-81(无)
    82. A.C.ugural & S.K.Fenster.Advanced strength and applied elasticity.PTR Prentice Hall, New Jersey, 1995
    83. 秦明武.露天深孔爆破.陕西科技出版社,1995
    84. 爆破振动及其对建筑物的影响(美国矿业局报告)(译) .长江水 利水电科学研究院,1977
    85. 史雅语.铁路建设中的深孔控制爆破技术.工程爆破文集(五), 中国地质大学出版社1993
    86 钮强.岩石爆破机理.东北工学院出版社,1990 141~145
    87 高士才,向远芝,等.预裂爆破成缝机理的研究.土岩爆破文集(二),
    
    冶金工业出版社,1985
    88 朱振海,曲广建,等.起爆时差对孔间裂缝贯穿影响的动光弹研究.爆 炸与冲击, 1991 Vol.11 No.4 346-352
    89 陈保基,周听清.预裂爆破中的岩石破裂过程.土岩爆破文集(二), 冶金工业出版社,1985
    90 Π.Γ.米克利亚耶夫.断裂动力学(陈石卿等译).国防工业出版社, 1984
    91 潘井澜.对爆破破岩中反射波及其片落作用探讨.金属矿山,1985 (8) :28~30
    92 Gustafsson,R..Swedish blasting technique,SPI Gothenburg.Sweden, 1973:378
    93 Singh,D.P. and Sastry,V.R..Effect of controllable blast design factors in rock fragmentation,Journal of Mines.Metals & Fuels,Dec. 1998:539-548
    94 Ash,R.L..The mechanics of rock breakage-Part Ⅰ~Ⅳ Pit & Quarry,1983 Vol.56 No.2-5 98-100,118-123,126-131,109-111
    95 Malcolm Ball.A review of blasting design considerations in quarrying and opencast mining-Part 1 Principles of design Quarry Management June 1988:35-39
    96 John,W.K.. Stemming ejection and burden movements of small borehole blasts.Int.BuU.OF Mines,PGH.PA 28478:106-114
    97 Konya,C.J..The effect of stemming consist on retention in blasholes.Proc.4th SEE Conf.Expl.and Blast Tech..New Orleans,Louisiana,1978:102-112
    98 Case,J.B.and Gusek,J..Explosive casting technology in surface mining.Proc.of the 6th annual conference on explosives and blasting technique,1980:187-210
    99 Vutukuri.V.S.& Lama R.D..Handbook on mechanical properties of rocks:testing techniques and results.Ohio:Trans Tech.Publications;
    
    Publications.1974
    100 鞠玉忠,辛立中,等.露天铁矿15m台阶开采技术取得新进展.金 属矿山,1993 (1) :3~8
    101 于亚伦,木下重敦.高速冲击载荷下的岩石破碎特性
    102 于亚伦.高应变率下的岩石动载特性.北京科技大学学报, 1992 Vol14 No:2
    103 王礼立,等.关于卸载波各材料动态卸载响应的研究.爆炸与冲 击.Vol19 1999增刊
    104 Huanjin wang.blast design for armour stone production(part 1,2) .quarry management, 1991 July
    105 Guestafsson R.Sweed blasting technique.SPI,Gothenburg Sweden,1973:378PP
    106 Lysmer,J.and Kuhlemeyer,R.L..Finite Dynamic Model for Infinite Media. J.Eng.Mech.Dive..ASCE,859-877(1969)
    107 Cohen,M.and Jennings,R C., Silent Boundary Methods for Transient Analysis. Computational Methods for Transient Analysis.T. Belytschko and T. J.R.Hughes,editors,North-Holland, New York,PP.301-360(1983)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700