用户名: 密码: 验证码:
自组装CdSe量子点的形成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体量子点由于三维量子限域效应导致其类原子分立能级结构的
    存在,可望得到性能优异的新型光电器件。如以量子点作为激活层的激
    光器与量子阱激光器相比有更低的阈值电流,更高的增益和特征温度。
    Stranski-Krastanow模式(S—K模式)自组装量子点(SAQD)由于制
    备方法简单、无位错缺陷等特性而成为目前制备高质量量子点的主要方
    法。但由于目前对量子点自组装机理并不是很清楚,尤其是Ⅱ—Ⅵ族材
    料,即使对于研究得较多的CdSe/ZnSe材料系统也存在许多争议。因而
    导致其尺寸、形状、分布均匀性和密度难以控制。虽然目前对SAQD的
    垂直有序化、尺寸均匀性和自排列有一定的研究,但结果还不尽如人意。
    因此要想能真正地控制SAQD的生长还得从其最基本的生长机理入手。
     研究量子点自组装机理的最好方式是直接观测量子点的自组装形成
    过程。原子力显微镜(AFM)为直接观测表面形貌的有力工具,但由于
    AFM不能提供原位监测,所以一般只能用于表征量子点的形貌或研究
    量子点的熟化展宽过程。
     本论文利用AFM监测了自组装CdSe量子点的形成过程,并系统
    研究了自组装CdSe量子点的形成机理,主要取得了以下结果:
    1、利用LP—MOCVD生长了高质量的自组装CdSe量子点。利用AFM
    研究了自组装CdSe量子点的形成,并首次观测到了SAQD的形成过程。
    把SAQD能在低于临界厚度的外延层中形成归因于表面扩散与应变释放
    共同作用的结果。提出了利用表面扩散的慢过程补偿AFM测量所需的
    时间,从而利用AFM来研究自组装量子点形成机理的想法。
    2、利用AFM系统研究了自组装CdSe量子点的形成机理。提出了在低
    于临界厚度状态下SAQD形成的竞争机理,其中包括表面扩散导致的应
    变释放形成SAQD及表面粗糙化诱发的位错成核两种竞争过程。该机理
    能很好地解释目前存在于自组装CdSe量子点研究领域中的许多争议,
    并对进一步生长高质量SAQD有一定指导作用。
    
    
    3、通过对自组装 Cdse量子点的光学特性研究,进一步证实了 SAQD
    的形成。研究了在Znse基质中Cdse超薄层的光学特性,并认为界面
    扩散不利于外延层应变释放形成自组装量子点。
Semiconductor quantum dot structures, with atomic-like discrete energy
     states, are expected to improvement novel application in optical and
     electronic device, due to the three dimensional confinement on the carriers or
     excitons. Compared to lithographic methods, the Stranski-Krastanow mode
     (S-K mode) is a promising method, which doesn need complicated
     fabrication techniques and which achieves high optical quality due to low
     interface defects. However, the formation mechanism of self-assembled
     quantum dots (SAQD) is not very clear until now especially for lI-VT
     quantum dots such as CdSe/ZnSe. Hence, it is very difficult to control the
     growth of SAQD. Although there have some researches on how to control the
     size, density of SAQD, the results are not satisfied. Moreover, the formation
     mechanism of SAQD has attracted our interest not only for fabricating top-
     quality quantum dots to novel devices but also from the point of view of
     basic science.
    
     To study the formation mechanism of SAQD, the best way is to observe
     the formation process directly. Atomic force microscopy (AFM) is an
     effective instrumentation to get direct information of the surface morphology.
     However, AFM can be used as in-situ instrumentation. Hence, AFM
     usually be used to characterize the morphology or the ripening process of
     quantum dots.
    
     In this thesis, we observed the formation process of CdSe SAQD and
     studied the formation mechanism of CdSe SAQD systematically by AFM.
     The following is the major results:
    
     1. High quality Self-assembled CdSe quantum dots were fabricated by low-
     pressure metalorganic chemical vapor deposition (LP-MOCVD) system.
    
    
    
    
     The formation process of SAQD was observed by AFM for the first time.
     The formation of CdSe SAQD under critical thickness was due to the
     effect of surface diffusion and strain release. The slow process of surface
     diffusion can compensate for the time that is needed for AFM. These
     results make it possible to directly observe the process of release strain
     and to obtain the actual information on the formation process of self-
     assemb led quantum dots by AFM.
    
     2. The formation process of CdSe SAQD was investigated systematically by
     AFM. It revealed that the relaxation of misfit strain is completed by two
     competing processes. One is the formation of quantum dots assisted by
     surface diffusion; another is the formation of misfit dislocations. The
     surface roughness can allow easy to nucleation of misfit dislocations. This
     competitive mechanism can explain many discussing issues existed in the
     formation of CdSe SAQD.
    
     3. The optical properties of CdSe SAQD and CdSe ultrathin layer were
     studied. The formation of SAQD was verified by the research of optical
     properties. The interface diffusion can release part of misfit strain and go
     against the formation of SAQD.
引文
[1] J.L.Merz, S.Lee and J.K.Furdyna, Self-organized growth,ripening and optical properties of wide-bandgap II-VI quantum dots, J. Crystal Growth (1998) 184/185, 228-236.
    [2] F.Flack, N.Samarth, V.Nikitin, P.A.Crowell, J.Shi, J.Levy and D.D.Awschalom, Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots, Phys. Rev. B(1996) 54, R17312-17315.
    [3] S.H.Xin, P.D.Wang, A.Yin, C.Kim, M.Doovrowolska, J.L.Merz and J.K.Furdyna, Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy, Appl. Phys. Lett (1996) 69, 3884-3886.
    [4] G.Karczewski, S.Mackowski, M.Kutrowski, T.Wojtowicz and J.Kossut, Photoluminescence study of CdTe/ZnTe self-assembled quantum dots. Appl. Phys. Lett (1999) 74, 3011-3013.
    [5] H.Hirayama, K.Matsunaga, M.Asada et al. Lasing action of Ga0. 67In0. 33 As/GaInAsP/InP tensile-strained quantum-box laser, Electron Lett., (1994) 30, 142-143.
    [6] F.Heinrichsdorff, M.H.Mao, N.Kirstadter et al. Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition, Appl. Phys. Lett., (1997) 71, 22-24.
    [7] D.L.Huffaker, G.Park, A.Zhou et al. 1. 3 μ room-temperature GaAs-based quantum dots laser, Appl. Phys. Lett., (1998) 73, 2564-2566.
    [8] G.T.Liu, A.Stintz, H.Li et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0. 15Ga0. 85As quantum well, Electron. Lett, (1999) 35, 1163-1165.
    [9] Gyoungwon Park, Oleg B Shcheking, Sebastion et al. RT continuous-wave operation of a single-layered 1. 3 μm quantum dot laser, Appl. Phys. Lett (1999) 75, 3267-3269.
    [10] D.Bimberg, N.Kirstaetsov, M.Grundmann et al, Phys. Stat. Sol (b).,
    
    
    [11] M.V. Maximov, Y.M.Shernykov, N.A.Tsatsul et al. High-power coutinuous-wave operation of a InGaAs/AlGaAs quantum dot laser, J.Appl. Phys., (1998) 83, 5561-5563.
    [12] A.R.Kovsh, A.E.Zhukov, D.A.Licshits et al. 3.5W CW operation of quantum dot laser, Electron. Lett., (1993)35, 1161-1163.
    [13] S.Fafard, K.Hinzer, S.Raymond et al. Red-emitting semiconductor quantum dot laser, Science., (1996)274, 1350-1353.
    [14] H.Sairo, K.Vishi, I.Ogura et al. Room-temperature lasing operation of a quantum dot vertical-cavity surface-emitting laser, Appl. Phys. Lett., (1996)69, 3140-3142. "
    [15] J.A.Lott, N.N.Ledentsov, V.M.Vstinov et al. Vertical cavity lasers based on vertically coupled quantum dots, Electron. Lett., (1997)33, 1150-1151.
    [16] 王占国,半导体量子点激光器研究进展,物理.,(2000)29,643—648.
    [17] 王占国,刘峰奇,粱基本,徐波.自组装 InAs/GaAs 量子点材料和量子点激光器,中国科学(A).,(2000)30,644—652.
    [18] S.Y. Shiryaev, F. Jensen, J.Lundsgaard Hansen et al. Nanoscale structuring by misfit dislocations in Si_(1-x)Ge_x/Si epitaxial systems, Phys.Rev. Lett., (1997)78, 503-506.
    [19] E.Kurtz, H.D.Jung, T. Hanada, Z.Zhu, T. Sekiguchi, T. Yao, Selforganized CdSe/ZnSe quantum dots on a ZnSe (111)A surface, J.Crystal Growth (1998)184/185, 242-247.
    [20] Z.H.Ma, W.D.Sun, I.K.Sou and G.K.L.Wong, Atomic force microscopy studies of ZnSe self-organized dots fabricated on ZnS/GaP, Appl. Phys. Lett (1998)73, 1340-1342.
    [21] Q.Xie, A.Madbukar, P. Chen et al., Vertically self-organized InAs quantum islands on GaAs(100), Phys. Rev. Lett., (1995)75, 2542-2545.
    [22] F. Liu, S.E.Davenport, H.M.Evens et al., Self-organized replication of 3D cohorent island size and shape in multilayer heteroepitaxial films, Phys. Rev. Lett, (1999)82, 2528-2531.
    
    
    [23] J. Tersoff, C.Teichent, M.G.Lagally, Self-organization in Growth of quantum dot superlattices, Phys. Rev. Lett., (1996)76, 1675-1678.
    [24] P. Schitterhelm et al., Growth of self-assembled homogeneous SiGe-dots on Si (100), Thin Solid Films, (1997)294, 291-295.
    [25] 秦捷,蒋最敏,王迅,自组织生长锗硅量子点及其特性,物理,(1998)27,365—370.
    [26] S.Y. Shiryaev et al., Nanoscale structuring by misfit dislocations in Si_(1-) _xGe_x/Si epitaxial systems, Phys. Rev. Lett, (1997)78,503-506.
    [27] Y. Arakawa, H.Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett., (1982) 40, 939-941. .
    [28] 吴晓春,陈文驹,半导体量子点电子结构理论研究的进展,物理 (1995)24,218—223.
    [29] T. Takagahara, Localization and energy transfer of quasi-two-dimensional excitons in GaAs-AlAs quantum-well heterostructures, Phys.Rev. B, (1985)31, 6552-6573.
    [30] Y. Arakawa, H.Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett., (1982) 40, 939-941.
    [31] B.E.Maile, A.Forschel, R.Germann, Impact of sidewall recombination on the quantum efficiency of dry etched InGaAs/InP semiconductor wires, Appl. Phys. Lett., (1989)54, 1552-1554.
    [32] J.M.Gains, P.M.Petroff, H.Kroemer et al., Molecular-beam epitaxy growth of tilted GaAs/AlAs superlattices by deposition of fractional monolayers on vicinal (001) substrates, J. Vac. Sci. Technol. B, (1988)6, 1378-1381.
    [33] E.Colas, E.Kapon, S.Simhony et al., Generation of macroscopic steps on patterned (100) vicinal GaAs surfaces, Appl. Phys. Lett., (1989)55, 867-strained layers and superlattices, Semicond. Sci. Technol, (1991)6, 547-76.
    
    869.
    [34] R.Notzel, N.N.Leventsov, L.Dawaritz et al., Semiconductor quantum-wire structures directly grown on high-index surfaces, Phys. Rev. B. (1992) 45,3507-3515.
    [35] E.Kapon, D.W.Wang, W.Watther et al., Two-dimensional quantum confinement in multiple quantum wire lasers grown by OMCVD on V-grooved substrates, Surf. Sci., (1988) 267, 593-600.
    [36] A.R.Goni, L.N.Pfeiffer, K.W.West et al., Observation of quantum wire formation at intersection quantum wells, Appl. Phys. Lett., (1992) 61, 1956. -1958.
    [37] J.A.Lebens, C.S.Tsai, K.J.Vahala et al., Application of selective epitaxy to fabrication of nanometre scale wire and dot structures, Appl. Phys. Lett., (1990) 56,2642-2644.
    [38] T.Fukui, A.Ando, T.Tokura et al., GaAs trtrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition, Appl. Phys. Lett., (1991) 58, 2018-2020.
    [39] F.J.Grunthaner, M.Y.Yen et al., Molecular beam epitaxial growth and transmission dectron microscopy studies of thin GaAs/InAs(100) multiple quantum well structures, Appl. Phys. Lett., (1985) 46, 983-985.
    [40] H.Hirayama, K.Matsunaga, M.Asada et al. Lasing action of Ga0. 67In0. 33As/GaInAsP/InP tensile-strained quantum-box laser, Electron Lett., (1994) 30, 142-143.
    [41] D.J.Eaglesham and M.Cerullo, Dislocation-free Stranski-Krastanow growth of Ge on Si(100) , Phys. Rev. Lett., (1990) 64, 1943-1946.
    [42] B.Elman, E.S.Koteles, P.Melman, C.Jagannath, j.Lee, and D.Dugger, In situ measurements of critical layer thickness and optical studies of InGaAs quantum wells grown on GaAs substrates, Appl. Phys. Lett., (1989) 55, 1659-1661.
    [43] S.C.Jain, W.Hayer, Structure, properties and applications of GexSi1-x
    
    
    [44] H.Morkoc, B.Sverdlov and G.B.Gao, Strained layer heterostructures, and their applications to MODFETs, HBTs and lasers, Proc. IEEE, (1993)81, 493-556.
    [45] S.C.Jain, Germanium-Silicon strained layers and heterostructures, Boston, MA: Academic, (1994).
    [46] S.C.Jain, A brief review of Si/Ge strained epilayers and their applications GeSi strained layers and their applications, ed A M Stoneham and S C Jain, Bristol: Institute of Physics, (1995), 1-24.
    [47] G.C.Osbourn, Strained-layer superlattices from lattice mismatched materials, J. Appl. Phys., (1982)53, 1586-1589. ,.
    [48] 毕文刚,李爱珍,弹性应变及结构参数对 InAs/GaAs 应变层超晶格能带结构的影响,半导体学报,(1992)13:6, 359-366.
    [49] S.C.Jain, M.Willander and H.Maes, Stresses and strains in epilayers, stripes and quantum structures of Ⅲ-Ⅴ compound semiconductors, Semicond. Sci. Technol. (1995)11,641-671.
    [50] K.Pinardi, U.Jain, S.C.Jain, H.E.Maes, and R.V. Overstraeten, Critical thickness and strain relaxtion in lattice mismatched Ⅱ-Ⅵ semiconductor layers, J. Appl. Phys., (1998)83, 4724-4733.
    [51] W. Seifert, N.Carlsson, J.Johansson, M.E.Pistol, L.Samuelson, In situ growth of nano-structures by metal-organic vapour phase epitaxy, J. Crystal Growth, (1997)170, 39-46.
    [52] B.W. Wessels, Morphological stability of strained-layer semiconductors, J. Vac. Sci. Technol. B., (1997)15, 1056-1058.
    [53] S.Luryi and S.Suhir, New approach to the high quality epitaxial growth of lattice-mismatched materials, Appl. Phys. Lett., (1986)49, 140-142.
    [54] Y. Nabetani, T.Ishikawa, S.Noda and A.Akasaki, Initial growth stage and optical properties of a three-dimensional InAs structure on GaAs, J. Appl. Phys., (1994)76,347-351.
    
    
    [55] S.Ruvimov, p.Werner, K.Scheerschmidt et al., Structural characterization of (In,Ga)As quantum dots in a GaAs matrix, Phys. Rev. B., (1995) 51, 14766-14769.
    [56] K.Georgsson, N.Carlsson, L.Samuelson et al., Transmission electron microscopy investigation of the morphology of InP Stranski-Krastanow islands grown by metalorganic chemical vapor deposition, Appl. Phys. Lett, (1995) 67,2981-2983.
    [57] M.Sopanen, H.Lipsanen and J.Ahopelto, Self-organized InP islands on (100) GaAs by metalorganic vapor phase epitaxy, Appl. Phys. Lett., (1995) 67, 3768-3770.
    [58] G.S.Solomon, J.A.Trezza and J.S.Harris, Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs, Appl. Phys. Lett., (1995) 66, 991-993.
    [59] P.Chen, Q.Xie, A.Madhukar et al., Mechanisms of strained island formation in molecular-beam epitaxy of InAs on GaAs (100) , J. Vac. Sci. Technol. B., (1994) 12, 2568-2573.
    [60] J.Oshinowo, M.Nishioka, S.Ishida and Y.Arakawa, Highly uniform InGaAs/GaAs quntum dots (-15nm) by metalorganic chemical vapor deposition, Appl. Phys. Lett., (1994) 65, 1421-1423.
    [61] S.Lee, I.Daruka, C.S.Kim et al., Dynamics of ripening of self-assembled II-VI semiconductor quantum dots, Phys. Rev. Lett., (1998) 81, 3479-3482.
    [62] J.P.Van der Ziel, R.Dingle, R.C.Miller et al., Laser oscillation from quantum states in very thin GaAs-Al0. 2Ga0. 8As multilayer structures, Appl. Phys. Lett, (1975) 26, 463-465.
    [63] W.T.Tsang, Extremely low threshold (AlGa)As modified multi-quantum well heterostructure lasers grown by molecular-beam epitaxy, Appl. Phys. Lett, (1981) 39, 786-788.
    [64] Y.Arakawa, H.Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett, (1982)
    
    40,939-941.
    [65] 夏建白,量子线、量子点和它们的激光器,物理,(1998)27,141-145.
    [66] G.T. Liu, A.Stintz, H.Li et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In_(0.15)Ga_(0.85)As quantum well, Electron. Lett., (1999)35, 1163-1165.
    [67] Gyoungwon Park, Oleg B Shcheking, Sebastion et al. RT continuouswave operation of a single-layered 1.3 μ m quantum dot laser, Appl. Phys. Lett (1999)75, 3267-3269.
    [68] M.V. Maximov, Y.M.Shernykov, N.A.Tsatsul et al. High-power coutinuous-wave operation of a InGaAs/AlGaAs quantum dot laser, J.Appl. Phys., (1998) 83, 5561-5563.
    [69] A.R.Kovsh, A.E.Zhukov, D.A.Licshits et al. 3.5W CW operation of quantum dot laser, Electron. Lett., (1993)35, 1161-1163.
    [70] 关郑平,ZnSe 基应变超晶格子能级的复合特性研究,博士论文,(1994)。
    [71] 于广友,ZnCdSe/ZnSe 非对称双量子阱中激子过程及光学性质,博士论文,(1999)。
    [72] 杨树人,王宗昌,王兢,半导体材料,吉林大学出版社,(1997)。
    [73] G.Binning, H.Rohrer, Ch. Gerber., Tunneling through a controllable vacuum gap, Appl.Phys.Lett., (1982)40, 178-180.
    [74] 白春礼,田芳,扫描力显微镜研究进展,物理,(1997)26,402-407.
    [75] 田芳,李建伟,王琛等,原子力显微镜及其对 DNA 大分子的应用研究,物理,(1997)26,238-243.
    [76] D.Schikora, S.Schwedhelm, I.Kudryashov, Investigations on the formation kinetics of CdSe quantum dots, J. Crystal Growth., (2000)214/215, 698-702.
    [77] C.S.Kim, M.Kim, J.K.Furdyna et al., Evidence for 2Dprecursors and interdiffusion in the evolution of self-assembled CdSe quantum dots on ZnSe, Phys. Rev. Lett., (2000)85, 1124-1127.
    
    
    [78] S.Lee, J.C.Kim, H.Rho et al., Origin of two types of excitons in CdSe dots on ZnSe, Phys. Rev. B., (2000) 61, R2405-2408.
    [79] C.S.Kim, M.Kim, S.Lee et al., Optical observation of quantum dot formation in sub-critical CdSe layer grown on ZnSe. J. Crystal Growth., (2000) 214/215,761-764.
    [80] D.Gerthsen, A.Rosenauer, D.Litvinov et al., Structural and chemical analysis of CdSe islands in a ZnSe matrix by transmission electron microscopy, J. Crystal Growth., (2000) 214/215, 707-711.
    [81] J.C.Kim, H.Rho, L.M.Smith et al., Spectroscopic characterization o the evolution of self-assembled CdSe quantum dots, Appl. Phys. Lett., (1998) 73,3399-3341.
    [82] Z.H.Zheng, K.Ohamoto, H.C.Ko et al, Narrow luminescence lines from self-assembled CdSe quantum dots at room temperature, Appl. Phys. Lett., (2001) 78, 297-299.
    [83] H.C.Ko, D.C.Park, Y.Kawakami et al, Self-organized CdSe quantum dots onto cleaved GaAs(110) originating from Stranski-Krastanow growth mode, Appl. Phys. Lett., (1997) 70, 3278-3280.
    [84] S.V.Ivanov, A.A.Toropov, T.V.Shubina et al, Growth and excitonic properties of single fractional monolayer CdSe/ZnSe structures, J. Appl. Phys., (1998) 83,3168-3171.
    [85] K.Arai, T.Hanada, T.Yao, Self-organized formation processes of CdSe quantum dots studied by reflection high-energy electron diffraction, J. Crystal Growth., (2000) 214/215, 703-706.
    [86] M.Ohishi, H.Saito, M.Yoneta et al, In situ RHEED study of CdSe/ZnSe quantum dots formation during alternate beam supply and photoluminescence properties, J. Crystal Growth., (2000) 214/215, 690-693.
    [87] M.Strassburg, T.Deniozou, A.Hoffmann et al, Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures, Appl. Phys.
    
    Lett., (2000) 76, 685-687.
    [88] G.Karczewski, S.Mackowski, M.Kutrowski, T.Wojtowicz and J.Kossut, Photoluminescence study of CdTe/ZnTe self-assembled quantum dots, Appl. Phys. Lett. 74 (1999) 3011-3013.
    [89] Z.H.Ma, W.D.Sun, I.K.Sou et al, Atomic force microscopy studies of ZnSe self-organized dots fabricated on ZnS/GaP, Appl. Phys. Lett., (1998) 73, 1340-1342.
    [90] U.W.Pohl, M.Strabburg, I.L.Krestnikov et al, CdSe/ZnSSe quantum islands grown by MOVPE on homoepitaxial GaAs buffers, J. Crystal Growth., (2000) 214/215, 717-721.
    [91] C.Meyne, U.W.Pohl, W.Richter et al, Quantum island fromation in CdS/ZnS heterostructures grown by MOVPE, J. Crystal Growth, (2000) 214/215, 722-726.
    [92] M.Grun, F.Funfrock, P.Schunk et al, On the nature of nanometer-scale islands formed by cadmium selenide deposition on hexagonal cadmium sulfide (0001) A, Appl. Phys. Lett., (1998) 73, 1343-1345.
    [93] K.Pinardi, U.Jain, S.C,Jain et al, Critical thickness and strain relaxation in Lattice mismatched II-VI semiconductor layers, J. Appl. Phys., (1998) 83,4724-4733
    [94] E.Kurtz, H.D.Jung, T.Hanada, Z.Zhu, T.Sekiguchi, T.Yao, J.Crystal Growth. 184/185 (1998) 242.
    [95] J.B.Smathers, E.Kneedler, B.R.Bennett et al. Nanometer scale surface clustering on ZnSe pilayers, Appl. Phys. Lett., (1998) 72, 1283-1285.
    [96] S.H.Xin, P.D.Wang, A.Yin et al, Formation of Self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy, Appl. Phys. Lett., (1996) 69, 3884-3886.
    [97] I.Suemune, T.Tawara, T.Saitoh et al, Stability of CdSe and ZnSe dots self-organized on semiconductor surfaces, Appl. Phys. Lett., (1997) 71, 3886-3888.
    
    
    [98] B.R.Pamplin. Crystal growth (Pergamon, Oxford, 1975) ch.2, p. 15.
    [99] J.Tersoff and F.K.Legoues, Competing relaxation mechanisms in strained layers, Phys. Rev. Lett., (1994) 72,3570-3573.
    [100] W.H.Yang and D.J.Srolovitz, Phys. Rev. Lett., (1993) 71, 1593.
    [101] D.E.Jesson, S.J.Pennycook, J.M.Baribeau et al, Phys. Rev. Lett., (1993) 71, 1744.
    [102] J.C.Kim, H.Tho, L.M.Smith et al, Temperature-dependent micro-photoluminescence o individual CdSe self-assembled quantum dots, Appl. Phys. Lett, (1999) 75, 214-216.
    [103] M.Strabburg, T.Deniozou, A.Hoffmann et al., Optical identification of quantum dot types in CdSe/ZnSe structures, J. Crystal Growth., (2000) 214/215,756-760.
    [104] N.Magnea, J.Crystal Growth. (1994) 138, 550-558.
    [105] Z.Q.Zhu, H.Yoshihara, K.Takebayashi and T.Yao, Appl.Phys.Lett. (1993) 63, 1678-1680.
    [106] T.Yao, M.Fujimoto, S.K.Chang and H.Tanino, J.Crystal Growth. (1991) 111,823-828.
    [107] D.F.Welch, G.W.Wicks and L.F.Eastman, Appl.Phys.Lett. (1985) 46, 991-993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700