用户名: 密码: 验证码:
地壳介质弹性、电性各向异性理论及对地震过程的联合解释
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分10章,第1章为引论,第2-6章为基础理论,第7-10章
    为应用研究。主要研究内容可分为五个方面:
    1.第1章引论部分综述了地壳介质各向异性现象和分类,从发展沿革、理论方
     法及成果、存在的问题这个顺序分别论述了地壳介质弹性各向异性和电性备
     向异性。在此基础上提出了本论文的研究思路和主题:将地震学中的S波分
     裂法与电法中的大地电磁测深法联合起来解释地震过程中的各向异性动态特
     征与发震应力场的关系。围绕这个主题设定了两个核心:一是建立地壳介质
     电性各向异性微观模型,在此之前这方面的研究是一个空白;二是基于EDA
     裂隙模型将S波分裂法与大地电磁测深法联合应用于对实际震例的分析研
     究,该研究具有首创性。并对其它研究内容作了安排。
    2.基础理论部分中第一项研究内容是本构关系的理论分析、推导。第2章讨论
     弹性各向异性本构关系。除了引用前人给出的公式外,本论文有特色的工作
     是:推导了一个应变能公式,给出了各种对称体系下的弹性本构形式,对前
     人给出的结果作了验证,指出存在的个别错误;对EDA(广泛扩容各向异
     性)构成的薄层介质各向异性弹性常数作了推导,给出了解析表达;对几
     种类型的各向异性体系的角散式进行了推导并作了数值计算.第5章讨论电
     性各向异性本构关系,本论文在此作了一个有创新性的工作,即本论文的
     第一个核心,受弹性各向异性等效弹性模量(Hudson公式)和APE(各向
     异性孔隙弹性)理论的启示,建立了等效的电性各向异性微观模型并给出
     了数学推导,将此模型称之为电性各向异性裂隙方向性集中体积模型(简称
     体积模型);其它有特色的工作是从直流电法和大地电磁测深法来讨论薄层
     各向异性和EDA各向异性的特征,并指出了直流电法中的“反常现象”.
    3.基础理论部分的第二项研究内容是数值模拟.第3章是引用前人提出的伪谱
     法对2.5维弹性波场作了数值模拟,并对快慢S波时间延迟、快S偏振方
     向作了分析;第4章对第3章遗留的问题作了进一步研究。有特色的工作
     是:全面推导了用特征值法处理伪谱法中各种边界条件的表达式,为以后
     这方面的工作提供了便利.第6章是引用前人的方法,对层状EDA各向异
     I
    
    
     中国地震局地球物理研究所博士学位论文:地壳介质弹性、电性各向异性理论及对地震过程的联合解释
     性作了大地电磁测深(MT)数值模拟,并对前人公式中的模糊之处作了说
     明.数值模拟部分其重要性在本论文中占的份量较小,但工作量却很大,主
     要工作是编程计算.这方面的研究目的就是从直观上提高对各向异性的认
     识,为下续的研究工作打基础.
    4t应用部分的第一项研究内容就是本论文的第2个核心,即基于EDA裂隙模
     型联合应用S波分裂法和大地电磁测深法来分析研究地震过程中的前兆各向
     异性现象和发震应力场随时间演化的关系。第7章引用前人的方法,对S
     波分裂法中的旋转相关法、最大特征值法、波形识别算子作了论述椎导;对
     大地电磁测深法资料处理的最小H乘法作了论述推导。第8章用CDSN兰
     州台、中法合作朗索台的三分量数字记录小震资料,和中法合作松山台的电
     磁连续观测资料,分析了1995年7月22日永登5,8级地震前后快S波偏
     振方向、电性主轴方向与震源机制解P轴方向的关系,发现三者震前的协
     调一致性;快慢S波时间延迟在时间上随地震的孕育而逐渐增大;从电性
     主轴与频率的关系分析出地震孕育造成的动态各向异性在地壳深度一定范围
     内是广泛存在的;还发现视电阻率的变化受发震应力场和台站处构造条件的
     共同作用。第 9章用同样的方法对 1996年 6月 1日的天祝-古浪 5.4级地
     震过程的各向异性现象作了联合解释,得到的结果与第8章是一致的,但
     由于资料情况不同、背景应力场不同,震源机制不同,所以该次地震的各
     向异性分析结果有自己的一些特点。
    5.应用部分的第 h项研究内容(第 10章)是根据 EDA模型、APE理论和本
     论文建立的电性模型,从各异性的角度来讨论直流视电阻率地震监测预报方
     法的机理,着重点落在离震源较远的场兆问题上。通过讨论、简单计算,认
     为根据新的电性模型可解释震前小应变下大的视电阻率变化,可以解释不
     同方向观测值不同的原因,可以解释震前视电阻率既可以是下降变化也可
     以出现上升变化的现象,排除了临震视电阻率突跳对大量进水或大量出水
     的严重依赖性,这些问题是以往标量理论所不能及的。
     总之,本论文在电性各向异性理论上有1个较大的创新,建立了一个新
     的模型,弹性、电性的联合解释和对地电法机理的研究在应用上是二个鲜
     明的创新。其余部分的工作大多是在前人基础上作了一些补充和改进,并
     互互
This dissertation consists of l0 chapters, the first chapter is general illustration
    and introduction, basic theories and formulas are discussed in following 5 chapters,
    application studies are included in the last 4 chapters. The studied contents could be
    divided into 5 aspects as following:
    l. In chapter 1 the anisotropic phenomena and classification of earth crust media are
    comprehensively discussed, from enisotropy study history and development to its
    theory and method and to existing problems. On this basis the main research topic
    is put forward, that is combing s-wave splitting method with MT to study and
    explain the dynamic anisotropic phenomena of earthquake precursors and their
    relations with seismic stress field development. Around the main topic, two most
    important and creative research contents are designed: one is to set up an electrical
    anisotropic micro model, because before this paper there were many scalar
    presentations but no any tensor model with physical meaning; the other is to
    combine s-wave splitting method with MT to study anisotrpic precursors of
    practical earthquakes, this will be an creative work. The others study contens are
    also arranged in chapter 1.
    2. The first part of study in basic theories is to derive and explain formulas of
    anisotropic constitutive relations. Chapter 2 discusses anisotropic elastic
    constitutive relations of various symmetry systems. Interestihg works include three
    parts, (1) deriving an elastic strain energy equation to discuss constitutive relations
    of various elastic symmetry systems, and to check out some errors in previous
    papers. (2)deriving effective elastic constants of EDA-PTL medium; (3)deriving
    and numerically studying the elastic wave rays angle {dispersion phenomenon.
    Chapter 5 discusses electrical anisotropic constitutive relations, Creative work is to
    set up a new micro electrical anisotropic model and its equation. Ths model is'
    named as cracks directional concentrated cubic model(simply called cubic
    model). Other interesting work is to discuss PTL and EDA anisotropico behaviors in
    apparent resistivity and MT methods respectively.
    3. The second part of study in basic,theories is numerical simulation, Chapter 3 and
    chapter 4 study s-wave splitting of 2.5D model by pseudo-spectrum approach and
    thoroughly derive and analyze various boundary equations by eigenvalue method.
    The time delay of splitting s-waves and polarization of fast s wave are also
    analyzed. Chapter 6 numerically simulates layered anisotropic MT models by
    using and modifying previous papers equations. The purpose of these numerical
    simulations is to establish a basis for following researches.
    4. The first part of study in application is the main topic of this dissertation, that is to
    study seismic anisotropic phenomena and the development process of stress field
    by integrating s-wave splitting method and MT approach based on EDA model.
    Chaper 7 is to derive equations and write computer programs which are going to
    be used in following two chapters, including rotation-correlation analysis,
    maximum eigenvalue method, factors of wave type recognition used in s-wave
    
    
     中国地震局地球物理研究所博士学位论文:地壳介质弹性、电性各向异性理论及对地震过程的联合解释
     spl汕胆d吻sls。andlea幻 sqllares me山cd used In MT d扯a processmp.C帅ter 8
     咖yzesandexplains selsmlcanddeCiCic幻amsotroplc precwsorsM山elr
     众vd地memM山山ep rePrePmM。n毗hig尔ng砌曲叫毗e Ms 5.8。Co——d m1Ulys
     22th,1995,nd heir relationsMth P axis ofe讪…e me血删m solWon.The
     伽areOOlle恤RomL一u咖Langsuedopt8Iselsmograpmc sMlons毗
     Songshan elemcal-m卿euc删*.It Is discovered thatthe polariwion ofM s
     wave,one of*the main elemcal axis Wthe P axis re geneally identical; the s-
     。e splittillg time delny Is Increasing ith time tmll ewtuake happens;
     accodingto Requencycharawn犯c ofele以nd axis n Is concluded山幻伽
     drpamlc nsotroplc vanationcaused byeanllquake pfaparauon Is exeslvely
     distributed In certain
引文
[1] Ajit Kumar Sinha & Prabhat K. Bhattacharya, 1967. Electric dipole over an anisotropic and inhomogeneous earth, Geophysics, 32:652-667.
    [2] Alford,R. M., Shear-data in the presence of azimuthal anisotropy, 56th SEG Annual Metting Expanded Abstracts, 1986, 476-479.
    [3] Ando, M., Ishikawa, Y. & Wada, H., 1980. S-wave anisotropy in the upper mantle under a volcanic area in Japan, Nature, 286:43-46.
    [4] Archie, G. E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristic, Trans. A. I.M. E. 146: 54-62.
    [5] Aster, R. C., Shearer, P.M. & Berger, J., 1990. Quantitative measurements of shear wave polarization at the Anza seismic network, Southern California:implications for shear-wave splitting and earthquake prediction, J. Geophys. Res., 95:12449-12473.
    [6] Bernard Budiansky & Richard J. O'Connell, 1976. Elastic moduli of a cracked Solid, Int. J. Solids Structures, 12: 81-97.
    [7] Brace, W. F. et al., 1968. Electrical resistivity changes in saturated rocks during fracture and frictional sliding, J. Geophys. R. 73:1433-1445.
    [8] Brace, W. F., 1975. Dilatancy-related electrical resistivity changes in rocks, Pure and Applied Geophysics, 113:207-217.
    [9] Carbin, H. D. & Knopoff L., 1973. The congressional modulus of a material permeated by a random distribution of circular cracks, Q. appl. Math., 30: 453-464.
    [10] Carbin, H. D. & Knopoff L. , 1975a. The shear modulus of a material permeated by a random distribution of circular cracks, Q. appl. Math. , 33:296-300.
    [11] Carbin, H. D. & Knopoff L., 1975b. Elastic moduli of a medium with liquid-filled cracks, Q. appl. Math., 33:301-303.
    [12] Cerveny, 1985b. Ray Synthetic Seismograms for Complex 2D and 3D structures, J. Geophys, 58: 2-26.
    [13] Cerveny, 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media, Geophys. J. R. astr. Soc., 29:1-31.
    [14] Chen Kunhua, Propagating numerical model of elastic wave in anisotropic inhomogeneous media-finite element method. Symposium of SGE, 1984, 54 :S17. 6. [15] Crampin, S. & King, D. W., 1977. Evidence for anisotropy in the upper beneath Eurasia from generalized higher mode surface waves, Geophys. J. R. astr. Soc., 49:43-46.
    [16] Crampin, S., Evans, R. & Atkinson, B. K., 1984a. Earthquake predictions new physical basis, Geophys. J. R. astr. Soc., 76: 147-156.
    [17] Crampin S., Chesnokov,E. M. & Hipkin, R. G., 1984b. Seismic anisotropy the state of art II, Geophys. J. R. astr. Soc., 76: 1-16.
    [18] Crampin, S., Evans, R., Ucer, B., Doyle, M., Davis, J. P., Yegorkina G. V .
    
     & Miller, A., 1980. Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286:874-877.
    [19] Crampin, S., Evans, R., Ucer, B., 1985. Analysis of records of local earthquakes:the Turkish Dilantancy Projects (TDP1 and TDP2) , Geophys. J. R. astr. Soc., 83:31-45.
    [20] Don L. Anderson, B. Minster, and D. Cole, 1974. The effect of oriented cracks on seismic velocities, J. Geophys. Res., 79: 4011-4015.
    [21] Douglas P. O'brien & H. F. Morrison, 1967. Electromagnetic fields in an N-layer anisotropic half-space, Geophysics 32: 668-677.
    [22] George E. Backus, 1962. Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 67: 4427-4440.
    [23] Harro Schmeling, 1986. Numerical models on the influence of partial melt on elastic and electrical properties of rocks part II :electrical conductivity, Physics of the Earth and Planetary Interiors, 43:123-136.
    [24] Harve S. Waff, 1974. Theoretical considerations of electrical conductivity in a partially molten and implications for geothermometry, J. Geophys. Res. 79:4003-4010.
    [25] Hess, H.,1964. Seismic anisotropy of the upper mantle under oceans, Nature, London, 203:629-631.
    [26] Hoenig A., 1979. Elastic moduli of a non-randomly cracked body. Int. J. solid struct., 15:137-154.
    [27] Ivan Psencik, 1997. Seismic ray method for inhomogeneous isotropic and anisotropic media, Lecture Notes, Zhengzhou, November, 1997.
    [28] J. A. Hudson, 1980. Overall properties of a cracked solid, Math. Proc. Camb. phil. Soc.88:371-384.
    [29] J. A. Hudson,1981. Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. astr. Soc. 64:133-150.
    [30] J. A. Hudson, 1986. A higher order approximation to the wave propagation constants for a cracked solid, Geophys. J. R. astr. Soc. 87: 265-274.
    [31] J. B. Walsh, 1965. The effect of cracks on the compressibility of rock, J. Geophysical Res. 70: 381-389.
    [32] J. D. Eshelby, 1957. The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc., A241: 376-396.
    [33] J. Douma, 1988. The Effect of the aspect ratio on crack-induced anisotropy, Geophysical Prospecting, 36: 614-632.
    [34] J. G. Negi and P. D. Saraf, 1989. Anisotropy in geoeletro-magnetism, Elsevier.
    [35] Kurita, K. , 1986. How can we identify location of a fracture plane? Anisotropy of electrical conductivity and seismic velocity in dilatancy, Earthquake Prediction Research, 4:39-45.
    [36] LeMasne, D. and Vasseur, G., 1981. Electromagnetic field of the sources at the surface of a homogeneous conducting half-space with horizontal anisotropy:application to fissured media, Geophysical Prospecting, 29:803-821.
    [37] Leon Thomsen, 1986. Weak elastic anisotropy, Geophysics, 51:154-1966.
    
    
    [38] Leon Thomsen, 1988. Reflection seismology over azimuthally anisotropic media, Geophysics, 53:304-313.
    [39] Li, X.-Y. & Crampin, S., 1991a. Complex component analysis of shear-wave splitting: theory, Geophys. J. Int., 107: 597-604.
    [40] Li, X.-Y. & Crampin, S., 1991b. Complex component analysis of shear-wave splitting: case studies, Geophys. J.Int., 107:605-613.
    [41] Michael Schoenberg and Francis Muir, 1989. A calculus for finely layered anisotropic media, Geophysics, 54:581-589.
    [42] Moshe Reshef,Dan Kosloff, Mickey Edwards & Chris Hsiung, 1988, Three dimensional elastic modelling by the Fourier method, Geophysics, Vol.53, No. 9, 1184-1193.
    [43] P. Weidelt, 1975. Electromagnetic induction in three-dimensional structures. J. Geophys. ,41:85-109.
    [44] Postma, G. W., 1955. Wave propagation in a stratified medium, Geophysics, 20:780-806.
    [45] Rankin, D. and Reddy, I. K., 1969. A magnetotelluric study of resistivity anisotropy,Geophysics, 34:438-449.
    [46] Richard J. O'Connell & Bernard Budiansky, 1974. Seismic velocities in dry and saturated cracked solids, J. Geophys. Res. 79:5412-5426.
    [47] Sergei V. Zatsepin & Stuart Crampin, 1997. Modelling the compliance of crustal rock-I response of shear-Wave splitting to differential stress, RAS, GJI, 129: 477-494.
    [48] Shih, X. R., Mever,R.P.& Schneider, J. F., 1989. An automated analytic method to determine shear-wave anisotropy, Tectonophysics, 165:271-278.
    [49] Stuart Crampin, 1998. Keynote Lecture:Going APE-Monitoring and Modelling Rock Deformation with Shear-Wave Splitting, personal communication.
    [50] Stuart Crampin & Sergei V. Zatsepin, 1997. Modelling the compliance of crustal Rock-II. response to temporal changes before earthquakes, Geophys. J. Int. 129: 495-506.
    [51] S. Crampin &D. Bamford, 1977. Inversion of P-wave velocity anisotropy, Geophys, J. R. Soc., 49: 123-132.
    [52] Stuart Crampin, 1984. Effective anisotropic elastic constants for wave propagation through cracked solids, Geophys, J. R. astr. Soc. 76: 135-145.
    [53] Stuart Crampin, 1978. Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic, Geophys, J.R. astr. Soc.53: 467-496.
    [54] S. Crampin & John H. Lovell, 1991. A decade of shear-wave splitting in the earth' s crust: what does it mean ? what use can we make of it ? and what should we do next ? Geophysics, J.Int., 107: 387-417.
    [55] Sergei V. Zatsepin & Stuart Crampin, 1995, The metastable poro-rective and interactive rockmass:anisotropic poro-elasticity, 65~(th) Ann. Int. SEG Meeting, Houston, Expanded Abstracts, 918-921
    [56] Crampin,S., &Zatsepin, S.V., 1995, Production seismology, the use of shear waves to monitor and model production in a poro-reactive and interactive
    
    reservoir, 65th Ann. Int. SEG Meeting, Houston, Expanded Abstracts, 199-202
    [57]Sergei V. Zatsepin & Stuart Crampin, 1996. Stress-induced coupling between anisotropic permeability and shear-wave splitting, 58th Conf. EAGE, Amsterdam, Extended Abstracts, C030.
    [58]S.Crampin, Theodora Volti & Ragnar Stefansson, 1999, Asuccessfully stress-forecast earthquake, Geophys. J. Int., 138, F1-F5.
    [59]Shu-Huei Hung and Donald W. Forsyth, 1998, Modelling anisotropic wave propagation in oceanic inhomogeneous structures using parallel multidomain pseudo-spectral, Geophys. J. Int. 133,726-740.
    [60]V. Cerveny, 1972. Seismic rays and ray intensities in inhomogeneous isotropic media. Geophys. J.R. astr. Soc., 29: 1-13.
    [61]Yardley, G. & Crampin,S.,1991.Extensive-dilantancy anisotropy:relative information in VSPs and reflection surveys, Geophys. Prosp., 39:337-355.
    [62]Z. Hashin and S. Shtrikman, 1963. On some vairational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys.Solids, 10:335-342.
    [63]克拉耶夫,1956.地电原理,地质出版社.
    [64]陈乐寿、王光锷,大地电磁测深法,北京,地质出版社,1990.
    [65]冯德益、聂永安,含裂隙双相各向异性介质中的地震波传播.西北地震学报,第20卷,第1期,1-8,1998.
    [66]冯德益,地震波理论与应用.北京,地震出版社,265-322,1988.
    [67]符力耘、牟永光,弹性波边界元法正演模拟.地球物理学报,第37卷,第4期,521-529,1994.
    [68]高原、郑斯华,唐山地区剪切波分裂研究(Ⅱ)—相关函数分析法.中国地震,第十卷 增刊,22-32,1994.
    [69]高原、冯德益,关于近震S波分裂的研究.中国地球物理学会年刊,地震出版社,1991:21.
    [70]侯安宁、何樵登、马在田,三维裂隙介质中弹性波Green函数的Weyl积分解研究.地球物理学报,第38卷,增刊1,135-143,1995.
    [71]何樵登、张中杰,各向异性介质中地震波分裂现象初步探讨.世界地质,1990,9(2).
    [72]靳平、徐果明、楼沩涛,点力源在横向各向同性介质中激发的弹性波.地球物理学报,第41卷,第4期,525-535.
    [73]李清河、刘希强、张范民、范兵,剪切波分裂的某些理论问题及天祝-景泰6.2级地震地震剪切波分裂特征研究.中国地震,第10卷增刊,9-21,1994.
    [74]李清河、张元生,涂毅敏、范兵,祁连山-河西走廊地壳速度结构及速度与电性的联合解释.地球物理学报,第41卷,第2期,197-210,1998.
    [75]林长佑、杨长福、武玉霞、陈军营,各向异性介质的大地电磁反演及其有关地震前兆场的讨论.地震学报,第18卷,第3期,326-332,1996.
    [76]林长佑、武玉霞、杨长福、陈军营,水平层状对称各向异性介质的大地电磁资料反演.地球物理学报,第39卷增刊,342-348,1996.
    [77]刘希强,剪切波分裂中的快,慢波识别方法.西北地震学报,第14卷,第4期,17-24.1992.
    [78]刘希强,利用剪切波分裂研究中国大陆上地幔各向异性,中科院中国科技大学博士论文,1999。
    
    
    [79]刘银斌、李幼铭、吴如山,横向各向同性多孔介质中的地震波传播.地球物理学报,第37卷,第4期,499-513,1994.
    [80]马在田、曹景忠、王家林等,计算地球物理学概论.同济大学出版社,1997.
    [81]牛滨华、顾贤明,地震波场正演模拟中的有限元方法.长春地质学院学报,第38卷,第2期,213-220,1989.
    [82]钱复业等,地电阻率的各向异性地震前兆及其在探索震中区域应力场分布中的应用,地震地电学发展与展望,64-69,兰州大学出版社,1998。
    [83]钱家栋、陈有发、金安忠,地电阻率法在地震预报中的应用.地震出版社,1985.
    [84]邵秀民、蓝志凌,各向异性弹性介质中波动方程的吸收边界条件.地球物理学报,30卷,增刊1,56-73,1995.
    [85]邵秀民、蓝志凌,非均匀各向同性弹性介质中地震波传播的数值模拟.地球物理学报,第38卷,增刊Ⅱ,39-55,1995.
    [86]滕吉文、张中杰、王爱武、魏计春、吉连详,弹性介质各向异性研究沿革、现状与问题.地球物理学进展,第7卷,第四期,14-29,1992.
    [87]王家映,我国大地电磁测深研究新进展.地球物理学报,第40卷增刊,206-216,1997.
    [88]徐中信、张中杰,2D非均匀各向异性介质中地震波运动学问题正演模拟.石油物探,1989,2.
    [89]杨顶辉、滕吉文、张中杰,三分量地震波场的近似解析离散模拟技术.地球物理学报,39卷增刊,283-291,1996.
    [90]杨顶辉、滕吉文、张中杰,各向异性动力学方程反演新算法.地震学报,第19卷,第4期,376-382,1997.
    [91]杨顶辉、滕吉文、张中杰,各向异性问题数值模拟中的交替算法.地震学报,第18卷,第1期,48-54,1996.
    [92]闫贫,横向各向同性介质地震波场正反演初探.长春地质学院,博士学位论文,1992.
    [93]姚陈、王培德、陈运泰,卢龙地区S波偏振与上地壳裂隙各向异性.地球物理学报,1992,35(2):305-315.
    [94]张范民,利用最大似然法进行波场分解和震相识别.西北地震学报,第15卷,第3期,1-10,993.
    [95]张中杰、何樵登、滕吉文,二维横向各向性介质中点源激发三分量地震波场研究.中国地球物理学会年刊,1992.
    [96]张中杰、何樵登,N个薄层介质组合引起的视各向异性.长春地质学院学报,20卷,第2期,223-226,1990.
    [97]张元生,李清河、徐果明,联合利用走时与波形反演技术研究地壳三维速度结构(Ⅰ)-理论和方法.西北地震学报,第20卷,第2期,8-15,1998.
    [98]郑治真、刘元壮,提取慢S波初至的自适应方法及S波分裂在地震趋势估计中的应用研究.中国地震,第10卷增刊,1-8,1994.
    [1]Crampin, S., Evans, R. & Atkinson, B.K., 1984a. Earthquake prediction:a new physical basis, Geophys. J.R. astr. Soc., 76: 147-156.
    [2]Crampin S., Chesnokov, E.M. &Hipkin, R.G., 1984b. Seismic anisotropy the state of art Ⅱ,Geophys. J.R. astr. Soc., 76: 1-16.
    [3]Crampin, S., Evans, R., Ucer, B., Doyle, M., Davis, J. P., Yegorkina G. V.& Miller, A.,Observations of dilatancy-induced polarization anomalies and
    
     earthquake prediction, Nature, 286:874-877.
    [4] Crampin, S., 1989, Suggestion for consistent terminology for seismic anisotropy, Geophysical Prospecting, 37,753-770.
    [5] J. A. Hudson, 1980. Overall properties of a cracked solid, Math. Proc. Camb phil. Soc. 88:371-384.
    [6] J. A. Hudson, 1981, Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. astr. Soc. 64:133-150.
    [7] J. A. Hudson, 1986. A higher order approximation to the wave propagation constants for a cracked solid, Geophys. J. R. astr. Soc. 87: 265-274.
    [8] G. E. Backus, 1962, Long-Wave Elastic Anisotropy Produced by Horizontal Layering, J.G. Res. Vol.67, No. 11, 4427-4440
    [9] G. W. Postma, 1955, Wave Propgation In a Stratified Medium, Geophysics, Vol 20, No. 4, 780-806
    [lO]Leon Thomsen, 1986, Weak Elastic Anisotropy, Geophysics, Vol. 51, No. 10, 1965-1966
    [11] M. Schoenberg & F. Muir, 1989, A Calculus for Finally Layered Anisotropic Media, Geophysics, Vol. 54, No. 5, 581-589
    [12] π.M.布列霍夫斯基赫,1985,分层介质中的波,中译本,科学出版社,58-63.
    [13] 马在田、曹景忠、王家林地球物理学概论,第8章,同济大学出版社,1997.
    [14] 张忠杰,何樵登,N个薄层介质组合引起的视各向异性,长春地质学院学报,Vol. 20, No. 2, 223-226, 1990.
    [1] Bor-Shouh, Huang, 1992, A program for two-dimensional seismic wave propagation by the pseudo spectrum method, Computers &Geoscience, Vol.18, No. 2/3, 289-307.
    [2] Cerjan, C., Kosloff, D., Kosloff, R. & Reshef, M., 1985, A nonref lecting boundary condition for discrete acous'tic and elastic equations, Geophysics, 50 , 705-708.
    [3] Daudt, C. R., Braile, L. W., Nowack, R. L & Chiang, C. S., 1989, A comparison of finite-difference and Fourier method calculations of synthetic seismograms, Bull. Seis. Soc. Am., 79, 1210-1230.
    [4] Ekkehart Tessmer, 1995, 3-D modelling of general material anisotropy in the presence of the free surface by a Chebyshev spectral method, Geophys. 121, 557-575.
    [5] Ekkehart Tessmer, David Kessler, Dan Kosloff and Alfred Behle, 1992 Multi-domain Chebyshev-Fourier method for the solution of the equation of motion of dynamic elasticity, Journal of Computational physics, 100, 355-363.
    [6] J. Gazdag, 1981, Modeling of the acoustic wave equation with transform methods, Geophysics, Vol. 46, No. 6, 854-859.
    [7] Kosloff, D., Reshef, M. & Loewenthal , D., 1984, Elastic wave calculations by the Fourier method , Bull. seis. Soc. Am., 74, 875-891.
    [8] Min Lou & J. A. Rial, 1995, Modelling elastic-wave propagation in inhomogeneous anisotropic media by the pseudo-spectral method, Geophys. J. Int., 120, 60-
    
     70.
    [9] Moshe Reshef, Dan Kosloff, Mickey Edwards and Chris Hsiung, 1988, Three-Dimensional acoustic modeling by the Fourier method, Geophysics, Vol. 53, No. 9, 1175-1183.
    [10] Moshe Reshef,Dan Kosloff, Mickey Edwards and Chris Hsiung, 1988, Three-Dimensional elasticc modeling by the Fourier method, Geophysics, Vol. 53, No. 9, 1184-1193.
    [11] Shu-Huei Hung & Donald W. Forsyth, 1998, Modelling anisotropic wave propagation in Oceanic inhomogeneous structures using parallel multidomain psudo-spectral method, Geophys. J. Int 133, 726-740.
    [12] Takashi Furumura, B. L. N. Kenneit and Hiroshi Takenaka, 1998, Parallel 3-D pseudospectral simulation of seismic wave propagation, Geophysics, Vol.63, No. 1, 279-288.
    [1] Ekkehart Tessmer, 1995, 3-D modelling of general material anisotropy in 'the presence of the free surface by a Chebyshev spectral method, Geophys. 121, 557-575.
    [2] Ekkehart Tessmer, David Kessler, Dan Kosloff and Alfred Behle, 1992 Multi-domain Chebyshev-Fourier method for the solution of the equation of motion of dynamic elasticity, Journal of Computational physics, 100, 355-363.
    [3] Min Lou & J. A. Rial, 1995, Modelling elastic-wave propagation in inhomogeneous anisotropic media by the pseudo-spectral method, Geophys. J. Int. , 120, 60-70.
    [4] Moshe Reshef, Dan Kosloff, Mickey Edwards and Chris Hsiung, 1988, Three-Dimensional acoustic modeling by the Fourier method, Geophysics, Vol. 53, No. 9, 1175-1183.
    [5] Shu-Huei Hung & Donald W. Forsyth, 1998, Modelling anisotropic wave propagation in Oceanic inhomogeneous structures using parallel multidomain psudo-spectral method, Geophys. J. Int 133, 726-740.
    [1] Beran , M. J., 1968, Statistical continuum theories, chap. 3, 132-141, Interscience, New York.
    [2] Crampin, S. Evans, R. & Atkinson, B. K., 1984a, Earthquake prediction: a new physical basis, Geophys. J.R. astr. Soc., 76: 147-156
    [3] Crampin S., Chesnokov, E. M. & Hipkin, R. G., 1984b. Seismic anisotropy: the state of art II, Geophys. J. R. astr. Soc., 76: 1-16.
    [4] Crampin, S., Evans, R., Deer, B., Doyle, M., Davis, J. P., Yegorkina G. V . & Miller, A., 1980. Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286:874-877.
    [5] Harve S. Waff, 1974, Theoretical considerations of electrical conductivity
    
    in a partially molten and implications for geothermometry, J. Geophys. Res.79:4003-4010.
    [6]J.A. Hudson, 1980. Overall properties of a cracked solid, hath. Proc. Camb phil.Soc. 88:371-384.
    [7]J.A. Hudson, 1981, Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J.R. astr. Soc. 64:133-150.
    [8]J.A. Hudson, 1986. A higher order approximation to the wave propagation constants for a cracked solid, Geophys. J.R. astr. Soc. 87: 265-274.
    [9]J.G. Negi and P.D. Saraf, Anisotropy in Geoelectromagnetism, ELSEVIER, 1989
    [10]Z. Hashin and S. Shtrikman, 1963, On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids, 10:335-342.
    [11]Harro Schmeling, 1985, Numerical models on the influence of partial melton elastic, anelastic and electrical properties of rocks, Part Ⅱ: electrical conductivity, Physics of the Earth and Planetary Interiors, 43(1986),123-136
    [12]Sergei V. Zatsepin & Stuart Crampin, 1995, The metastable poro-rective and interactive rockmass:anisotropic poro-elasticity, 65th Ann. Int. SEG Meeting,Houston, Expanded Abstracts, 918-921
    [13]Crampin, S., &Zatsepin, S.V., 1995, Production seismology, the use of shear waves to monitor and model production in a poro-reactive and interactive reservoir, 65th Ann. Int. SEG Meeting, Houston, Expanded Abstracts, 199-202
    [15]Sergei V. Zatsepin & Stuart Crampin, 1996. Stress-induced coupling between anisotropic permeability and shear-wave splitting, 58th Conf. EAGE, Amsterdam,Extended Abstracts, C030.
    [15]A.A.考夫曼、G.V.凯勒著,大地电磁测深法,中译本,地震出版社,1987。
    [16]布列霍夫斯基赫著,分层介质中的波,中译本,科学出版社,1985.
    [17]傅良魁主编,电法勘探教程,地质出版社,1983。
    [1]Douglas, P.O' Brien and H.F. Morrison, 1967, Electromagnetic fields In an N-layer anisotropic half-space, Geophysics, Vol. 32, No. 4, 668-667
    [2]J.G. Negi and P.D. Saraf, 1989. Anisotropy in geoeletro-magnetism, Elsevier.
    [3]A.A.考夫曼、G.V.凯勒,大地电磁测深法(中译本),地震出版社,1987。
    [4]傅良魁主编,电法勘探教程,地质出版社,1983。
    [5]林长佑等,1996,水平层状对称各向异性介质的大地电磁资料反演,地球物理学报,Vol.39,Supp.342-348
    [1]张家茹,邵学钟,雷胜利1982,利用波的偏振特性提高转换波震相识别的可靠性,地球物理学报,Vol.25,No.4,P352-P358.
    [2]刘希强,1992,剪切波分裂中的快、慢波识别方法,西北地震学报, Vol.14,No.4,P17-P24
    [3]郑治真、刘元壮,提取慢S波初至的自适应方法及S波分裂在地震趋势估计中的应用研究.中国地震,第10卷增刊,1-8,1994.
    
    
    [4]高原,郑斯华,1994,唐山地区剪切波分裂研究(Ⅱ)—相关函数分析法,中国地震,Vol.10,增刊,P22-P32.
    [5]张范民,利用最大似然法进行波场分解和震相识别.西北地震学报,第15卷,第3期,1-10,993.
    [6]陈乐寿,刘任,王夭生,大地电磁测深资料处理与解释,石油工业出版社,北京,1985。
    [7]Ando, M.,Ishikawa, Y.,and Yanazaki, F.,1983, Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan, J. Geophys. Res.,88, 5850-5864.
    [8]Shih, X.R.,Mever, R.P.& Schneider, J.F., 1989. An automated analytic method to determine shear-wave anisotropy, Tectonophysics, 165:271-278.
    [9]Crampin, S., Evans, R., Ucer, B., 1985. Analysis of records of local earthquakes:the Turkish Dilantancy Projects (TDP1 and TDP2), Geophys. J.R. astr. Soc., 83:31-45.
    [10]Bowman, J.R., and Ando Masataks, 1987, Shear -wave splitting in the upper-mantle wedge above the Tonga subduction zone, Geophys. J.R. astr. Soc. 88, 25-41
    [1]张家茹,邵学钟,雷胜利,1982,利用波的偏振特性提高转换波震相识别的可靠性,地球物理学报,Vol.25,No.4,352-P358.
    [2]刘希强,1992,剪切波分裂中的快、慢波识别方法,西北地震学报,Vol.14,No.4,P17-P24
    [3]李清河,刘希强,张范民,范兵,1994,剪切波分裂的某些理论问题及天祝-景泰6.2级地震剪切波分裂特征研究,中国地震,Vol.10,增刊,9-21.
    [4]高原,郑斯华,1994,唐山地区剪切波分裂研究(Ⅱ)-相关函数分析法,中国地震,Vol.10,增刊,P22-P32.
    [5]张范民,李清河,荣代潞,1998,永登5.8地震前后剪切波分裂特征,西北地震学报,Vol.20,No.3,9-15.
    [6]姚陈,王培德,陈运泰,1992,卢龙地区S波偏振与上地壳裂隙各向异性,地球物理学报,Vol.35,No.3,305-315
    [7]张少泉等,1985.中国西部地区门源-平凉-渭南地震测深剖面资料的分析解释.地球物理学报,Vol.28,No.5.
    [8]邢成起,荣代潞,姚同福、梁恕信,张元生,1996,1995年7月22日永登5.8级地震发震构造和发震机制分析,西北地震学报,Vol.18.No.3,1-9
    [9]赵和云、阮爱国、杨荣、梁子彬、杨长福,1998,天祝地电场三年观测资料的分析与讨论,地震地电学发展与展望,兰州大学出版社,123-137.
    [10]Bowman, J.R., and Ando Masataks, 1987, Shear wave splitting in the upper-mantle wedge above the Tonga subduction zone, Geophys. J.R. astr. Soc. 88, 25-41
    [11]Crampin S. &John H. Lovell, 1991. A decade of shear-wave splitting in the earth's crust: what does it mean? What use can we make of it? and what should we do next ? Geophysics, J Int., 107, 387-417.
    [12]Crampin,S., Evans, R. & Atkinson, B.K., 1984a. Earthquake prediction:a new physical basis, Geophys. J.R. astr. Soc., 76: 147-156.
    
    
    [13]Crampin S.,Chesnokov, E.M.& Hipkin, R.G., 1984b. Seismic anisotropy the state of art Ⅱ,Geophys. J.R. astr. Soc., 76: 1-16.
    [14]Sergei V. Zatsepin & Stuart Crampin, 1997. Modelling the compliance of crustal rock- Ⅰresponse of shear-Wave splitting to differential stress, RAS,GJI, 129: 477-494.
    [15]Stuart Crampin, 1998. Keynote Lecture:Going APE-Monitoring and Modelling Rock Deformation with Shear-Wave Splitting, personal communication.
    [1]袁道阳、林学文,候康民,张新基,姚同福,1997,1996年6月1日甘肃天祝-古浪5.4级地震的发震构造探讨,西北地震学报,Vol.19,No.4,40-46.
    [2]赵和云、阮爱国、杨荣、梁子彬、杨长福,1998,天祝地电场三年观测资料的分析与讨论,地震地电学发展与展望,兰州大学出版社,123-137.
    [1]Archie, G.E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristic, Trans. A.I.M.E. 146: 54-62.
    [2]Beran, M. J., 1968, Statistical continuum theories, chap. 3, 132-141, Interscience, New York.
    [3]Brace, W.F. et al., 1968. Electrical resistivity changes in saturated rocks during fracture and frictional sliding, J.Geophys. R. 73:1433-1445.
    [4]Brace, W.F., 1975. Dilatancy-related electrical resistivity changes in rocks, Pure and Applied Geophysics, 113:207-217.
    [5]Bredehoeft, J.D. and Norton, D.L., 1990, Mass and energytransport in a deformating Earth' s crust, The role of fluids in crustal processes, Washington, National Academy Press.
    [6]Crampin, S., Evans, R. & Atkinson, B.K., 1984a. Earthquake prediction:a new physical basis, Geophys. J.R. astr. Soc.,76: 147-156.
    [7]Crampin S., Chesnokov, E.M. & Hipkin, R.G., 1984b. Seismic anisotropy the state of art Ⅱ, Geophys. J.R. astr. Soc., 76: 1-16.
    [8]Crampin, S., Evans, R., Ucer, B., Doyle, M., Davis, J. P., Yegorkina G.V.& Miller, A.,1980. Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286:874-877.
    [9]Harro Schmeling, 1986. Numerical models on the influence of partial melt on elastic and electrical properties of rocks part Ⅱ: electrical conductivity, Physics of the Earth and Planetary Interiors, 43: 123-136.
    [10]Harve S. Waff, 1974, Theoretical considerations of electrical conductivity in a partially molten and implications for geothermometry, J. Geophys. Res. 79:4003-4010.
    [11]J.A. Hudson, 1980. Overall properties of a cracked solid, Math. Proc. Camb phil. Soc. 88:371-384.
    
    
    [12]J.A. Hudson, 1981, Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J.R. astr. Soc. 64:133-150.
    [13]J.A. Hudson, 1986. A higher order approximation to the wave propagation constants for a cracked solid, Geophys. J.R. astr. Soc. 87: 265-274.
    [14]J.G. Negi and P.D. Saraf, 1989. Anisotropy in geoeletro-magnetism, Elsevier.
    [15]Kurita, K.,1986.How can we identify location of a fracture plane? Anisotropy of electrical conductivity and seismic velocity in dilatancy,Earthquake Prediction Research, 4:39-45.
    [16]Sergei V. Zatsepin & Stuart Crampin, 1995, The metastable poro-rective and interactive rockmass:anisotropic poro-elasticity, 65th Ann. Int. SEG Meeting,Houston, Expanded Abstracts, 918-921
    [17]Crampin, S., &Zatsepin, S.V., 1995, Production seismology, the use of shear waves to monitor and model production in a poro-reactive and interactive reservoir, 65th Ann. Int. SEG Meeting, Houston, Expanded Abstracts, 199-202
    [18]Sergei V. Zatsepin & Stuart Crampin, 1996. Stress-induced coupling between anisotropic permeability and shear-wave splitting, 58th Conf. EAGE, Amsterdam, Extended Abstracts, C030.
    [19]Sergei V. Zatsepin & Stuart Crampin, 1997. Modelling the compliance of crustal rock-Ⅰ response of shear-Wave splitting to differential stress, R.A.S, GJI, 129: 477-494.
    [20]Stuart Crampin, 1998. Keynote Lecture: Going APE-Monitoring and Modelling Rock Deformation with Shear-Wave Splitting, personal communication.
    [21]Stuart Crampin & Sergei V. Zatsepin,1997. Modelling the compliance of crustal Rock-Ⅱ.response to temporal changes before earthquakes, Geophys.J.Int. 129: 495-506.
    [22]S.Crampin & John H. Lovell, 1991. A decade of shear-wave splitting in the earth's crust: what does it mean? what use can we make of it? and what should we do next? Geophysics, J. Int., 107: 387-417.
    [23]S.Crampin, 1999, calculable fluid-rock interactions, J. Geological Soc., London,Vol.156,501-514
    [24]Z. Hashin and S. Shtrikman, 1963, On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids, 10:335-342.
    [25]S. Crampin, Theodora Volti & Ragnar Stefansson, 1999, Asuccessfully stress-forecast earthquake, Geophys. J. Int., 138, F1-F5.
    [26]克拉耶夫,1956.地电原理,地质出版社.
    [27]布列霍夫斯基赫,1985,分层介质中的波,中译本,科学出版社,58—63.
    [28]杜学彬、李步云、刘耀伟,1995年永登5.8级地震多种前兆异常特征,西北地震学报,Vol.19,No.4,1997
    [29]林邦慧、王新华、梅世蓉、胡小幸,岩石膨胀的三维本构关系和1976年唐山地震前垂直变形的有限元模拟,中国地震,第2卷第1期,18-27,1986.
    [30]林长佑,武玉霞,杨长福、陈军营,水平层状对称各向异性介质的大地电磁资料反演.地球物理学报,第39卷增刊,342-348,1996.
    [31]钱复业、赵玉林、汪志亮、陈有发,薛顺章,地电阻率各向异性地震前兆及其在探
    
    索震中区域应力场分布中的应用,地震地电学发展与展望,64-69,兰州大学出版社,1998.
    [32]钱家栋、陈有发,金安忠,地电阻率法在地震预报中的应用.地震出版社,1985.
    [33]钱家栋,曹爱民,1976年唐山7.8级地震地电阻率和地下水前兆综合物理机制研究,地震,第18卷增刊,1-9,1998.
    [34]陈学忠,王晓晴,李志雄,强震前水氡异常台站时空分布非均匀性变化特征,地震,39-44,Vol.20,No.1,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700