用户名: 密码: 验证码:
地震活动不均匀性及地震断层相互作用的力学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一次地震的孕育过程由震源自身的演化过程和所受外界影响两种因素决定。地
    震活动的复杂性主要山地震断层活动相互作用以及在这种作用下地震孕育过程发生
    复杂变化引起。本文在摩擦状态—速率依从理论和断层相互作用理论的基础上,将
    地震看作是摩擦失稳现象,建立地震孕育及其活动特征的物理模型,研究地震触发
    现象和地震强度分布不均匀性的力学机制。
     (1)大地震触发区域地震活动及其力学机制研究
     美国Landers地震后诱发的距震中远达1250公里的14个区域出现的地震活动
    增强,被称为是大地震触发小地震的首次证据。本文对1995年1月17日日本兵库
    县南部7.2级大地震和 1976年7月 28日唐山7.8级大地震前后震中周围几百公里
    范围内的地震活动研究表明,多个区域中的地震活动速率明显增强。为确认这些地
    震活动变化确实与两次大地震之间存在相关关系,采用定量统计方法对这些地震活
    动变化的显著性进行检验,结果表明地震活动速率上升的变化是可信的,并与大地
    震之间确实存在着相关关系,被认为是触发地震。区域地震触发现象虽然不是普遍
    存在的,但为我们认识这些复杂现象的物理本质提供了难得的观测依据。本文应用
    库仑静应力变化模型和设计一个具有摩擦状态—速率依从机制的数学物理模型,试
    图认识触发地震的机制。该模型能够解释部分与区域地震触发有关的现象。同时,
    大地震发生会使某些区域的地震活动减弱。例如,1906年旧金山8级大地震和
    1679年河北三河8级大地震后,观测到其周围几百公里内几十年内地震活动明显
    降低,本文研究了粘弹介质中平行断层相互作用的“减震”力学机制。
     (2)强地震之间相互作用及其力学机制研究
     鲜水河断裂带以其高强度、高频度的地震活动倍受注目。综合分析鲜水和的地
    质构造、地震地表破裂、震源机制等多种资料,建立鲜水河断裂带上本活跃期以来
    的7(1/4)以上地震的弹性破裂位错模型,研究一个多世纪以来鲜水河断裂带及周围地
    区的区域应力场的演化过程并与1893年以来该地区强地震活动的特点进行对比分
    析。结果表明,7(1/4)级以上地震都发生在前次大地震引起的库仑破裂应力变化
    
    
    
    
     。、,_。。_,,、._、,,,__._3、。,、,_,。___^_。_.._。_
    (凸*n)为正的区域:大多数强震(MZ5二)发生在大地震后库仑破裂应力增
     4
    高的地区。此外,分析了该断裂带上大地震后区域应力变化对与鲜水河断裂相邻断
    裂带可能产生的影响,对未来强震可能发生的地点进行了分析。
     1920年12月16 R海原地震与1927年5月23日古浪2次8级地震时空相距之
    近是十分罕见的。本文通过建立海原地震的震源破裂弹性位错模型,计算海原地震
    后区域应力变化,结果表明古浪地震的发震断层应力增高,古浪地震可能被提前约
    八年发生。
     (3)地震活动频度一震级关系曲线拐折及其力学机制研究
     地震活动不均匀性除反映在上述时间、空间分布上外,还表现为地震强度统计
    结果的不连续性。地震学最基本的统计规律,即地震累积频度一震级的对数关系中
    存在的拐点现象是一个典型的例子。中国和希腊等多个地区的地震目录都存在这种
    现象。本文设计了一个摩擦时间依从的地震活动性细胞自动机模型,通过改变参数
    选取方法和设计非线性的相互作用力学机制,模拟出与观测事实相似的存在拐点、
    分段成线性的GE关系。为进一步认识影响拐点存在的因素,本文从多种观测事
    实出发,提出拐点的存在是大地震以“级联破裂”方式发生的结果。该模型还对地
    震活动复发周期变化的特点及其原因进行分析研究。
     通过本文的研究,深入了对地震孕育物理过程和地震活动不均匀特性的力学机
    制的认识。
The generation of a earthquake is detendned by the evolution of seismic source and the influence
    from outside. The complexion of seismiclty is due to the earthquake interaction of seismic fault
    activity and the change of seismic generation process caused by the interaction. In this paper, a
    physical model of earthquake generation and seismicity is designed to study the mechanics of
    triggered earthquake and heterogenelty of earthquake magnitude distributlon based on friction rate-
    state dependent and fault interaction theory.
    (1) The study on the triggered and inhibited regional seismicity and its mechanism
    It is thought the first evidence of triggered small earthquakes by big earthquake that the Landers
    Earthquake in Amenca triggered seisndcity increasing in 14 regions with epicenter up to l250km. In
    this paper, the studies on the seismicity within several hundred kilometers around the epicenters of the
    Hyogo-Ken Nanbu, Japan, M=7.2 earthquake and the Tangshan, China, M=7.8 earthquake show that
    seisndcity increased remarkably in many regions. A quantitative statistic method is used to test the
    slgnificance of these change to the correlation between the seismicity increasing and the two big
    earthquakes and the results show that the increasing of seismic rate is significance and is caused by the
    two big earthquake and called regional triggered seismicity. Though the regional triggered seisndcity
    is not common, it provides us valuable observational evidence to understand the physical intrinsic of
    these complex phenomena. In other hand, regional seismicity night be inhibited by big earthquake.
    For example, during several ten years, after the San Francisco M=8 earthquake in l906 and the Sanhe
    M=8 earthquake in l679, seismicity decreased remarkably within several hundred kilometers
    surrounding the eplcenters. In this paper, we studied the mechanism of "regional seismicity inhibition"
    due to the interaction of parallel faults in viscoelastic medium. The Coulomb Static Stress Change
    model is applied and a mathematics-physics model with friction rate-state dependent constructive law
    ls designed to understand the mechanism of regional triggered seismicity. The results demonstrate that
    this model could explain some features of regional seismicity triggrring.
    (2) Interaction among strong earthquake and its mechanism.
    The Xianshuihe Fault Zone in southwestern China is noted for its hlgh intensity and frequency
    selsmicity. Based on the comprehensive analysis on the geologic structure, selsmic surface fissure and
    focal mechanism solution, the elastic dislocation models of earthquakes above M(1/4) since the last
    seisrnic active episode of the Xianshuihe Fault Zone are set to study the regional static stress
    evolution and analyze the correlatlon between it and the strong earthquake occurrences since l893.
    The results show that the earthquakes above M7 and majority of earthquake above M5(1/4) occurred in
    
    
    
     Places with Positive Coulombmb Failure S阶“ change(ACFSCFS)·In addition,the effectofreglonal static \
     stress change due to the big e tthquakes in Xianshuihe FanFault Zone on the neighbouring fault zone is
     analyzed and the possible place of future s血ng earthqu业e is predicted pre皿rily.一
     Tha tampealspSCICI CICS比dllg Of山e HO勺UUll,*milli,M=8.6 lll ribthqUUkU UUd山e GCICCg,*hCC,
     M=8.000n…OO卜CISSXCCpd0001.Alldll悦IC山dOCCdollllloddof山OHOlyOOllllllnbqll*1llSSCtIO
     calculate the ACFSCFS due to it and the resalt shows that the CFSCFS on seismogenic fault plane of the
     Gulang earthquake IncfCased and the Gulang e tthquake is pfo口D口tCd by Mout tCn years.
     (3)The breading ofmagnitude-地quency relation curve and its mechanism.
     The hetefogeneity of seismicity is also displayed by the discontinuity of statistic featufC of som
     seisndc para。ter in addition to the phenomena mentioned above.A t…l
引文
常承法,郑熙澜,1973。中国西藏南部珠穆朗玛峰地区构造特征,地质科学,1。
    陈运泰,黄立人,林邦慧,刘妙龙,王新华,1979。用大地测量结果反演唐山7.8级主震位错模型,地球物理学报,第22卷,第2期,201-217。
    丁国瑜主编,1991。中国岩石圈动力学概论,北京:地震出版社,p431。
    杜平山等,1982。鲜水河断裂的古地震活动,史前地震与第四纪地质文集,陕西科技出版社。
    傅征祥编著,1997。中国大陆地震活动性力学研究,北京:地震出版社。
    傅征祥,刘桂萍,1999。平行走滑断层相互作用的粘弹模型和减震作用,地震,19,2,127-134。
    傅征祥,刘柞萍,李革平等编,1995年日本兵库县南部大地震。地震出版社,1999年。
    国家地震局《一九七六年唐山地震》编辑组,1982。一九七六年唐山地震,北京:地震出版社。
    国家地震局地质研究所,宁夏回族自治区地震局,1990。海原活动断裂带,北京:地震出版社,265。
    国家地震局兰州地震研究所,宁夏回族自治区地震队编著,1980。一九二零年海原大地震,北京:地震出版社,118。
    郭增建,马宗晋主编,1988。中国特大地震研究(一),北京:地震出版社,33。
    高原,刘昭军,1995。随机性细胞自动机的地震模拟的动力学含义,中国地震,11(2),8-14。
    高原,季颖,陈禺页,1995。细胞自动机的多重分形特征和动力学含义,西北地震学报,17(4),61-69。
    郭增建,秦保燕,1989。大震的重复性与减震作用,近期强震危险性研究(国家地震局科技司编),455-456。
    侯康明,吴启民,1999。1927年古浪8级地震的基本特征,高原地震,11,1,12-18。
    胡健行,李幼铭,1997。模拟固体中波动过程的细胞自动机建模研究。地球物理学报,40(1),120-126。
    黄福明,陈修启,1992。大震广义影响场的讨论,地震学报,14,4,400-406。
    黄福明,王廷韫,1980。倾斜断层错动产生的应力长,地震学报,2(1),1-20。
    黄玮琼,李文香,曹学峰,1994。中国大陆地震完整性研究(之二),地震学报,16(4)。
    季颖,高原,陈禺页,1995。模拟地震的弹簧滑块模型的混沌运动,东北地震学报,11(1),1—6。
    李丽,1999。大陆强震的动力学模型及其在地震活动性研究和地震预测中的应用,博士学位论文。
    李坪,汪良谋,1977。西南地区地震地质调查及烈度区划探讨,地震出版社。
    李坪主编,1993。鲜水河—小江断裂带,北京:地震出版社。
    李天诏,杜其方,游泽李,张成贵,鲜水河断裂带及强震危险性评估,成都地图出版社,
    
    1997。
    李兴才,1992。地震危险性分析中如何考虑交汇断层的影响,地震学报,14,增刊,728-731。
    李旭,陈运泰,1996。用长周期地震体波波形资料反演1990年青海共和地震的震源过程,地震学报,18,3,279-286。
    李幼铭,胡健行,1995.细胞自动机在地震波传播研究中的应用,地球物理学报,38(5),651—660。
    刘桂萍,石耀霖,马丽,1995。地震活动性的细胞自动机模型,西北地震学报,17(2):20-25。
    刘桂萍,傅征祥,1999。日本1995年1月17日兵库县南部7.2级地震触发的区域地震活动,21,3,250-257。
    刘桂萍,傅征祥,2000。1976年7月28日唐山7.8级地震触发的区域地震活动和静应力场变化,22,1,17-26。
    刘桂萍,傅征祥,摩擦时间依从的地震活动性细胞自动机模型,2000。地球物理学报,43(2),203-212。
    陆远忠,吕悦军,郑月君,1994。强震孕育后期地震活动演化的定量表征,中国地震,10(增刊):12-17。
    马杏垣主编,1989。中国岩石圈动力学图集,北京:地震出版社,33。
    潘秋叶等,1977。西南地区现代构造应力长与地震活动性的实验研究,地质科学,3。
    四川地震资料汇编编辑组,1980。四川地震资料汇编,(卷1,2),四川人民出版社。
    四川省地震局编,1985。鲜水河断裂带地震学术讨论会文集,地震出版社。
    时振梁,汪良谋,傅征祥,金学申,1997。中国大陆中长期强震危险性预测方法研究,北京:海洋出版社,29。
    唐荣昌等,1976。1973年炉霍7.9级地震的地裂缝特征及其地震成闪的初步探讨,地球物理学报,19,1。
    工仁,何国琦,殷有泉,蔡永恩,1980。华北地区地震迁移规律的数学模拟,地震学报,2,1,32-42。
    闻学泽,1995。活动断裂地震潜势的定量评估,北京:地震出版社。
    闻学泽,陈农,1993。若干原地复发强震震源区的震级—频度关系,四川地震,2,19-28。
    吴忠良,2000。地震震源物理中的临界现象,北京:地震出版社。
    许力生,陈运泰,1996。用经验格林函数方法从长周期数字波形资料中提取共和地震的震源时间函数,地震学报,18,2,158-169。
    许力生,陈运泰,1997。用数字化宽频带波形资料反演共和地震的震源参数,地震学报,19,2,113-128。
    鄢家全,贾素娟,1991。华北地区大地震的减震作用,中国地震区划文集,地震出版社,112-115。
    
    
    张诚,曹新玲,曲克信,修济刚,姚振兴编著,中国地震震源机制,学术书刊出版社,1990。
    张肇诚,罗永生,郑大林,1990。中国震例(1976-1980),北京:地震出版社,60。
    张国民,李丽,1997。强震成组孕育,成组发生过程中西哪个户影响的研究,地震,17(3),221-231。
    张之立,1980。唐山地震的破裂过程及其力学分析,地震学报,第2卷,第2期,111-129。
    张之立,1984。唐山地震破裂过程的三维分析,地震学报,6,1,22-28。
    张之立,王成宝,方兴,阎红,1989。唐山地震破裂过程的雁行断裂模式及理论和实验的模型,地震学报,11,3,291-301。
    赵翔,1985.康定断裂的重复错动特征,鲜水河断裂带的地震学术讨论会文集,地震出版社。
    周惠兰,1984。复杂大地震分析和龙陵地震震源过程,地球物理学报,27,6,523-536。
    周惠兰,1985。浅源走滑大震震源过程的某些特征,地球物理学报,28,6,579-587。
    朱元清,石耀霖,1991。地震活动性研究中的非线性动力学模型,地球物理学报,34(1):20-31。
    Aki K,1981. A probabilistic synthesis of precursor phenomena, earthquake prediction-an international review, edited by Simpson W, Richard P G, Maurice Ewing Series 4, AGU, pp. 566-574.
    Aki K, 1987. Magnitude-frequency relation for small earthquakes: A clue for the origin of f_(max) of large earthquakes, J Geophys. Res., 92:1349-1355.
    Alewine R W, 1974. Application of linear inversion theory toward the estimation of seismic source parameters, Ph.D Thesis, California Institute of Technology, Pasadena, California, 303.
    Allen C R, 1968o The tectonic enviroments of seismically active and inactive areas along the San Andreas faults system, Proceeding of Conference on Geologic Problem of San Andreas Fault System, Stanford University Publication.
    Allen C R, 1969. Active faulting in northern Turky, Contrib, 1577, Div. Geol. Calif. Inst. Technol.
    Ambraseys N N, 1970. Some characteristic feature of the Anatolia fault zone, Tectonophysics, 9, 143-165.
    Anderson J G, Brune J N, Louie J N, Zeng Y, Savage M, Yu G, Chen Q, dePolo D, 1994. Seismicity in the western Great Basin apparently triggered by the Landers, California earthquake, 28, June, 1992, Bull. Seism. Soc. Amer., 84, 863-891.
    Bak P, Tang C, Wiesenfeld K, 1987. Self-organized cirticality and explanation of 1/f noise. Phys. Rew. Letter, 59: 381-384.
    Bak P, Tang C, Wiesenfeld K, 1988. Self-organized criticality. Phys. Rev. Letter,
    
     38: 364-374.
    Bak P, Tang C, 1989. Earthquake as a self-organized critical phenomenon, J. Geophysl Res. Lett., 40, 6470-6484.
    Bak P, Kan Chen, 1991. Self-organized critically. Scientific American, 264(1) :26-33.
    Berrill J B, Davis R 0, 1980. Maximum entropy and the magnitude distribution, Bull. Seism. Soc. Amer., 70:1823-1831.
    Bodin P, Gomberg J, 1994. Triggering seismicity and deformation between the Landers, California, and Little Skull mountain, Nevada, earthquake, Bull. Seism. Soc. Amer., 84, 835-843.
    Budiansky B, Amazigo J C, 1976. Interaction of fault slip and lithosphere creep, J. Geophys. Res., 81, 4897-4900.
    Byerlee J D, 1967. Theory of friction based on brittle fracture, J. Appl. Phys., 38, 2928-2934.
    Byerlee J D, Sunmners R, 1976. A note on the effect of fault gouge thickness on fault stability, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 13, 35-36.
    Byerlee J D, Friction of rocks. Pageoph, 1978, 116:4-5.
    Byerly P, 1955. Nature of faulting as deduced from seismograms, In Crust of the Earth, pp. 75-85.
    Caskey S J, Wesnousky S G, 1997. Static stress changes and earthquake triggering during the 1954 Fairview Peak and Dixie Valley earthquake, central Nevada, Bull. Seism. Soc. Amer., 87, 521-527
    Carlson J M, 1991. Time intervals between characteristic earthquakes and correlation with small events: An analysis based on mechanical model of fault, J. Geophys. Res., 90, 4255-4267.
    Chinnery M A, 1961. The deformation of ground around surface faults, Bull. Seism. Soc. Amer., 51:355-372.
    Chinnery M A, 1963. The stress changes that accompany strike-slip faulting. Bull. Seism. Soc. Amer., 53(5) :921-932.
    Christopher 0 Sanders, 1993. Interaction of the San Jancinto and San Andreas Fault Zones, Southern California triggering earthquake migration and coupled recurrence intervals, Science, 260, 973-976.
    Concetta Nostro, Massimo Cocco, Maria Elina Belardinelli, 1997. Static stress change in extensional regimes: an application to Southern Apennines (Italy), Bull. Seism. Soc. Amer., 87, 1, 234-248.
    Converse G, 1973. Equation for the displacement and displacement derivation due to a rectangular dislocation in a three-dimensional elastic half-space, User's
    
     Manual For DIS3D, U. S. Geological Survey, Menlo Park, 119-148.
    Das S, Scholz C, 1981. Theroy of time dependent rupture in the earth, J. Geophys. Res. ,86, 6039-6051.
    Davision F C, Scholz C H, 1985. Frequency-memont distribution of earthquakes in the Aleutian Arc: A test of the characteristic earthquake model, Bull. Seism. Soc. Amer., 75, 1394-1361
    DeMets, C. A., Test of present-day plate geometriesfor Northeast Asia and Japan, J. Geophys. Res., 97, 17627-17635, 1992
    Deng J, Sykes L R, 1996. Triggering of 1982 Santa Barbara earthquake by a great San Andreas Shock: Implications for future seismic hazards in southern California. Geophys Res Lett, 23:1155-1158.
    Deng J, Sykes L R, 1996. Triggering of 1912 Santa Barbara earthquake by a great San Andreas shock: Implications for future seismic hazards in southern California, Geophys. Res. Lett., 23, 1155-1158.
    Dieterich J H, 1970. Time dependence in stick-slip sliding, Trans Am. Geophys. Union, 51, 423.
    Dieterich J H, 1972. Time-dependent friction in rocks, J Geophys. Res,, 77, 3690-3697.
    Dieterich J H, 1978. Time-dependent friction and the mechanics of stick-slip, Pageoph, 116, 790-805
    Dieterich J H, 1992. Earthquake on faults with rate and state-dependent friction, Tectonophysics, 211, 115-134.
    Dieterich J H, 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, B2, 2601-1618
    Ellsworth W L, Lindh A G, Prescott W H, Herd D G, 1981. The 1906 San Francisco earthquake and the seismic cycle, Earthquake Prediction-An interantional review, edited by Simpson D W and Richards P G, Maurice Ewing Series, 4, 126-140, AGU.
    Engelder J T, Jaeger J C, Haudin J, 1975. The sliding characteristics of sandstone on quartz fault-gouge, Pure and Appl. Geophys, 113, 69-86.
    Engelder J T, Scholz C H, 1976. The role of asperity indentation and ploughing in rock friction II. Influence of relative hardness and normal load, Int. J. Rock Mech. Min. Sci. And Geomech. Abstr. 13, 155-163.
    Garland G D, 1971. Introduction to geophysics, Nantal, Core and Crust, W. B. Saunders Company.
    Deng J, Sykes L R, 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquake: A 200-year perspective, J. Geophys.
    
     Res., 102, 9859-9886, 1997a.
    Geoffrey C P King, 1994. Static stress changes and the triggering of earthquake, Bull. Seism. Soc. Amer., 83, 3, 935-953.
    Gomberg J, Davis S, 1996. Stress/strain change and triggered seismicity at the Geysers, California, J. Geophys. Res. , 101, 73-749.
    Gomberg J, Beeler N M, Blanpied M L, Bodin P, 1997. Transient triggering of near and distant earhtquake, Bull. Seism. Soc. Amer., 87, 294-309.
    Gomberg J, Beeler N M, Blanpied M L, Bodin P, 1998. Earthquake triggering by transient and static deformation, Journal of Geophysical Research, 103, B10, 24411-24426.
    Gu J C, Rice J R, Ruina A L, 1984. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction, J Mech Phys Soc, 32, 167-196.
    Gutenberg B, Richter C F, 1941. Seismicity of the earth, Geol. Soc. Am. Spec. Pap, 34, 1-113.
    Gutenberg B, C F Richiter, 1956. Earthquake magnitude, intensity, energy and acceleration, Bull. Seism. Soc. Amer., 46, 105-145.
    Habermann R E, 1983. Teleseismic detection in the Aleutian Island Arc, J. Geophys. Res, 88(86) , 5056-5064.
    Hardebeck J L, Nazareth J J, Hauksson E, 1998. The static stress change triggering model: Constraints from two southern California aftershock sequences, J Geophys. Res., 98, 4461-4472.
    Harris R A, Simpson R W, 1993. In the shadow of 1857: An evaluation of the static stress changes generated by the M8 Ft. Tejon, California, earthquake, Eos Trans. AGU, 74(43) , Fall Meet Suppl., 427, 1993.
    Harris R A, Simpson R W, 1996. In the shadow of 1857-The effect of the great Ft. Tejon earthquake on subsequent earthquakes in southern California, Geophys. Res. Lett., 23, 229-232.
    Harris R A, 1998. Introduction to special section stress triggers, stress shadows, and implications fro seismic harzard, Journal of Geophysical Research, 103(B10) , 24347-24358.
    Hill D P, 1993. Seismicity remotely triggered by the magnitude 7. 3 Landers, California, earthquake, Science, 260, 1617-1623.
    Horn H M, Deere D N, 1962. Frictional characteristics of minerals, Geotechnique, 12, 319-335.
    Hoskins E R, Jaeger J C, Rosengren K J, 1968. A medium-scale direct shear
    
     experiment, Int. J. Rock. Mech. Min. Sci., 4, 143-154.
    Iwasake T, Sato R, 1979. Strain field in a serai-infinite medium due to an inclined rectangular fault, J. Phys. Earth, 27, 285-314.
    Jaeger J C, Cook N G W, 1969. Fundamental of Rock Mechanics. New York:Methuen, Co. Ltd. ,513.
    Jaeger J C, Rosengren K J, 1969. Friction and sliding of joints. Australas. Inst. Mining Met. Proc., 229, 93-104.
    Jaeger C J, Cook N G W, 1976. Fundamental of rock mechanics, Chapman and Hall, Lodoon.
    Jones L, Hauksson E, 1997. The seismic cycle in southern California: Precursor or response? Geophy. Res. Lett., 24, 469-472.
    Kanamori H, Allen C R, 1986. Earthquake repeat time and average stress drope,
    Kasahara K, 1957. The Nature of seismic origins as inferred from seismological and geodetic observation(1) , Bull. Earth. Res. Inst., Tokyo University, 35, 473-532.
    Kasahara K, 1981. Earthquake Mechanics, Cambridge University Press, London.
    Katao, H., N. Maeda, Y. Hiramatsu, Y. Ito and S. Nakao, 1997. Detailed Mapping of focal mechanisms in/around the 1995 Hyogo-ken Nanbu earthquake rupture zone, J. Phys. Earth, 45, 105-119.
    Kawasumi H, 1937. An historical sketch of the development of knowledge concerning the initial motion of earhtquake, Publ. Bur. Cent. Seism. Int., A15, 258-330.
    King G C P, Stein R S, Lin J, 1994. Static stress change and the triggering of earthquake, Bull. Seism. Soc. Amer., 84, 935-953.
    Knopoff L, 1958. Energy release in earthquake, Geophysics, J MNRAS, I, 44-52. Earthquake Source Mechanics, Editted by Das S, Boatwright J and Scholz C H.
    Main I G, 1996. Statistical physics, seismogensis and seismic hazard, Rev. Geophys., 34, 433-462.
    Manabu H, 1995. Static stress change associated with the Kobe earthquake: Calculation of changes in Coulomb Failure Function and comparison with seismcity change. Earthquake (Japan), 48(2) :521-530
    Mansinha L, Smylie D E, 1967. Effect of earthquakes on the Chandler Wobble and the secular polar shift, J. Geophys. Res, 72, 4731-4743.
    Mansinha L, Smylie D E,1971. The displacement fields of inclined faults, Bull. Seism. Soc. Amer. , 61, 1433-1440.
    Marone C, Vidale J E, Ellsworth W L, 1995. Fault healing inferred from time dependent variation in source properties of repeating earthquakes, Geophys.
    
     Res. Lett., 22, 3095-3098.
    Maruyama T, 1964. Statical elastic dislocation in an infinite and semi-infinite medium, Bull Earthq. Res. Inst., Tokyo University, 44, 811-871.
    Matsu'ura M, Sato R, 1975. Displacement fields due to the fault, Zisin, J. Seismol. Soc. Japan, 18, 1-8.
    Meyer S L, 1975. Data analysis for scientists and engineer. New York: John Wiley &Sons, 235
    Michael, 1987. Stress rotatioon during the Coalinga aftershock sequence, J. Geophys. Res., 92, 7963-7979, 1987. Mukhopadhyay, A., Maji, M. , Sen, S., and Pal, B. P. , 1979. On stress Accumulation in Lithosphere and Interaction between Two Strike-slip Faults, Indian J. Meteol. Hydrol.Geophys. (Mausam), 30: pp. 359-363.
    Nabelek J L, 1984. Determination of earhtquake source parameters from inversion of body waves, Ph. D Thesis, Mit. Cambridge, MA.
    Nakamura M, Ando M, 1996. Aftershock distribution of the January 17, 1995, Hyogo-Ken Nanbu earthquake determined by the JHD method, J. Phys. Earth, 44(4) , 329-336.
    Ohnaka M, 1973. Experimental studies of stick-slip and their application to the earhquake source mechanism, J. Phys. Earth, 21, 285, 303.
    Okada Y, 1985. Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Amer., 75, 4, 1135-1154.
    Okada Y,1992. Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Amer., 82(2) :1018-1040.
    Pacheco J F, Scholz C H and Sykes L R, 1992. Changes in frequency-size relatioonship from small to large earthquakes, Nature, 355, 71-73.
    Papazachos B C, Parazachou C B, 1997. The earthquakes of Greece, P. ZITI&Co.
    Pollitz F F, Sacks S, 1997. Consequences of stress changes following the 1891 Noki earthquake, Japan, Bull. Seism. Soc. Amer., 85, 796-807.
    Press F, 1965. Displacement, strain, and tilt, at teleseismic distances, J. G. R., 70, 2395-2412.
    Reasengberg P A, Ribert W. Simpson, 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, 1687-1690.
    Reasenberg P A, 1999. Foreshock occurrence before large earthquake, J. Geophys. Res., 104, B3, 4755-4768.
    Rice J R, Ruina J C, 1983. Stability of steady frictional slipping, J. Appl. Mech.,
    
     105:343-349.
    Romannowicz B, Rundle J B, 1993. On scaling relations for large earthquakes, Bull. Seism. Soc. Amer., 83, 1294-1297.
    Ross S Stein, Lisowski M, 1983. The 1979 Homestead Valley earthquake sequence, California: Control of aftershock and postseismic deformation, J. Geophys.
    Res., 88, 6477-6490.
    Ross S. Stein, Geoffrey C P King, Jian Lin, 1992. Change in failure stress on the Southern San Andreas Fault System Caused by the 1992 Magnitude=7. 4 Landers Earthquake, Science, 258, 1328, 1332.
    Ross S. Stein, Geoffrey C P King, Jian Lin, 1994. Stress triggering of the 1994 M=6. 7 Northridge, California, earthquake by its predecessors, Science, 265, 1432-1435.
    Ross S Stein, Barka A A, Dieterich J H, 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, Geophys. J. Int., 128, 594-604.
    Rybicki K,. 1973. Analysis of aftershocks on the basis of dislocation theory, Phys. Earth. Plant. Inter., 7, 409-422.
    Scholz C H, Molnar P, Johnson T, 1972. Datailed studies of frictional sliding in granite and implications for earthquake mechanism, J. Geophys. Res., 77, 6392-6406.
    Scholz C H, Engelder J T, 1976. The role of asperity indentation and ploughing in rock friction: I Asperity creep and stick-slip, Int. J. Rock Mech. Men. And Geomech. Abstr, 13, 149-154.
    Scholz C H, 1982. Scaling laws for large earthquake:consequences for physical model , Bull. Seism. Soc. Amer. , 72, 1-14.
    Scholz C H, Aviles C A, Wesnousky S G, 1986. Scale defference between large interplate and intraplate earthquake, Bull Seism. Soc. Amer., 76, 65-70, 1986.
    Scholz C H, Boitnoff G A, Nemat-Nassers, 1986. The bridgman ring paradox revisited, Pageoph, 124, 587-600.
    Scholz C H, 1990. The mechanics of earthquake and faulting. Cambridge University Press.
    Scholz C H, 1998. Earthquake and friction laws, Nature, 391, 37-42.
    Schwartz D P, Coppersmith K J, 1984. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones, J. Geophys. Res., 90, 5681-5698.
    Schwarzschild B, 1993. Earthquake yields first real evidence for remote triggering,
    
     Physics Today, 17-19.
    Sieh K E, 1978. Prehistoric large earthquakes produced by slip on the San Andreas Faults at Pallett Creek, California, J. Geophys. Res., 83, 3907-3939.
    Simpson R W, Reasenberg P A, 1994. Earthquake-induced static stress changes on central California faults, in the Loma Prieta, California Earthquake of
    October 17, 1989-Ttectonic processes and models, edited by R. W. Simpson, U.S. Geol. Surv. Prof. Pap., 1550-F, F55-F89.
    Singh S K, Anderson J G, Rodriguez M, 1998. Triggered seismicity in the valley of Mexico from major earthquakes, Geofis. Int., 37, 3-15, 1998.
    Sornette D, Knopoff L, Kagan Y Y, Vanneste C, 1996. Rank-ordering statistics of extreme events:application to the distribution of large earthquake, J. Geophys. Res., 101, 13883-13893.
    Stein R S, Lisowski M, 1983. The 1979 Homestead Valley earthquake sequence, California: Control of aftershock and postseismic deformation, J. Geophys. Res., 88, 6477-6490.
    Stephen Wolfram, 1984, Cellular automata as models of complexity, Nature, 311(4) :419-424.
    Smith S W, Van de Lindt W , 1969. Strain adjustments associated with earthquake in southern California, Bull. Seism. Soc. Amer., 59, 1569-1589.
    Thatcher W, 1990. Order and diversity in the model of Circum-Pacific earthquake recurrence, J Geophy. Res., 95, 2609-2623.
    Teufel L W, 1976. The measurement of contact areas and temperature during frictional sliding of Tennessee sandstone, M. Sc. Thesis, Texas A & M Unviersity, 65.
    Toda S, Stein R S, Reasenberg P A, Dieterich J H, Yoshida A, 1998. Stress transferred by the 1995 Mw=6. 9 Kobe, Japan, Shock: effect on aftershock and future earthquake probatilities, J. Geophys. Res., 103(810) , 24543-24565.
    Turcotte D L, Spence D A, 1974. Analysis of strain accumulation on a strike-slip fault, J. Geophys. Res., 79, 4407-4412.
    Turcotte D L, Schubert G, 1982. Geodynamics, Jon Wiley & Sons, New York. Peltier W R, Andrews J T, 1976. Glacial-isostatic adjustment-I, The forward problem, Geophys. J., 46, 605.
    Vidale J E, Agnew D C, Cole A, Marone C, 1994. Rupture variation with recurrence interval in 18 cycles of a small earthquake, Nature, 368, 634-626.
    Working Group on California Earthquake Porbability, 1995. Seismic hazards in Southern California: Probable earthquakes, Bull. Seism.
    
     Soc. Amer, 85:379-439.
    Wyss M, Burne J N, 1967. The Alaska earthquake of 28 March 1964:A complex multiple rupture, Bull. Seism. Soc. Amer., 57, 1017-1023.
    Yamashina K, 1978. Theory of crustal deformation due to dilatancy and quantitative evalution of earthquake percursor, Sci. Rep. Tohoku. Univ., Ser, 5, Geophys. 25, 115-167.
    Yamashina K, 1978. Induced earthquakes in the Izu Peninnsula by the Izu-Hanto-Oki earthquake of 1974, Japan, Tectonophysics, 51, 139-154.
    Yang X, Davis P, 1986. Deformation due to a rectangular tension crack in an elastic half-space, Bull. Seism. Soc. Amer., 76, 865-881.
    Zhou H L, et al., 1983. Source processes of large earthquake along Xianshuihe Fault in Southwestern China, Bull. Seism. Soc. Amer., 73, 6, 1585-1597.
    石本己四雄,饭田汲事,1939。微动计 为地震规则(…),震研汇报, 17, p. 443-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700