用户名: 密码: 验证码:
外源基因转化南荻和籼稻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对南荻基因枪转化系统的建立及其外源基因的转化进行了较为系统的
    研究。同时,还对籼稻基因枪转化系统和农杆菌转化系统的优化,以及抗虫、抗
    病目的基因对多个籼稻栽培品种的转化进行了一系列的研究。
     1.南荻基因枪转化系统的建立及外源基因转化的研究
     南荻是一种重要的经济植物,它既可提供优质的造纸、造板原材料,又具
    有良好的生态效应。然而,它的虫害却十分严重。因此,开展南荻遗传转化的
    研究,获得转基因抗虫南荻新品种,有着十分重要的意义。本研究在这方面取
    得了以下结果:
     建立了南荻胚性愈伤组织高频诱导与再生系统。研究结果表明,南荻幼穗
    是诱导愈伤组织最理想的外植体,其愈伤组织诱导率高达100%,其愈伤组织分
    化率可达87.5%;南荻愈伤组织最适合的基本培养基是CC培养基。
     建立了南荻愈伤组织超低温冷冻保存方法。采用高渗预培养和冷冻保护剂
    (10%DMSO+0.5mol/L山梨醇)处理方法进行南荻愈伤组织液氮超低温冷冻保
    存可获得满意的效果,冷冻6个月后的愈伤组织其存活率可保持68.4%,存活愈
    伤的分化率仍高达78.3%。
     建立了南荻抗性愈伤组织的筛选方案。对南荻愈伤组织的筛选,选用G418、
    Hyg和Basta作筛选剂效果较好,其适宜的筛选浓度分别为150-200mg/L、20-
    30mg/L和10-20mg/L,其筛选时间均以40-60天为宜。
     建立了南荻愈伤组织基因枪转化的技术体系。其技术要点为,选用继代培
    养60天以内的胚性愈伤组织作为转化受体,采用1300psi的压力、每枪250μg金
    粉和0.5μg质粒DNA的用量、6cm的轰击距离和每皿材料轰击二次的转化参数,
    
    
     可获得较好的转化效果。另外,使用45 g/L浓度的甘露醇对受体愈伤组织作轰
     击前12小时至轰击后72小时的高渗处理可以明显提高转化效率。
     获得了转基因南获植株。应用本研究所建立的基因枪转化系统,将马铃薯
     蛋白酶抑制剂oinll)基因和花粉特异性mA酶(bamase)基因导入南获愈伤组
    智 织,经筛选剂筛选获得52株抗性植株。通过对部分植株进行PCR点杂交和
     Southern杂交等分子检测的结果表明,外源目的基因已整合进了南获转化植株
     基因组。对转基因植株的抗虫性鉴定和育性分析正在进行中。
     到目前为止,有关南获的遗传转化研究,在国内外还未见有任何报道,本
     研究结果无疑为这一研究的进一步深入奠定了基础。
     2.和稻基因枪转化系统和农杆苗转化系统的优化及其抗虫、抗病基因转化
     的研究
     本文进行了将苏云金芽抱杆菌毒蛋白(Bt)基因、马铃薯蛋白酶抑制剂(Pin
     11)基因和雪花莲凝集素(GNA)基因等抗虫基因以及几丁质酶Khi)和葡聚糖
     酶(Gin)等抗病基因导入 14种重要釉稻栽培品种或品系(其中包括不育系培矮645
    @及其恢复系E32、特青、288和93等重要材料)的研究。主要结果概括如下:
     优化了和稻胚性愈伤组织诱导与分化的培养条件。研究结果表明,CC培养
     基是绝大多数制稻材料愈伤组织的最适诱导与继代培养基,它可以明显减轻釉
     稻愈伤组织的褐化程度;添加2.56 mg/L ABA可以有效地改善和稻愈伤组织的
     生长状态,促进胚性愈伤组织的形成;植物凝胶作为培养基固化剂所培养的愈
     伤组织质量明显优于用琼脂所培养的愈伤质量。
     优化了釉稻抗性愈伤组织的筛选条件,并建立了狲稻苗期叶片筛选方案。
     t稻抗性愈伤组织的最适筛选条件为:使用30*0 mg/L浓度的Hyg筛选40天左
     右,或用150E00 mg/L浓度的G418筛选50天左右,或用10上0 mg/L浓度的Basta
     筛选50七O天:舢稻苗期叶片筛选鉴定的最佳方案为:用100二00 m叭浓度的 陀
     筛选4-6天,或用 10-15 mwh浓度的Basta筛选46天。
    .
     优化了制稻愈伤组织基因枪转化技术体系。其最佳优化参数为:每枪 100 pg
     金粉吸附0二 pg DNA的用量、900psi的压力、6cm的轰击距离和每个样品轰击两
     2
    
     枪,并且以60 g/L甘露醇浓度作轰击前12毛4小时至轰击后24-48小时的高渗处
     理。
     优化了釉稻愈伤组织农杆菌转化方法。实验结果表明,根癌农杆菌EHA105
     菌株对和稻的转化效果优于LBA 4404和AGL;菌株的转化效果;头抱霉素对农
    .杆菌的抑制效果优于Wt青霉素的抑制效果,使用300-400 mg/L头抱霉素浓度
     可得到满意的结果;在共培养过程完成后进行适当的干燥处理既可增强抑菌效
     果,又可提高转化频率。
     获得了抗虫、抗病的转基因釉稻植株。应用本研究优化的基因枪和农杆菌
     转化方法,将*t、*"ill、*N和*IU等基因导入到了
In the first part of this thesis the biolistic bombardment transformation system for
     Miscanthus saccharjflorus was established and introduction of some agronomically
     useful genes was performed. In the second part of thesis the factors influencing the
     transfonnation efficiency of several indica rice varieties for both Agrobacterium and
     biolistic bombardment were investigated, and the insect and fungal resistant genes
     were introduced into several indica rice varieties.
    
     Establishment of biolistic bombardment transformation system for
     Miscanthus Saccha lorus and its transformation with exogenous
     genes
     Miscanthus saccharzflorus is one of the important commercial plants, it is not
     only an excellent raw material for papermaking and artificial board, also very
     important for sustaining ecological system. But it is extremely vulnerable to the insect
     attack. Therefore, any attempt that creates the insect resistant plants is encouraged. In
     this thesis we are attempting to improve the plant resistance to insect via
     biotechnology. As the first step the initiation and regeneration system for
     embryogenic callus of Miscanthus saccharjflorus were established at very high
     frequency. The result showed that the young inflorescence was the best explant for
     callus induction and easier differentiation into entire plantlets compared to other
     explants such as mature seeds, leaf, root etc. in Miscanthus saccharflorus. CC
     medium was the best basic medium for subculture of the callus amongst all the media
     tested.As the second step the selection scheme for tolerant callus of Miscanthus
     saccharflorus was established. The suitable selection scheme was culturing the callus
     on the medium containing 150-200 mg/L G4 18 or 20-30 mg/L Hyg or 10-20 mg(L
    
    
     Basta for 40-60 days. By using the particle bombardment transformation system
     potato proteinase inhibitor II (pinll) and pollen specific ribonuclease (barnase) genes
     were introduced into the callus of Miscanthus saccharflorus and 52 transgenic plants
     were obtained. PCR, Southern, and dot blot analysis showed that target genes were
     integrated into the genome of these transgenic plants, the further bioassays on
     resistance to insect and fertility for these transgenic plants are underway.
    
     Since the differentiation capacity of the embryogenic callus degenerated with
     period of subculture. The cryopreservation for embryogenic callus of Miscanthus
     saccharjflorus was also investigated. With treatment of desiccation and addition of
     protective agent (10 % DM50 + 0.5 M sorbitol) the callus cryopreserved in liquid
     nitrogen for 6 months still kept at high survival rate (68.4%) and regeneration
     frequency (78.3%), which makes all-year-around transformation possible.
    
     The optimization of biolistic bombardment and Agrobacleriwn
     transformation system for indica rice and their transformation with
     insect and fungal resistant genes
     Since the condition for initiation and regeneration of embryonic callus varied, the
     14 different indica rice varieties were used in this thesis for investigation on these
     aspects in detail. The results showed that for most indica rice CC medium was the
     best for both callus initiation and subculture in which the browning of calli could be
     mitigated significantly. With supplement of 2.5-Smg/L absisic acid (ABA) the quality
     of calli can be improved and the rate of embryogenic calli were increased, the gelling
     agents also significantly influence the quality of calli which phytagel was the best
     among all the agars used.
     The selective efficiency and selective peri
引文
1.丁力,丁月云,曹守云等.应用农杆菌转化水稻的研究.高技术通讯,1998,8(11):49~52
    2.丁群星,谢友菊,戴景瑞等.用子房注射法将Bt毒蛋白基因导入玉米的研究.中国科学(B辑),1993,23(7):707~713
    3.于晓红,朱祯,徐鸿林等.基因枪转化小麦及转基因植株的获得.高技术通讯,2000,12(2):13-17
    4.毛慧珠,唐惕,曹湘玲等.抗虫转基因甘蓝及其后代的研究.中国科学(C辑),1996,26(3):339~347
    5.王兰岚,宋桂英,张键等.利用激光微束将外源基因导入小麦幼胚并获得转基因植株的研究.激光生物学,1993,2:281~287
    6.王伟,朱祯,高越峰等.双价抗虫基因陆地棉转化植株的获得.植物学报,1999,41:384~388
    7.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998
    8.王京红,纵微星,杨应昌等.cryIA基因的人工设计、改造和构建.农业生物技术学报,1994,期卷数):100~102
    9.王国英,丁群星,张宏等.玉米转化技术的研究.植物遗传理论与应用研讨会文集.见中国遗传学会编,1994,11:587~583
    10.王倍,杨金水,葛扣麟等.低脉冲电泳介导的水初转基因植株再生.中国科学(B辑),1995,25(3):295~301
    11.付永彩,丁月云,刘新仿等.抑制衰老的嵌合基因在水稻中的转化.科学通报,1998,48(18):1963~1967
    12.冯道荣,许新萍,邱国华等.多个抗病抗虫基因在水稻中的遗传和表达.科学通报,2000,45(15):1593~1599
    13.田文忠,gance I,Sivamani E,et al.提高籼稻愈伤组织再生频率的研究.遗传学报,1994,21(3):215~221
    14.田文忠,丁力,曹守云等.植物抗毒素转化水稻和转基因植株的生物鉴定.植物学报,1998,40(9):803~808
    15.田颖川,郑均宝,虞红梅等.转双抗虫基因杂种741毛白杨的研究.植物学报,2000,42:263~268
    16.田颖川,秦晓峰,许丙寅等.表达苏云金杆菌δ-内毒素基因的转基因烟草的抗虫性.生物工程学报,1991,7:1~10
    17.刘巧泉,张景六,王宗阳等.根癌农杆菌介导的水稻高效转化系统的建立.植物生理学报,1998,4(3):259~271
    
    
    18.刘虹等.水稻中一种抗真菌蛋白的分离与特性分析.高技术通讯,1994,4(2):22~26
    19.朱新生,朱玉贤.抗虫植物基因工程研究进展.植物学报,1997,39(3):282~288
    20.江流,徐锦堂,王贺等.天麻抗真菌蛋白的检测及免疝荧光定位.植物学报,1993,35(8):593~599
    21.汤国庆,李文安.在离体条件下拐芹(Angelica polymorpha)形成胚性愈伤组织和非胚性愈伤组织过程中几种内源激素的变化.实验生物学报,1995,28(2):203
    22.米庆莉,何锶洁,曹守云等.籼稻及粳稻对基因枪转化反应的差异及提高转化率的研究.农业生物技术学报,1998,6(3):263~267
    23.许宁,赵南明,章力键等.超声波诱导基因转移.生物生理学报,1990,6(2):281
    24.许新萍,卫剑文,范云六.基因枪法转化籼稻胚性愈伤组织获得可育的转基因植株.遗传学报,1999,26(3):219~227
    25.许耀,施骏,李宝健.单、双子叶植物的代谢调节物调节农杆菌vir区基因表达的研究.遗传学报,1993,20(1):59~67
    26.何立珍,周朴华,刘选明等.荻不同外植体离体培养的研究.西北植物学报,1995,15(4):307~313
    27.何锶洁,徐琮芳,唐祚舜等.天花粉蛋白基因在水稻中转化及抗虫研究.高技术通讯,2000,10(5):8~10
    28.吴刚,崔海瑞,舒庆尧等.Bt杀虫晶体蛋白基因及其转基因育种研究进展.生物工程进展,2000,20(2):45~48
    29.吴昌银,叶志彪,秦汉霞等.雪花莲外源凝集素基因转化番茄.植物学报,2000,42(7):719~723
    30.伏军,徐庆国,罗弘等.导入外源DNA引起水稻性状变异的研究.湖南农学院学报.1992,18(1):10~17
    31.张宏,王国英,谢友菊等.超声波介导法转化玉米愈伤组织及可育转基因植株的获得.中国科学(C辑),1997,27(2):162~167
    32.张栋,陈秀楚.ABA、NAA诱导水稻胚性愈伤组织的研究.实验生物学报,1995,28(3):329~334
    33.李学宝,郑世学,董五辈等.甘蓝型油菜抗虫转基因植株及其抗性分析.遗传学报,1999,26:262~268
    34.李宝健.应用农杆菌Ti质粒系统将外源基因转入籼稻细胞研究.中国科学(B辑),1990,20:144~149
    35.杜立群,李银心,麻密等.小麦生长点转化法初报.植物学报,1996,38(11):921~924
    36.杨书礼,曾君祉,吴有强等.抗除草剂基因和荧光素酶基因在小麦愈伤组织中的稳定表达.植物学报,1993,35(11):825~830
    
    
    37.陈以峰,周燮,汤日圣等.水稻体细胞培养中胚性细胞出现与IAA的关系.植物学报,1998,40(5):474
    38.郑均定,梁梅永,高宝嘉等.转双抗虫基因741毛白杨的选择及抗虫性.林业科学,2000,36:13~20
    39.郑宏红,何锶洁,戴顺洪等.提高水稻基因枪转化效率的研究.生物工程学报,1996,12(增刊):111~115
    40.郑宏红,戴顺洪,何锶洁等.籼稻基因枪转化的研究.遗传学报,1996,23(4):286~292
    41.洪亚辉,董延瑜,易自力等.外源DNA导入植物技术的研究.湖南科技出版社,2000,4,127~218
    42.胡忠,杨增明,王钧等.天麻球茎中一种抗真菌蛋白的分离和部分特性.云南植物研究,1988,10:373~380
    43.赵成章,吴连斌,杨长登等.干燥处理对水稻愈伤组织绿苗再生和若干生理生化特性的影响.作物学报,1997,23(1):39~43
    44.赵彬,王文明,郑先武等.水稻白叶枯病广谱性基因Xa21导入两用不育系培矮64S.生物工程学报,2000,16(2):137~140
    45.项友斌,梁竹春,高明尉等.农杆菌介导的苏云金杆菌抗虫基因cryIA(b)和cryIA(c)在水稻中的遗传转化及蛋白表达.生物工程学报,1999,15(4):494~500
    46.汤国庆,李文安.在离体条件下拐芹(Angelica polymorpha)形成胚性愈伤组织和非胚性愈伤组织过程中几种内源激素的变化.实验生物学报,1995,28(2):203
    47.徐冠军等.华中农业大学学报(增刊),1989,80~83
    48.粱辉,赵铁汉,李良材等.影响基因枪法转化小麦幼胚的几个因素的研究.遗传学报,1998,25(5):443~448
    49.章冰,卫志明.植物遗传转化中存在的问题及对策.植物生理学通讯,2000,36(3):245~251
    50.黄其满,毛立群,黄卫红等.转人工合成GFM CryIA基因烟草表现明显杀虫活性.植物学报,1998,40:228~233
    51.曾君祉,王东江,吴有强等.用花粉管途径获得小麦转基因植株.中国科学(B)辑,1993,23(3):256~262
    52.舒群芳,徐锦堂,孙勇如等.编码天麻抗真菌蛋白cDNA的分子克隆.植物学报,1995,37:685~690
    53.蒋红,朱玉贤,陈章良.导入蜘蛛杀虫肽基因的烟草具有抗虫性.植物学报,1996,38:95~99
    54.谢成章等.荻和芦的生物学.北京:科学出版社,1993:1~157
    55.谢道昕,范云广,倪丕冲.苏云金芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株.中国科学(B辑),1991,8:831~834
    
    
    56.谢道昕,范云六,倪万潮等.苏云金芽孢杆菌杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学(B辑),1991a,4:367~373
    57.蓝海燕,田颖川,王长海等.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报,2000,27(1):70~77
    58.戴顺洪等.见:中国遗传学会编,中国遗传学研究.1995
    59.瞿文学,李晓兵,田文忠等.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种.中国科学(C辑),2000,30(2):200~206
    60.Acedo G N, Conking M A, Opperman C H. Aprotinin compsus for killing insect-containing serine proteinase inhibitor in non-phytotoxin vehicle. A01H005/00, 1994, Patent No.,W09417194
    61.Adang M J,Merlo D J, Murry E E. Synthetic Gene for B. thuringiensis insecticidal proteindesigned against insect pests. A01N063/00, 1995, Patent No, EP382115
    62.Ahokas H. Transfection of germinating barley seed electrophoretically with exogenous DNA. Theor Appl Genet, 1989,77:469~472
    63.Aldemita R R, Hodges T K. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta, 1996, 199:612~617
    64.Allen G C, Hall G E, Childs L C, et al. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell, 1993, 5:603~613
    65.Altabella T, Chrispeels M J. Tobacco plants transformed with the bean AAI gene express an inhibitor of insect α-Amylase in their seeds. Plant Physiol. 1990, 93:805~810
    66.Barton K A. Insecticidal toxins in plant-express an insect-specific toxin from ascorpion.C12N015/82, European patent, 1990, Patent No, EP0431829A1
    67.Bayer. New plant caffeoyl-CoA-3-0-methyltransferase gene. Abstract, Derwent Biotechnology, 1993, 12(4): 9302188
    68.Becker D, Brettschneider R, Lorz H. Fertile transgenic wheat from microprojectile bombardment of seufellar tissue. Plant J, 1994, 5(2): 299~307
    69.Birch A N E, Geoghegan I E, Majerus M E N, et al. Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Mol Breed, 1999, 5:75~83
    70.Bosch H J, Stiekema W J. New Bacillus thuringiensis hybrid toxin fragment-hybrid toxins recombinant DNA vectors transformed plants and microorganismsfor insect. A01H005/00,1995, Patent No., W09506730
    71.Bower R, Birch R G, et al. Transgenic sugarcane plants via microprojectile bombardment. Plant J., 1992, 2:409~416
    72.Brettachneider R, et al. In: Abstract Ⅷ The International Congress of Plant Tissue and Cell Culture. Firenze, 1994, 7~72,
    73.Brekaert W F, Wim Matin, Franky R G et al. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin
    
    binding proteins. Biochemistry, 1992,31(17) : 4308
    74. Broglie K, Chet I, Holliday M, et al. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 1991,254:1194-1197
    75. Brown C et al. Plant Physiol, 1989, 133:727-733
    76. Cao J, Duan X, McElroy D, et al. Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep,1992,l:586-591
    77. Cao J, Tang J D, Strizhov N, et al. Transgenic broccoli with high levels of Bacillus thuringiensis crylC protein control diamondback moth larvae resistant to crylA or crylC. Mol Breed, 1999,5:131-141
    78. Catlin D, Ochoa O, McCormick S, et al. Celery transformation by Agrobacterium tumefaciens: Cytological and genetic analysis of transgenic plants. Plant Cell Rep, 1988, 7: 100-103
    79. Chan M T, Chang H H, Ho S L, et al. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric amylase promoter/B-glucuronidase gene. Plant Mol Biol, 1993, 22:491-506
    80. Cheng M, Fry J E, Pang S, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol, 1997, 115:971-980
    81. Christou P, Ford T L, Kofron M. Production of transgenic rice (Oryza sativa L.) from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology, 1991, 9: 957-962
    82. Cornelissen M, Soetaert P, Stam M. Modified Bacillus thuringiensis insecticidal crystal protein genes-having A and T sequences encoding same amino acids for increased expression levels. A01H005/00, 1991, Patent No., W09116432
    83. Crossway A, Oakos J V Irvine J M, et al. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol Gen Genet, 1986,202:179-185
    84. Daniell H, Vivekananda J, Nielsen B L, et al. Transient foreign gene expression in chloroplast of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc Natl Acad Sci USA, 1990, 87:88-92
    85. Daniell H. New tools for chloroplast genetic engineering. Nat Biotechnol, 1999, 17: 855-856
    86. Danill H, Datta R, Varma S, et al. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotchnol, 1998, 16:345-348
    87. Dekeyser R A, Claes B Rycke R M V, et al. Transient gene expression in intact and transgenized rice tissue. Plant Cell, 1990, 2:591-602
    88. Deng W, Chan L, Liang X, et al. VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol, 1999, 31(6) : 1795-1807
    
    
    89. Dong J, Teng W, Buchholz W G, et al. Agrobacterium-mediated transformaton of Javanica rice. Mol Breed 1996,2:267-276
    90. Ellis J G, Murphy P J, et al. Four new opines from crown gall tumours-their detection and properties. Mol Gen Genet, 1981,181:36-43
    91. Endo Y, Tsurugi K, Ebert R F. The mechanism of action of barley toxin: A type 1 ribdsome-inactivating protein with RNA N-glycosidase activity. Biochem & Biophy Acta, 1988, 954: 2224-226
    92. Enriquez O G A, Vazquez P R I, Prieto S D L, et al. Herbicide-resistant sugarcane (Saccharum Officinarum L.) Agrobacterium-mediated transformation. Planta, 1998, 206 (1) : 20-27
    93. Firmin J K, Fenwick G R, et al. Agropine-avmajor new plasmid determined metabolite in crown gall tumours. Nature, 1978,276:842-844
    94. Flor H H. Ann Rev Phyfopathol, 1971,9:275-296
    95. Fromm M E, Taylor L P, Walbot V, et al. Stable transformation of maize after gene transfer by electroporation. Nature, 1986,319:791-793
    96. Fromm M E, Morrish F. Inheritance and expression of chimera genes in the progeny of transgenic maize plants. Bio/Technology, 1990, 8: 833-839
    97. Fullner K J, Lara J C, Nester E W. Pilus assembly by Agrobacterium T-DNA transfer genes. Science, 1996,273:1107-1109
    98. Gatehouse A M R, Hilder V A, Boulter D, et al. Plant genetic manipulation for crop protection. CAB International, 1992:155-181
    99. Gelvin S B. Agrobacterium VirE2 proteins can form a complex T strands in the plant cytoplasm. J Bacteriol, 1998,180(16) :4300-4302
    100. Godwin I, Todd G, Ford L B, et al. The effects of acetosyringone and pH on Agrobacterium-mediated transformaton vary according to plant species. Plant Cell Rep, 1991,9:671-675
    101. Graves A C F, Goldman S L. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol, 1986,7:43-50
    102. Grimsley N, Hohn T, Davis J W, et al. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants.Nature, 1987, 325:177-179
    103. Guo G Q, Maiwald F, Lorenzen P, et al. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cereal Research Communications, 1998, 26(1) : 15-22
    104. Hagio T, Hirabayashi T et al. Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker. Plant Cell Rep, 1995,14: 329-334
    105. Hain R Bieseler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15:325-335
    106. Hain R Stabel P, Czernilofsky A P, et al. Uptake, intergration, expression and genetic transmission of a selectable chimera gene by plants protoplasts. Mol Gen Genet, 1985, 199:
    
    161
    107. Hamilton C M, Frary A, Lewis C, et al. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA,1996,93:9975-9979
    108. Hamilton C M. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 1997,200:107-116
    109. Hart G H, Menis F. trans-acting faotors involved in tobacco B-1,3-glucanase gene expression. Plant physiol, 1991,96:96
    110. Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997, 35: 205-218
    111. Hiei Y, Ohta S, Kumashiro T, et al. Efficent transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant, 1994, 6 (2) :271-282
    112. Hilder V A, Gatehouse AMR, Sheerman S E, et.al. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987,300:160-163
    113. Hoekema A, Hirsch P R, Hooykaas P J J, et al. A binary plant vector strategy based on separation of vir-and T-region of Agrobacterium tumefaciens Ti-plasmid. Nature, 1983, 303: 19-180
    114. Hollick J, B, et al. Plant Mol Biol,1993,561-572
    115. Hoyle Russ. Bio/Technology, 1993,11(7) :783
    116. Iannacone R, Grieco P D, Cellini F. Specific sequence modification of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol,1997,34:485-496
    117. Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol, 1996,14(6) : 745-750
    118. Jach G, Gornhard B, Mundy J, et al. Enhanced quantitative resistance against fungal disease by combinational expression of different barley antifungal proteins in transgenic tobacco. Plant J, 1995,8:97-109
    119. Jacq B, Lesobre O, Sangwan R S, et al. Factors influencing T-DNA transfer in Agrobacterium tumefaciens-mediated transformation of Agrobocterium-mediated transformation of sugar beet. Plant Cell Rep,1993,12:621-624
    120. Jahne A et al. In: Abstract Ⅷ Th International Congress of Plant Tissue and Cell Culture, 1994,87-92,Firenze
    121. Jain R K Jain S, Baiyang Wang, et al. Optimization of biolistic method for transient gene expression and production of agronomically useful transgenic Basmati rice. Plant Cell Rep, 1996,15:963-968
    122. Jain R K, Jain S, Wu R. Stimulatory effect of water stress on plant regeneration in aromatic Indica rice varieties. Plant Cell Rep, 1996,15:449-454
    123. James D J, Passey A J, Babara J. Agrobacterium-mediated transfomation of the cultivated strawberry (Fragaria × Anannassa Duch) using disarmed binary vectors. Plant Sci, 1990, 69:
    
    79-94
    124. James D J, Uratsu S, Cheng J. et al. Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep, 1993, 12: 559-563
    125. Jefferson R A. Assaying chimera genes in plant: The GUS gene fusion system. Plant Mol Biol Rep, 1987, 5:387-405
    126. Jin S, Komari T, Gordon M P, et al. Genes responsible for the supervirulent phenotype of Agrobacterium A281. J Bacteriol,1987,169:4417-4425
    127. Johnson R, Narvaez J, Gynheung, et al. Expression of proteinase inhibitors I and II in transgenic tobacco plants: Effects on natural defense against Manduca sexta larvae. Johnson. Proc Natl Acad Sci USA, 1989,86:9871-9875
    128. Jongsma M A, Bakker P L, Peters, et al. Adaptation of Spodoptera exigua lavae to plant proteinase inhibitor by induction of gutproteinase activity insensitive to inhibition. Proc Natl Acad Sci USA, 1995,92:8041-8045
    129. Jumin T, Guoan Z, Karabi D, et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol, 2000,18: 1101-1104
    130. Jun Xiao, Lan D, David M, et al. Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep, 1992, 11:586-591
    131. Kaeppler H F, Gu M N, Somers D A, et al. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep, 1990,9:415-418
    132. Khan M S, Maliga P. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol, 1999,17:910-915
    133. Kim J K et al. co-expression of ribosome-inactivating protein and chitinase genes in transgenic rice. General meeting of the international program on rice biotechnology, Malacca, Malaysia, (Abstract), 1997. 13
    134. Klein T M, Kornstein L, Sanford J L, et al. Genetic transformation of maize cells by particle bombardment. Plant Physiology, 1989,91:440-444
    135. Klein T M, Wolf E D, Wu R, et al. High velocity microprojectiles for delivering nucleic acids into living cells. Nature, 1987,327:70-73
    136. Kota M, Daniell H, Varma S, et al. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confer resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA, 1999,96:1840-1845
    137. Krens F A, Molendijk L, Wullerus G J, et al. In vitro transformation of plant protoplasts with Ti-plasmid DNA, Nature, 1982,296:72-74
    138. Leah R, Tommerup H, Svendsen, et al. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem, 1991,266: 1564-1570
    139. Lee L Y, Gelvin S B, Kado C I. pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export. J Bacteriol, 1999, 181(1) : 186-196
    
    
    140. Li L C, Qu R D, Kochko A, et al. An improved rice transformation system using the biolistic method. Plant Cell Rep, 1993,12:250-255
    141. Li X Q, Liu C N, Ritchie S W, et al. Factors influencing Agrobacterium tumefaciens-mediated transient expression of gusA I rice. Plant Mol Biol, 1992,20:1037-1048
    142. Li Z J, Xie Q J, Rush M C, et al. Fertile transgenic rice plant generated via protoplasts from the U.S. cultivar Labelle. Crop Sci,1992,32:810-814
    143. Liu D, Raghothama K G, Hasegawa P M, et al. Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA,1994,91(5) :1888-1892
    144. Liu Y G, Shirano Y, Fukaki H, et al. Complementation of mutants with large genomic DNA fragments by transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA, 1999,96: 6535-6540
    145. Logermann J, Jach G, Tommerup H, et al. Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio/Technology, 1992,10:305-308
    146. Lorz H et al. In: Abstract Ⅷth International Congress of Plant Tissue and Cell Culture. Firenze, 1994,P87
    147. Lorz H, Baker B, Schell J. Gene transfer to cereal cells mediatad by protoplasts transformation. Mol Gen Genet, 1985,199:178-182
    148. Luo Z X et al. Plant Mol Biol Rep,1988,6(3) :165-174
    149. Maheshwari N, Tyagi A K, Khurana P, et al. Studies in cereal biotechnology and molecular biology-A progress report with special reference to rice and wheat. In: Islam AS(ed), Plant Tissue Culture, Lebanon: Sci Publ Inc, 1996,111-123
    150. Makaya K, Omata K, et al. Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem, 1990,193:31
    151. Maqbool S B, Husana T, Riazuddin S, et al. Effective control of yellow stem borer and rice leaf folder in transgenic rice india varieties Basmati 370 and M7 using the novel δ-endotoxin cry2A Bacillus thuringiensis gene, Mol Breed, 1998,4:501-507
    152. Margaret M, Jane R. Transgenic crops: Usda data on smalll-scale testes contribute little to commerlial risk assessment-Bio/Technology, 1995, 13 (1) : 96
    153. Massayoshi T, Masayoshi Tsukahara, Takayasuhirosawa, Simple dehydration treatment promotes plantlet regeneration of rice (Oryza sativa L.) callus. Plant Cell Rep, 1992, (11) : 550-553
    154. Mauch F, Mauch-Mani B, Boiler T. Antifungal hydrolases in pea tissue Ⅱ. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol, 1988,88: 936-942
    155. McBride K E, Svad Z, Schaaf D J, et al, Amplification of a chimera Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology, 1995,13: 362-365
    156. Mcelory D, Blower A D, Jenes B, et al. Construction of expression vectors based on the rice
    
    actin 15' region for use in monocot transformation. Mol Gen Genet, 1991,231:150-160
    157. Michael E, Fromm, Loverine D.Taylor, Virginia Walbot.
    158. Misra S, Leal S M, Fowd L C. Effect of abscisic acid, osmticum and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann Bot, 1993, 71:11
    159. Mooney P A, Goodwin P B, Dennis E S, et al. Agrobacterium tumefaciens gene transfer into wheat tissues. Plant Cell Tissue Organ Cult,1991,25:209-218
    160. Mundy J, Shinozaki K Y, Chua N H. Nuclear proteins bind conserved elements in the abscisic acid-reponsive promoter of a rice rab gene. Proc Natl Acad Sci USA, 1990, 97: 1406
    161. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol, 1962,15: 473-497
    162. Murray E E, Rochleau T R, Eberle M, et al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol, 1991,16:1035-1060
    163. Murry L E, Elliotl L G Capitant S A et al. Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus.Bio/Technology, 1993,11:1559-1569
    164. Nehra N S, Chibbar R N, Leung N, et al. Self-fertile transgenic wheat plants regenerated from isolated scuteblar tissues following microprojectile bombardment with two distinct gene constructs. Plant J, 1994, 5(2) : 285-297
    165. Nester E W, Gordon M P, Amasino R M, et al. Crown gallia molecular and physiological analysis. Ann Rev Plant Physiol, 1984, 35: 387-413
    166. Neuhaus J M, Ahl-Goy P, Hinz U, et al. High-level expression of a tobacco chitinase gene in Nicotiana syluestris, Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol, 1991, 16: 141-151
    167. Oliveria et al. Abstract Ⅷth International Congress of Plant Tissue and Cell Cuture, Firenze. 1994, P129
    168. Park S H, Pinson S R M, Smith R H. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol Biol, 1996, 32: 1135-1148
    169. Perl A, Kless H, Blumenthal A, et al. Improvement of plant regeneration and GUS expression in seutellar wheat calli optimization of culture conditions and DNA microprojectile delivery procedures. Mol Gen Genet, 1992,235: 279-284
    170. Perlak F J, Deaton R W, Armstrong T A, et al. Insect resistant cotton plants. Bio/Technology, 1990, 8: 939-943
    171. Perlak F J, Fuchs R L, Dean D A, et al. Modification of the coding sequence enhances plant expressing of insect control protein genes.Proc Natl Acad Sci USA, 1991, 88:3324-3328
    172. Perlak F J, Stone T B, Muskopf Y M, et al. Genetically improved potatoes: protection from
    
    damage by Colorado potato beetles. Plant Mol Biol, 1993,22:313-321
    173. Preuss S B, Jiang C Z, Baik H K, et al. Radiation-sensitive Arabtdopsts mutants are proficient for T-DNA transformation. Mol Gen Genet, 1999,261(4-5) : 623-626
    174. Raineri D M, Bottino P, Gordon M P, et al. Agrobacterium mediated transformation of rice. Bio/Technology, 8:33-38
    175. Rajinder K. Jain, Sunita Jain, Baiyang Wang et al.
    176. Rao K V, Rathore K S, Hodges T K, et al. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J, 1998, 15: 409-477
    177. Rashid H, Yokoi S, Toriyama K, et al. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep, 1996,15:727-730
    178. Ritala A, Aspegren K, Kurten V, et al. Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol Biol, 1994,24:317-325
    179. Roberts D R. Abscisic acid and mannitol promote early development maturation and storage protein accumulation on somatic embryos of interior spruce. Plant Physiol, 1991,83: 247
    180. Roush R. The Australian Cotton Crower,1994,(2) :17-20
    181. Ruoly A. Dekeyser, Bart claes, Riet M.V. De Rycke et al.
    182. Ryan C A.Proteinase inhibitor gene families: Strategies for transformation improve plant defenses against herbivores. Bioassays, 1989,10(1) : 20-26
    183. Sahi S V, Chilton M D, Chilton W S. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc Natl Acad Sci USA, 1990,87: 3879-3883
    184. Sanford J C, Dovit M J, Rossell A, et al. An improved helium-driven biolistic device. Bio/Technique. 1991,(3) :3-16
    185. Sanford J C, Klein T M, Wolf E D, et al. Delivery of substances in cells and tissues using a particle bombardment process. J. Pant Sci Technol, 1987,5: 27-37
    186. Sautter C et al. In:Abstracts Ⅷth International Congress of Plant Tissue and Cell Culture, Firenre,1994,P:59-60
    187. Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci USA,1981,78:2893-2897
    188. Schouten A, Roosien J, Van-Engelen F A, et al. The C-terminal KDEL sequence increase the expression level of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol, 1996,30:781-793
    189. Schroeder H E, Gollasch S, Moore A, et al. α-Amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas. Plant Physiol, 1995,107:1233-1239
    190. Schuler T H, Poppy G M, Kerry B R, et al. Insect-resistant transgenic plants. TIBTECH, 1998,16:168-175
    191. Sela-Buurlage M B, Ponstein A S, Bres-Vloemans S A, et al. Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol, 1993, 101:857-863
    
    
    192. Seraj Z I, Islam Z, Omar Faruque M, et al. Identification of the regeneration potential of embryo derived calluses from various indica rice varieties. Plant Cell, Tissue and Organ Cult, 1997,48:9-13
    193. Shade R E, Schroeder H E, Pueyo J J, et al. Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant fo bruchid beetles. Bio/technology, 1994, 12: 793-796
    194. Shigehisa K, Zhong Z L, Seiji I. Identification of blast resistance genes in Brazilian rice varieties using Japanese strains of Pyricularla oryza Oryza, 1987, 24:42-58
    195. Shimoda N, Toyoda-Yamamoto A, Nagamine J, et al. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA, 1990, 87:6684-6688
    196. Simmonds J et al, Physiol Plant,1992,85:197-206
    197. Smith R, Gould J, Devey M, et al. Transformation of gramineae using Agrobacterium and shoof apices. Plant Physiol, 1991,96(1) : 30-36
    198. Smith R H, Hood E E. Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci, 1995, 35(2) :301-30
    199. Somers D A, Rines H W, Gu W, et al. Transgenic oat plants. Bio/Technology, 1992, 10: 1589-1594
    200. Song Y N, Shibuya M, Ebizuka Y, et al. Synergistic action of phenolic signal compounds and carbohydrates in the induction of virulence gene expression in Agrobacterium tumefaciens. Chem Pharm Bull, 1991,39:2347-2350
    201. Songstad D D, Halaka F G, Deboer D L, et al. Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. Plant Cell, Tissue and Organ Culture,1993,33:195-201
    202. Stachel SE, Messens E, Van Montagu M, et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1986,318: 624-629
    203. Stark I P, Nelke B, Hanbler G, et al. Transfer of a grapevine synthase gene to rice. Plant Cell Rep, 19997, 16:668-673
    204. Stewart C N, Adang M J, All J N, et al. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol, 1996,112:121-129
    205. Stewart C N, Prakash C S. Chlorplast transgenic plants are not gene flow panacea. Nat Biotechnol, 1998, 16:401-403
    206. Stiff C M, Kilian A, Zhou H, et al. Stable transformation of barley using biolistic particle bombarment and the phosphinothricin aceryltransferase (bar) gene. Plant Cell, Tissue and Organ Cult, 1995,40:243-248
    207. Stirpe F, Barbieri L, Battelli M G, et al. Ribosome-inactivating proteins from plants: Present status and future prospects. Bio/Technology, 1992, 10: 405-412
    
    
    208. Stoger E, Williams S, Christou P, et al. Expression of the insecticidal lectin from snowdrop in transgenic wheat plant. Mol Breed, 1999,5:65-73
    209. Sundberg C D, Rean W L. The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol, 1999,181(21) :6850-6855
    210. Sundberg C, Meek L, Carroll K, et al. VirEl protein mediates export of the single-stranded DNA-binding protein VirE2. Proceedings of the Third International Rice Genetics Symposium, Manila, Philippines: International Rice Research Institute, 1995, 131-142
    211. Tabashnik B E, Liu Y B, Finson N, et al. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc Natl Acad Sci USA 1997, 94: 1640-1644
    212. Taguchi-shiobara F, Komatsuda T, Oka S, et al. Comparison of two indices for evaluating regeneration ability in rice through a diallele analysis. Theor Appl Genet, 1997, 94: 378-382
    213. Terras F R G, Schoofs H M E, Debolle M F C, et al. Analysis of two novel classes of plant antifungal proteins from radish seeds. J Biol Chem,1992,267(22) 15301-15309
    214. Thomas J C, Adams D G, Keppenne V D, et al. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep, 1995, 14:758-762
    215. Thomzik J E Transformation in oilseed rape (Brassica napus L.) In: Bajaj Y P, Biotechnology in Agriculture and Forestry, 1993, 23:171-182
    216. Thomzik J E. Gene transfer in plants. Pflazenschutz Nachrichten Bayer, 1995,48: 5-23
    217. Tingay S, McElroy D, Kalla R, et al. Agrobacterium tumefaciens-mediated barley transformation. Plant J, 1997,11(6) :1369-1376
    218. Toriyama K, Hinatak. Cell suspension and protoplast culture in rice. Plant Sci, 1985, 41:179-183
    219. Toubart Pet al. Cloning and characterization of the gene encoding the endopolygalacturonase inhibiting protein (PGIP) of Phaseolus vulgaris L. Plant J, 1992, 2:367
    220. Troy W J, Olin D A, Ann E B. Rapid production of multiple independent lines of fertile transgenic wheat. Plant Physiol,1993,1077-1084
    221. Tsukakoshi M, Kurata S, Nomiya Y et al. A novel method of DNA transfection by laser microbeam. Cell Surgery Appl Phys B, 1984,35:135-140
    222. Utomo H S, Croughan T P, Croughan S S. Growth and regeneration ability of long-term suspension cultures of the U. S. rice cultivar Mercury. Plant Cell, Tissue and Organ Cult,1996,44: 155-159
    223. Vain P, Michael D, John J. et al. Osmotic treatment enhances particle bombardment mediated transient and stable transformation of maize. Plant Cell Rep,1993,12:84-88
    224. Vallejos R H et al. In: Abstracts Ⅷth International Congress of Plant Tissue and Cell Culture, Firenze, 1994,P:51-52
    225. Van Roekel J S C, Damm B, Melchers L S, et al. Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep,1993,12:644-647
    
    
    226. Vasil V, Brown S M, Re D, et al. Stable transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/ Technology, 1991, 9: 743-747
    227. Vasil V, Castillo A H, Fromm M E, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology, 1992, 10:667-674
    228. Vasil V, Castillo A M, Fromm M E, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology, 1992, 10: 667-674
    229. Vasil V, Srivastava V, Castillo A M, et al. Rapid production of transgenic wheats by direct bombardment of cultured immature embryos. Bio/Technology, 1993, 11: 1553-1558
    230. Vigers AJ, et al. A new family of plant antifungal proteins. Mol Plant-Microbe Inter, 1991,4: 315-325
    231. Wan Y, Lemaux P G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol,1994,104:37-48
    232. Wandelt C I, Khan M R I, Craig S, et al. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J,1992,2:l81-192
    233. Wang A S et al. In Vitro,30A 1994,3,pt2,67
    234. Wang M B, Peter M W. A rapid and simple method of assaying plants transformed with hygromycin or PPT resistance genes. Plant Mol Biol Rep, 1997, 15: 209-215
    235. Weber G, Monajembashi S, Greulich K O, et al. Uptake of DNA in chloroplasts of Brassica napus(L) facilitated by a UV-laser microbeam, Europ Cell Biol. 1989, 49:73-79
    236. Webser F B, Roberts D R, Flinn S M. Propagation of interior spruce by somatic embryogeinesis. Can J For Res, 1990, 20: 1759
    237. Weeks J T, Anderson O D, Blechl A E. Rapid production of multiple independent lines of fertile transgenic wheat. Plant Physiol, 1993, 102: 1077-1084
    238. Wei Z M et al, In Xu Z H, Plant Biotechnology Sustainable of Agriculture, Beijing, China Forestry Publishing House, 1996,224-225
    239. Wyatt S D, Berger P H, Lemaux P G, et al. Coat protein gene-mediated resistance to barley yellow dwarf in maize and barley. Phytopathology,1993,83(12) :1374
    240. Xu D et al. Plant Mol Biol,1993,22: 573-588
    241. Zaghmout O M F, Trolinder N L. Simple and efficient method for directly electroporating Agrobacterium plasmid DNA into wheat callus cells. Nucl Acids Res, 1993,21:1048-1051
    242. Zeevaart J A D. Changes in the levels of abscisic acid and its metabolites in excised leaf blades of Xanthium strumarium during and after water stress. Plant Physiol, 1980, 66: 672-678
    243. Zembryski P, Joos H, Genetello C, et al. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J, 1983, 2:2143-2150
    
    
    244. Zhang J, Xu R J, Elliott M C, et al. Agrobacterium-mediated transformation of elite indica and japonica rice cultivars. Nat Biotechnol,1997,8(3) :233-231
    245. Zhang L J, Cheng L M, Xu N, et al. Efficient transformation of tobacco by ultrasonication. Bio/Technology, 1991,9:996-997
    246. Zhang S, Song W Y, Chen L, et al. Transgenic elite indica rice varieties resistant to Xanthomonas oryzae. Mol Breed, 1998, 4: 551-558
    247. Zheng H H et al. Chinese Journal of Biotechnology,1996,12:111-115
    248. Zhu B, Chen T H, Li P H. Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for and osmotin-like protein. Planta, 1996, 198(1) : 70-77
    249. Qun Z, Eileen A. Sameer M., et al. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology, 1994, 12:807-812
    250. Zhu Z, Hughes K W, Huang L, et al. Expression of human α-interferon cDNA in transgenic rice plants. Plant Cell Tissue and Organ Cult, 1994, 36: 197-204
    251. Zimny J et al. In: Abstracts Ⅷth International Congress of Plant Tissue and Cell Culture Firenze, 1994, P138
    252. Zupan J R, Zambryski P C. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol, 1995, 107: 1041-1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700