用户名: 密码: 验证码:
脆性材料的细观损伤理论和损伤结构的安定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的宏细观破坏理论是当前固体力学和材料科学研究的一个重要课题。
    本文在对脆性和韧性材料的连续损伤理论和细观损伤理论进行评述的基础上,
    研究了弹脆性材料的细观损伤和断裂问题以及含损伤的弹塑性结构的安定问
    题。
     本文建立了一套完整的脆性材料细观损伤模型──微裂纹扩展区模型,用
    以分析材料在三轴拉伸和压缩情况下从初始无损状态到最终宏观裂纹形成的各
    个阶段的细观损伤和本构关系。建议用微裂纹扩展区的概念来描述脆性材料的
    各向异性损伤状态,从而方便地解决了复杂加载路径下材料的细观损伤演化和
    宏观本构关系问题。将材料的本构关系分成包括线弹性、非线性强化、应力突
    然跌落和应变软化的四个阶段,分别讨论了各个阶段的细观损伤机制,指出应
    力跌落和应变软化是从连续分布损伤到损伤局部化过渡的结果。在拉伸和压缩
    情况下微裂纹损伤机制和材料破坏模式都不相同,本文对张开微裂纹的自相似
    扩展和闭合微裂纹的摩擦滑移、自相似扩展、弯折扩展进行了详细的研究,分
    别给出了它们对材料的宏观力学性质的影响。并提出了一种柔度等效的损伤测
    量方法,用以确定脆性材料中各向异性的微裂纹损伤状态。
     本文研究了脆性材料中Ⅰ型宏观裂纹尖端的损伤和断裂行为。对于用微裂
    纹扩展区模型描述的含损伤饱和段的材料,采用基于细观损伤力学的等效弹性
    介质方法研究了宏观裂纹尖端的微裂纹屏蔽效应,得到了裂纹尖端的应力和应
    变场。提出了一种修正J积分的方法,用以计算微裂纹损伤的屏蔽比,并将计
    算结果与以往的J积分守恒方法进行了比较。指出由于应力跌落和应变软化的
    原因,在脆性材料的宏观裂纹尖端将产生损伤局部化,并给出了损伤局部化带
    长度的计算方法。
     本文还发展了弹塑性损伤结构的安定理论。揭示了材料损伤和结构安定性
    之间的联系,建议采用延性损伤因子作为弹塑性结构在变载作用下的失效准则
    的控制参数,建立了理想弹塑性结构和应变强化结构在安定过程中损伤因子的
    上限以及安全载荷范围的下限的数学规划方法。
The macro-and micro-failure theory of materials is a very important research subject of solid mechanics and material science. In the thesis, both phenomenological and micromechanical damage models for brittle and ductile materials are reviewed. Attention is focused on the micro-damage and fracture of brittle materials as well as the shakedown of elastic-plastic structures with damage.
    A rather complete micromechanical damage model for quasi-brittle materials is established, which is called the damage mode of domain of microcrack growth (DMG) and can be used to analyze the micro-damage and constitutive response in all stages from the initial undamaged state to the ultimate macro-failure of brittle materials subjected to triaxial tension or triaxial compression. The domain of microcrack growth is defined and used to describe the damage state of microcrack-weakened brittle materials. Based on this concept, the problems of micro-damage evolution and macro-constitutive response can be solved easily. The constitutive relation of brittle materials is classified into four stages: namely linear elasticity, pre-peak nonlinear hardening, rapid stress drop and strain softening. The microscopic damage mechanisms in all these stages are investigated. The rapid stress drop reflects the transition from continuous distributed damage to damage localization. The damage and failure modes of brittle materials under tension and compression are different. The self-similar growth of open microcracks under tension, the frictional sliding, mode-n self-similar growth and kinking of closed microcracks under compression and their influences on the mechanical properties of materials are studied in detail. Moreover, an experimental method based on the equivalence of compliance is proposed to determine the anisotropic damage state in brittle materials.
    The damage and fracture behaviors at the tip of a mode- I macroscopic
    
    
    
    
    crack in brittle materials are studied. For a class of brittle materials with a stage of damage saturation, the stress shielding effect by microcracking at the tip of a mode- I crack is analyzed by using the effective elastic media method based on the micromechanical damage model of DMG. The stress and strain fields near the crack tip are obtained. A new method of modified J-integral is presented to calculate the shielding ratio by microcracking and its numerical result is compared with that obtained by the previous method of J-integral conservation. It is pointed out that due to the stress drop and strain softening of brittle material damage localization will occur ahead of a macroscopic crack under external loads. The method of calculating the length of damage localization band is given.
    The shakedown theory of structures with damage is developed also in this thesis. The close relationship between damage of materials and shakedown of structures is revealed. The ductile damage factor is adopted as the control parameter of the failure criterion of elastic-plastic structures subjected to variable loads. A mathematical programming method is presented to calculate the lower bound of safety load domain and the upper bound of damage factor in either elastic-perfectly plastic or strain hardening structures at shakedown.
    Feng Xiqiao (Solid Mechanics) Directed by Professor Yu Shouwen
引文
[1] L. M. Kachanov, Time of the rupture process under creep conditions, Izv. Akad. Nauk. SSSR, Otd. Tech. Nauk, 8, 26-31 (1958) .
    [2] Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland, Amsterdam, (1969) .
    [3] F. A. Leckie and D. R. Hayhurst, Creep rupture of structures, Proc. of Roy. Soc. Lond. A, 340, 323-347 (1974) .
    [4] F. A. Leckie and D. R. Hayhurst, Constitutive equations for creep rupture, Acta Metall, 25,1059-1070 (1977) .
    [5] H. Broberg, A new criterion for brittle creep rupture, J. Appl. Mech., 41, 809-811 (1974) .
    [6] J. Hult, Introduction and general overview, in: Continuum Damage Mechanics: Theory and Applications (Edited by D. Krajcinovic and J. Lemaitre), Springer, Wien, pp.1-36 (1987) .
    [7] S. Janson and J. Hult, Fracture mechanics and damage mechanics-a combined approach, J. de Mecanique Appliquee, 1, 69-84 (1977) .
    [8] J. Lemaitre and J. L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, (1988) .
    [9] S. Murakami and N. Ohno, A continuum theory of creep and creep damage, in: Proc. 3rd IUTAM Symp. on Creep in Structures, Leicester, pp.422-443 (1980) .
    [10] G. Rousselier, Finite deformation constitutive relations including ductile fracture damage, in: The Three-Dimensional Constitutive Relations and Ductile Fracture (Edited by S. Nemat-Nasser), North-Holland, pp.331-355(1981) .
    [11] D. Krajcinovic, Continuum damage mechanics, Appl. Mech. Rev., 37, 1-6 (1984) .
    [12] D. Krajcinovic, Damage Mechanics, Mech. Mater., 8,117-197 (1989) .
    [13] D. Krajcinovic, Constitutive equations for damaging materials, J. Appl. Mech., 50, 355-360 (1983) .
    [14] J. P. Cordebois and F. Sidoroff, Damage induced elastic anisotropy, in: Mechanical Behavior of Anisotropic Solids (Edited by J. P. Boehler), Martinus Nijhoff Publishers, Hague, pp.761-774 (1982) .
    [15] J. D. Eshelby, Elastic inclusions and homogeneities, in: Progress in Solid Mechanics (Edited by I. N. Sneddon and R. Hill), North-Holland, Amsterdam, pp.88-140 (1961) .
    [16] R. Hill, Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13, 89-101 (1965) .
    [17] R. Hill and J. R. Rice, Constitutive analysis of elastic-plastic crystals at
    
    arbitrary strain, J. Mech. Phys. Solids, 20, 401-413 (1972).
    [18] T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, The Netherlands, (1987).
    [19] E. Kr(?)ner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer-Verlag, (1958).
    [20] A. L. Gurson, Continuum theory of ductile rupture in void nucleation and growth, Part Ⅰ-Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Tech., 4, 2-15 (1977).
    [21] B. Budiansky and R. J. O' Connell, Elastic moduli of a cracked solid, Int. J. Solids Struct., 12, 81-95 (1976).
    [22] W. Yang and W. B. Lee, Mesoplasticity and its Applications, Verlag-Springer, Berlin, (1993).
    [23] M. F. Ashby, Micromechanisms of fracture in static and cyclic failure, in: Fracture Mechanics: Current Status, Future Prospects (Edited by R. A. Smith), Pergamon, Oxford, pp.1-31 (1979).
    [24] 杨卫,细观塑性理论,清华大学工程力学系讲义,(1987)。
    [25] 余寿文等,损伤力学,清华大学出版社,(待出版).
    [26] 余寿文,黄克智,考虑材料损伤的断裂力学,断裂与损伤研讨会,广州,(1989).
    [27] 黄克智,损伤与断裂,塑性力学进展,(王仁等主编),中国铁道出版社,pp.31-65 (1988).
    [28] 李灏,损伤力学基础,山东科学技术出版社,(1992)。
    [29] L. M. Kachanov, Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Dordrecht, (1986).
    [30] 谢和平,岩石混凝土损伤力学,中国矿业大学出版社,(1990)。
    [31] J. L. Chaboche, Continuum damage mechanics, Part Ⅰ and Ⅱ, J. Appl. Mech., 50, 59-72 (1985).
    [32] J. Lemaitre, A continuous damage mechanics for ductile fracture, J. Eng. Mater. Tech., 107, 83-89 (1985).
    [33] S. Murakami, Notion of continuum damage mechanics and its application to anisotropic creep damage theory, J. Eng. Mater. Tech., 105, 99-105 (1983).
    [34] S. Murakami, Mechanical modelling of material damage, J. Appl. Mech. 55, 280-286 (1988).
    [35] J. L. Chaboche, Anisotropic creep damage in the framework of continuum damage mechanics, Nucl. Eng. Design, 73, 309-319, (1984).
    [36] J. L. Chaboche, Continuous damage mechanics-a tool to describe phenomena before crack initiation, Nucl. Eng. Design, 64, 233-247 (1981)
    [37] D. Fanella and D. Krajcinovic, Continuum damage mechanics of fiber reinforced concrete, J. Eng. Mech., 111, 995-1009 (1985).
    [38] D. Krajcinovic, M. Basista and D. Sumarac, Micromechanically inspired phenomenological damage model, J. Appl. Mech., 58, 305-316 (1991).
    
    
    [39] D. Krajcinovic, Continuous damage mechanics revisited: basic concepts and definitions, J. Appl. Mech., 52, 829-834 (1985) .
    [40] R. Talreja, A continuum mechanics characterization of damage in composite materials, Proc. R. Soc. London A, 399, 195-210 (1985) .
    [41] C. L. Chow and J. Wang, An anisotropic theory of elasticity for continuum damage mechanics, Int. J. Fract., 33, 3-16 (1987) .
    [42] C. L. Chow and X. F. Chen, An anisotropic model of damage mechanics based on endochronic theory of plasticity, Int. J. Fract., 55, 115-130 (1992) .
    [43] C. L. Chow and F. Yang, On one-parameter description of damage state for brittle material, Eng. Fract. Mech., 40, 335-343 (1991) .
    [44] J. W. Ju, On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects, Int. J. Solids Struct., 25, 803-833 (1989) .
    [45] Z. X. Li and J. C. Qian, A creep model for concrete with damage in the axial and lateral directions, Theo. Appl. Fract. Mech., 17, 115-120 (1992) .
    [46] L. Nobile, Damage mechanics of concrete, Eng. Fract. Mech., 39, 1011-1014(1991) .
    [47] T. J. Wang, Unified CDM model and local criterion for ductile fracture, Eng. Fract. Mech., 42, 177-183 (1992) .
    [48] M. H. J. Paas, P. J. G. Schreurs and W. A. M. Brekelmans, A continuum approach to brittle and fatigue damage: theory and numerical procedures, Int. J. Solids Struct., 30, 579-599 (1993) .
    [49] X. F. Chen, Y. B. Lu and H. Lee, An endochronic plastic theory with anisotropic damage, Eng. Fract. Mech., 32, 509-514 (1989) .
    [50] J. Mazars, Mechanical damage and fracture of concrete structures, in: Proc. of ICF5 (Edited by D. Francois, et al), Pergamon, Oxford, pp.1499-1506(1981) .
    [51] H. C. Matlos, M. Fremond and E. N. Mamiya, A simple model of the mechanical behavior of ceramic-like materials, Int. J. Solids Struct., 29, 3185-3200(1993) .
    [52] E. P. Chen and D. Y. Tzou, A continuous damage model for the quasi-static response of brittle materials, in: Micromechanics of Failure of Quasi-brittle Materials (Edited by S. P. Shah, et al). Elsevier Applied Science, London, pp.620-626, (1990) .
    [53] Z. J. Luo, W. H. Ji and N. C. Guo, A ductile damage model and its application to metal-forming process, J. Mater. Proc. Tech., 30, 31-43 (1992) .
    [54] M. Ortiz, A constitutive theory for the inelastic behavior of concrete, Mech. Mater., 4, 67-93 (1985) .
    [55] D. Fanella and D. Krajcinovic, A micromechanical model for concrete in compression, Eng. Fract. Mech., 29, 49-66 (1988) .
    [56] D. Krajcinovic and D. Sumarac, A mesomechanical model for brittle
    
    deformation processes : Part I and II, J. Appl. Mech., 56, 51-62 (1989) .
    [57] D. Krajcinovic and D. Fanella, A micromechanical damage model for concrete, Eng. Fract. Mech., 25, 585-596, (1986) .
    [58] D. Sumarac and D. Krajcinovic, A self-consistent model for microcrack-weakened solids, Mech. Mater., 6, 39-52 (1987) .
    [59] A. Stojimirovic and D. Krajcinovic, Time-dependent response of semibrittle ceramics, Mech. Mater., 10, 73-82 (1990) .
    [60] D. Krajcinovic and A. Stojimirovic, Deformation processes in semibrittle polycrystalline ceramics, Int. J. Fract., 42, 73-86 (1990) .
    [61] J. W. Ju and X. Lee, Micromechanical damage models for brittle solids, I: tensile leadings, J. Eng. Mech., 117,1495-1514 (1991) .
    [62] X. Lee and J. W. Ju, Micromechanical damage models for brittle solids, II: compressive loadings, J. Eng. Mech., 117,1515-1536 (1991) .
    [63] J. W. Ju, On two-dimensional self-consistent micromechanical damage models for brittle solids, Int. J. Solids Struct., 27, 227-258 (1991) .
    [64] J. W. Ju and K. H. Tseng, A three-dimensional statistical micro-mechanical theory for brittle solids with interacting microcracks, Int. J. Damage Mech., 1,102-131 (1992) .
    [65] M. L. Kachanov, A microcrack model of rock inelasticity, Mech. Mater., 1,19-41 (1982) .
    [66] S. Nemat-Nasser and M. Obata, A microcrack model of dilatancy in brittle materials,J. Appl. Mech., 55, 24-35 (1988) .
    [67] W. Becker and D. Gross, A one-dimensional micromechanical model of elastic-microplastic damage evolution, Acta Mechanica, 70, 221-233 (1987) .
    [68] W. Becker and D. Gross, A two-dimensional micromechanical model of anisotropic elastic-microplastic damage evolution, Ing.-Archiv., 58, 295-304(1988) .
    [69] L. Gambarotta, Modeling dilatancy and failure of uniaxially compressed brittle materials by microcrack-weakened solids, Eng. Fract. Mech., 46, 381-391 (1993) .
    [70] L. Gambarotta and S. Lagomarsino, A microcrack damage model for brittle materials, Int. J. Solids Struct., 30,177-198 (1993) .
    [71] H. Yoshida and H. Horii, A micromechanics-based model for creep behavior of rock, Appl. Mech. Rev., 45, 294-303 (1992) .
    [72] J. Lemaitre, Continuous damage mechanics-a tool to describe phenomena before crack initiation, Nucl. Eng. Design, 64, 233-247 91981) .
    [73] J. L. Chaboche, Continuous damage mechanics-present state and future trends, Nucl. Eng. Design, 105, 19-33 (1987) .
    [74] J. W. Ju, Isotropic and anisotropic damage variables in continuum damage mechanics, J. Eng. Mech., 116, 2764-2770 (1990) .
    [75] S. Baste and B. Audoin, On internal variables in anisotropic damage, Eur.
    
    J. Mech. A, 10, 587-606 (1991) .
    [76] J. Janson and U. Stigh, Influence of cavity shape on damage parameter, /. Appl Mech., 52, 609-614 (1985) .
    [77] U. Stigh, Effect of interacting cavities on damage parameter, J. Appl, Mech., 53, 485-490 (1986) .
    [78] V. Tvergaard, Material Failure by Void Growth to Coalescence, The Danish Center for Applied Mathematics and Mechanics, Report No. S45, Denmark, (1988) .
    [79] W. Yang, On the spatial characterization of damage evolution by a one-dimensional model, J. Mech. Phys. Solids, 38, 725-740 (1990) .
    [80] 靳志和,余寿文,脆性损伤材料裂纹尖端的局部解,固体力学学报, 11,209-216 (1990) .
    [81] S. W. Yu, The near tip fields and temperature distribution around a crack in a body of hardening material containing small damage, Acta Mech. Sinica, 5, 343-352(1989) .
    [82] H. D. Bui and A. Ehrlacher, Propagation of damage in elastic and plastic solids, in: Proc. of ICF5 (Edited by D. Francois, et al), Pergamon, Oxford, pp.533-551 (1981) .
    [83] H. D. Bui, A. Ehrlacher and C. Renard, The steady state propagation of a damaged zone of an elastic brittle solid, in: Proc. of ICF6 (Edited by S. R. Valluri, et al), Pergamon, Oxford, pp.1061-1067 (1984) .
    [84] L. Davison and A. L. Stevens, Thermo mechanic constitution of spalling elastic bodies,J. Appl. Phys., 44, 668-674 (1973) .
    [85] D. Krajcinovic and G. U. Fonseka, The continuous damage theory of brittle materials, Part 1: general theory, J. Appl Mech., 48, 809-815 (1981) .
    [86] G. U. Fonseka and D. Krajcinovic, The continuous damage theory of brittle materials, Part 2: uniaxial and plane response model, J. Appl. Mech., 48, 816-824(1981) .
    [87] P. J. Rabier, Some remarks on damage theory, Int. J. Eng. Sci., 27, 29-54 (1989) .
    [88] A. A. Vakulenko and M. Kachanov, Continuum theory of cracked media, Izv. AN SSSR, Mekh, Tverdogo Tela., 4, 159-166 (1971) .
    [89] A. Litewka, Effective material constants for orthotropically damaged elastic solid, Arch. Mech., 37, 631-643 (1985) .
    [90] J. Betten, Damage tensors in continuum mechanics, J. de. Mecan. Theor. Appl., 2,13-32(1983) .
    [91] J. Betten, Applications of tensor functions in continuum damage mechanics, Int. J. Damage Mech., 1,47-59 (1992) .
    [92] A. Dragon and Z. Mroz, A continuum model for plastic brittle behavior of rock and concrete, Int. J. Eng. Sci., 17,121-137 (1979) .
    [93] H. Horii and S. Nemat-Nasser, Overall moduli of solids with microcracks: load-induced anisotropy, J. Mech. Phys. Solids, 31, 155-171 (1983) .
    
    
    [94] Z. Hashin, Analysis of stiffness reduction of cracked cross-ply laminates, Eng. Fracl. Mech., 25, 771-782 (1986) .
    [95] 沈为,弹脆性材料的损伤本构关系及应用,力学学报, 23, 374-377(1990) .
    [96] L. Resende and J. B. Martin, Parameter identification in a damaged model for rock mechanics, Int. J. Num. Analy. Mech. Geo., 12, 79-97 (1988) .
    [97] 高玉臣,朱葳,含微裂纹的损伤理论,力学学报, 19, 541-549(1987) .
    [98] Y. C. Gao, Damage theory of materials with microstructure, Acta Mech. Sinica, 5,136-144(1989) .
    [99] D. Krajcinovic, Micromechanical basis of phenomenological model, in: Continuum Damage Mechanics: Theory and Applications (Edited by D. Krajcinovic and J. Lemaitre), Springer, Wien, pp. 195-211 (1987) .
    [100] C. L. Chow and T. J. Lu, A continuum damage mechanics approach to crack tip shielding in brittle solids, Int. J. Fract.. 50, 79-114 (1991) .
    [101] T. J. Lu and C. L. Chow, On constitutive equations of inelastic solids with anisotropic damage, Theo. Appl. Fract. Mech., 14,187-218 (1990) .
    [102] Y. Benveniste, On the Mori-Tanaka's method in cracked bodies, Mech. Res. Comm., 13,193-201 (1986) .
    [103] S. W. Yu and Z. H. Jin, Some new solutions to the coupling problems of creep damage, Chinese Sci. Bull., 34, 874-875 (1989) .
    [104] R. Billardon and L. Moret-Bailly, Fully coupled strain and damage finite element analysis of ductile fracture, Nucl. Eng. Design, 105, 43-49 (1981) .
    [105] V. Tvergaard, On localization in ductile materials containing spherical voids, Int. J. Fract., 18,237-252 (1982) .
    [106] A. Needleman and V. Tvergaard, An analysis of ductile rupture modes at a crack tip, J. Mech. Phys. Solids, 35, 151-183 (1987) .
    [107] A. Benallal, R. Billardon and J. Lemaitre, Failure analysis of structures by continuum damage mechanics, in: Prof, of ICF5 (Edited by D. Francois, et al), Pergamon, Oxford, pp.3669-3676 (1981) .
    [108] J. Lemaitre, Local approach of fracture, Eng. Fract. Mech., 25, 523-537 (1986) .
    [109] Z. P. Bazant, Mechanics of distributed cracking, Appl. Mech. Rev., 39, 675-705(1986) .
    [110] M. Kachanov, Effective elastic properties of cracked solids: critical review of some basic concepts, Appl. Mech. Rev., 45, 304-335 (1992) .
    [111] P. Matic and G. C. Sih, A pseudo-elastic material damage model, Part I and II, Theo. Appl. Fract. Mech., 3, 193-225 (1985) .
    [112] J. Mazars, A description of micro-and macroscale damage of concrete structures, Eng. Fract. Mech., 25, 729-737 (1986) .
    [113] G. Z. Voyiadjis and T. M. Abu-Lebdeh, Damage model for concrete using bounding surface concept, J. Eng. Mech., 119, 1865-1885 (1993) .
    
    
    [114] D. J. Stevens and D. Liu, Strain-based constitutive model with mixed evolution rules for concrete,J. Eng. Mech., 118,1184-1200 (1992) .
    [115] S. Yazdani and S. Karnawat, A unified constitutive theory for brittle solids, Mech. Res. Comm., 19,443-448 (1992) .
    [116] H. L. Schreyer and M. L. Wang, Elementary constitutive relations for quasi-brittle materials based on continuum damage mechanics, in: Micromechanics of Failure of Quasi-Brittle Materials (Edited by S. P. Shah, et al), Elsevier Applied Science, London, pp.95-104 (1990) .
    [117] I. A. Kunin, Elastic Media with Microstructures, II , Springer-Verlag, Berlin, (1983) .
    [118] J. W. Ju, A micromechanical damage model for uniaxially reinforced composites weakened by interfacial arc microcracks, J. Appl. Mech., 58, 923-930(1991) .
    [119] N. Laws and J. R. Brockenbrough, The effect of microcrack systems on the loss of stiffness of brittle solids, Int. J. Solids Struct., 23, 1247-1268 (1987) .
    [120] A. Hoenig, Elastic moduli of a non-randomly cracked body, Int. J. Solids Struct., 15, 137-154(1979) .
    [121] R. M. Christensen and K. H. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27, 315-330(1979) .
    [122] J. Aboudi and Y. Benveniste, The effective moduli of cracked bodies in plane deformations, Eng. Fract. Mech., 26, 171-184 (1987) .
    [123] R. L. Salganik, Mechanics of bodies with many cracks, Mech. Solids, 8, 135-143(1973) .
    [124] Z. Hashin, The differential scheme and its application to cracked materials, J. Mech. Phys. Solids, 36,719-734 (1988) .
    [125] N. Fares, Effective stiffness of cracked elastic solids, Appl. Mech. Rev., 45, 336-345 (1992) .
    [126] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Elastic Solids, Elsevier Science Publishers, North-Holland, (1993) .
    [127] H. Deng and S. Nemat-Nasser, Microcrack arrays in isotropic solids, Mech. Mater., 13, 15-36 (1992) .
    [128] Z. Hashin and S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids, 10, 335-342(1962) .
    [129] Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11, 127-140(1962) .
    [130] J. R. Willis, Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 185-202 (1977) .
    
    
    [131] G. J. Weng, The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds, Int. J. Eng. Sci., 28, 1111-1120 (1990).
    [132] T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571-574 (1973).
    [133] S. Nemat-Nasser, N. Yu and M. Hori, Solids with periodically distributed cracks, Int. J. Solids Struct., 30, 2071-2095 (1993).
    [134] Y. Huang, K. X. Hu and A. Chandra, The effective elastic moduli of microcraeked composite materials, Int. J. Solids Struct., 30, 1907-1918 (1993).
    [135] S. Y. Du and W. F. Li, Stiffness and strength of phase transformation ceramies containing misoriented microcracks, Acta Mech. Solida Sinica, 7, 97-103 (1994).
    [136] M. S. Wu, Effective moduli of finite anisotropic media with cracks, Mech. Mater., 15, 139-158 (1993).
    [137] H. Horii and S. Nemat-Nasser, Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geo. Res., 90, 3105-3125 (1985).
    [138] H. Horii and S. Nemat-Nasser, Brittle failure in compression: splitting, faulting and brittle-ductile transition, Phil. Trans. R. Soc. Lond. A, 319, 337-374 (1986).
    [139] 柯孚久,白以龙,夏蒙棼,理想微裂纹系统演化的特征,中国科学A辑,20,621-631 (1990)。
    [140] 杨延毅,节理裂隙岩体的损伤断裂力学及其在岩体工程中的应用,清华大学博士学位论文,(1990)。
    [141] 剡公瑞,岩石、混凝土类材料的断裂机理、模型研究及其工程应用,清华大学博士学位论文,(1994)。
    [142] 罗光琦,单轴压缩水泥石细观损伤机制的研究,内蒙古工学院硕士学位论文,(1993)。
    [143] M. Ortiz, A continuum theory of crack shielding in ceramics, J. Appl. Mech., 54, 54-58 (1987).
    [144] M. Ortiz and A. E. Giannakopoulos, maximal crack tip shielding by microcracking, J. Appl. Mech., 56, 279-282 (1989).
    [145] M. Ortiz and A. E. Giannakopoulos, Mixed mode crack-tip fields in monolithic ceramics, Int. J. Solids Struct., 26, 705-723 (1990).
    [146] J. W. Hutchinson, Crack tip shielding by microcracking in brittle solids, Acta Metall., 35, 1605-1619 (1987).
    [147] M. Kachanov, Elastic solids with many cracks: a simple method of analysis, Int. J. Solids Struct., 23, 23-43 (1987).
    [148] M. Kachanov and E. Montagut, Interaction of a crack with certain microcrack arrays, Eng. Fract. Mech., 25, 625-636 (1986).
    
    
    [149] M. Kachanov, E. Montagut and J. P. Laures, Mechanics of crack-microcrack interactions, Mech. Mater., 10, 59-71 (1990) .
    [150] J. P. Laures and M. Kachanov, Three-dimensional interaction of a crack front with arrays of penny shaped microcracks, Int. J. Fract., 48, 255-279 (1991) .
    [151] M. Kachanov, Elastic solids with many cracks and related problems, in: Advances in Applied Mechanics (Edited by J. W. Hutchinson and T. W. Wu), Academic Press, New York, 30, 259-428 (1993) .
    [152] A. Chudnovsky, A. Dolgopolsky and M. Kachanov, Elastic interaction of a crack with a microcrack array, Part I and II, Int. J. Solids Struct., 23,1-21 (1987) .
    [153] A. Chudnovsky and S. Wu, Evaluation of energy release rate in the crack-microcrack interaction problems, Int. J. Solids Struct., 29, 1699-1709(1992) .
    [154] S. A. Meguid, S. X. Gong and P. E. Gaultier, Main crack-microcrack interaction under mode I , II and III loadings: shielding and amplification, Int. J. Mech. Sci., 33, 351-359 (1991) .
    [155] S. A. Meguid, P. E. Gaultier and S. X. Gong, A comparison between analytical and finite element analysis of main crack-microcrack interaction, Eng. Fract. Mech.. 38,451-465 (1991) .
    [156] S. X. Gong and S. A. Meguid, On the effect of the release stresses due to near-tip microcracking, Int. J. Fract., 52, 257-274 (1991) .
    [157] S. X. Gong and H. Horii, General solutions to the problems of microcracks near the tip of a main crack, J. Mech. Phys. Solids, 37, 27-46 (1989) .
    [158] J. C. Gelin, Finite element analysis of ductile fracture and defects formation in cold and hot forging, Annals of the CIRP, 39, 215-218 (1990) .
    [159] P. Gilormini, C. Licht and P. Suquet, Growth of voids in a ductile matrix: a review, Arch. Mech., 40,43-80 (1988) .
    [160] A. Needleman, V. Tvergaard and J. W. Hutchinson, Void growth in plastic solids, in: Topics in Fracture and Fatigue (Edited by A. S. Argon), Springer-Verlag, pp.145-178 (1992) .
    [161] C. A. Berg, The motion of cracks in plane viscous deformation, in: Proc. Fourth U. S. National Congress of Applied Mechanics, 2, pp.885-892 (1962) .
    [162] F. A. McClintock, A criterion for ductile fracture by the growth of holes, J. Appl. Mech., 35, 363-371 (1968) .
    [163] J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, 17,201-217 (1969) .
    [164] D. M. Tracey, Strain hardening and interaction effects on the growth of voids in ductile fracture, Eng. Fract. Mech., 3, 301-316 (1971) .
    [165] B. Budiansky, J. W. Hutchinson and S. Slutsky, Void growth and col-
    
    lapse in viscous solids, in: Mechanics of Solids (Edited by H. G. Hopkin and M. J. Sewell), Pergamon, pp. 13-45 (1982).
    [166] Y. Huang, J. W. Hutchinson and V. Tvergaard, Cavitation instabilities in elastic-plastic solids, J. Mech. Phys. Solids. 39, 223-241 (1991).
    [167] Y. Huang, Accurate dilation rates for spherical voids in triaxial stress fields, Report Mech-155, Harvard University, (1989).
    [168] A. Needleman, Void growth in an elastic-plastic medium, J. Appl. Mech., 39, 964-970 (1972).
    [169] H. Andersson, Analysis of a model for void growth and coalescence ahead of a moving crack tip, J. Mech. Phys. Solids, 25, 217-233 (1977).
    [170] J. M. Duva and J. W. Hutchinson, Constitutive potentials for dilutely voided nonlinear materials, Mech. Mater., 3, 41-54 (1984).
    [171] J. M. Duva, A constitutive description of nonlinear materials containing voids, Mech. Mater., 5, 137-144 (1986).
    [172] C. Licht and P. Suquet, Growth of cylindrical voids in nonlinear viscous materials at arbitrary void volume fractions: a simple model, Arch. Mech., 40, 741-757 (1988).
    [173] 李国琛,受有两级空洞损伤时韧性材料的力学行为,固体力学学报,7,143-151 (1989)。
    [174] 李国琛,M.耶纳,塑性大应变微结构力学,科学出版社,(1993)。
    [175] N. L. Dung, Three-dimensional void growth in plastic materials, Mech. Res. Comm., 19, 227-235 (1992).
    [176] N. L. Dung, Prediction of void growth in tensile test, Mech. Res. Comm., 19, 341-350 (1992).
    [177] C. L. Hom and McMeeking, Void growth in elastic-plastic materials, J. Appl. Mech., 56, 309-317 (1989).
    [178] 黄筑平,孙立志,韧性材料中的一个新的动态孔洞增长模型,中国科学A辑,22,960-969 (1992)。
    [179] 郑长卿等,韧性断裂细观力学的初步研究及其应用,西北工业大学出版社,(1988)。
    [180] C. C. Chu and A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Tech., 102, 249-256 (1980).
    [181] V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17, 389-407 (1981).
    [182] V. Tvergaard and A. Needleman, Analysis of cup-cone fracture in a round tensile bar, Acta Metall., 32, 157-189 (1984).
    [183] M. E. Mear and J. W. Hutchinson, Influence of yield surface curvature on flow localization in dilatant plasticity, Mech. Mater., 4, 395-407 (1985).
    [184] 王自强,秦嘉亮,含空洞非线性材料的本构势和空洞扩展率,固体力学学报,2,127-141 (1989)。
    [185] Y. Sun and D. Wang, A lower bound approach to the yield loci of porous materials, Acta Mech. Sinica, 5, 237-243 (1989).
    
    
    [186] 黄筑平,杨黎明,潘客麟,材料的动态损伤和失效,力学进展,23,433-467 (1993)。
    [187] S. W. Yu and X. Q. Feng(冯西桥), Several problems of damage and fracture mechanics, in: Proc. of Inter. Syrup. on Fracture and Strength of Solids, Xi'an, China, (1994).
    [188] 黄克智,余寿文,杨卫,固体的本构理论与断裂,现代力学研讨会,中国台北,pp.17-34 (1993).
    [189] 曾攀,材料的概率疲劳损伤特性及现代结构分析原理,科学技术文献出版社,1993。
    [190] H. L. Tan and W. Yang, Atomistic/continuum simulation of interfacial fracture, Part Ⅰ and Ⅱ, Acta Mech. Sinica, 10, 150-161, 237-249 (1994).
    [191] 卢春生,白以龙,材料损伤断裂中的分形行为,力学进展,20,468-477 (1990)。
    [192] H. P. Xie, Fractals in Rock Mechanics, A. A. Balkema, Netherlands, (1993).
    [193] J. C. Simo and J. W. Ju, Strain-and Stress-based continuum damage models, Part Ⅰ and Ⅱ, Int. J. Solids Struct., 23, 821-869 (1987).
    [194] Z. P. Bazant and G. Pijaudier Cabot, Nonlocal continuum damage localization, instability and convergence, J. Appl. Mech., 55, 287-293 (1988).
    [195] J. W. Ju and T. M. Chen, Effective elastic moduli of two dimensional brittle solids with interacting microcracks, Part Ⅰ and Ⅱ, J. Appl. Mech., 61, 349-366 (1994).
    [196] X. Q. Feng(冯西桥) and S. W. Yu, Damage model of domain of microcrack growth for microcrack-weakened brittle solids, in: Proc. 2nd Int. Conf. on Nonlinear Mechanics (Edited by W. Z. Chien), Peking university, Beijing, pp. 299-302 (1993).
    [197] X. Q. Feng (冯西桥) and S. W. Yu, A new damage model for microcrack-weakened brittle solids, Acta Mech. Sinica, 9, 251-260 (1993).
    [198] M. F. Kannien and C. H. Popelar, Advanced Fracture Mechanics, Oxford University, Press, New York, (1985).
    [199] 汪胡桢等,现代工程数学手册,华中工学院出版社,(1985)。
    [200] S. W. Yu and X. Q. Feng (冯西桥), A micromechanics-based damage model for microcrack-weakened brittle solids, Mech. Mater., 19, (in press).
    [201] V. S. Gopalaratnam and S. P. Shah, Softening response of plain concrete in direct tension, ACI Mater., 301-323 (1985).
    [202] T. F. Wong, Micromechanics of faulting in Westerly granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 19, 49-64 (1982).
    [203] R. L. Kranz, Microcracks in rocks: a review, Technonopysics, 100,
    
    449-480(1983) .
    [204] L. S. Costin, Damage mechanics in the post-failure regime, Mech. Mater., 4, 149-160(1985) .
    [205] W. C. Moss and Y. M. Gupta, A constitutive model describing dilatancy and cracking in brittle rocks, J. Ceophys. Res., 87, 2985-2998 (1982) .
    [206] P. S. Steif, Crack extension under compressive loading, Eng. Fract. Mech., 20, 463-473 (1984) .
    [207] M. F, Ashby and S. D. Hallam, The failure of brittle solids containing small cracks under compressive stress state, Acta Metall., 34, 497-510 (1986) .
    [208] C. L. Li and E. Nordlund, Deformation of brittle rocks under compres-sion-with particular reference to microcracks, Mech. Mater., 15, 223-239 (1993) .
    [209] Y. B. Zaitsev, Crack propagation in a composite material, in: Fracture Mechanics of Concrete (Edited by F. H. Wittmann), Elsevier, Amsterdam, pp.31-60 (1983) .
    [210] H. Tada, The Stress Analysis of Cracks Handbook, Del Research Corporation, Paris, (1973) .
    [211] 冯西桥,余寿文,脆性材料的各向异性损伤及其测量方法,清华大学学报, 35(2) , (1995) .
    [212] X. Q. Feng (冯西桥) and S. W. Yu, Experimental method of measuring damage state and micromechanical analysis of softening behavior of quasi-brittle materials, in: Proc. of Inter. Symp. on Fracture and Strength of Solids, Xi'an, China, (1994) .
    [213] R. H. Evans and M. S. Marathe, Microcracking and stress-strain curve for concrete in tension, Materiaux et Constructions, 1, 61-64 (1968) .
    [214] V. C. Li, K. P. Chong and E. E. Einstein, Tension softening and size effects on the fracture determination of geomaterials, in: Fracture of Concrete and Rock (Edited by S. P. Shah and S. E. Swartz), Springer, New York, pp.255-264 (1989) .
    [215] W. A. M. Brekelmans, P. J. G. Schreurs and J. H. P. de Vree, Continuum damage mechanics for softening of brittle materials, Acta Mechanica, 93, 133-143(1992) .
    [216] E. Mizuno and S. Hatanaka, Compressive softening model for concrete, J. Eng. Mech., 118,1546-1563 (1992) .
    [217] M. Basista and D. Gross, One-dimensional constitutive model of microcracked elastic solid, Arch. Mech., 37, 587-601 (1985) .
    [218] M. Basista and D. Gross, A note on brittle damage description, Mech. Res. Comm., 16, 147-154 (1989) .
    [219] B. L. Karihaloo, D. Fu and X. Huang, Modelling of tension softening in quasi-brittle materials by an array of circular holes with edge cracks, Mech. Mater., 11, 123-134 (1991) .
    
    
    [220] X. Huang and B. L. Karihaloo, Tension softening of quasi-brittle materials modeled by single and doubly periodic arrays of coplanar penny-shaped crocks, Mech. Mater., 13, 257-275 (1992) .
    [221] M. Ortiz, Microcrack coalescence and macroscopic crack growth initiation in brittle solids, Int. J. Solids Struct., 24, 231-250 (1988) .
    [222] H. Horii, A Hasegawa and F. Nishino, Fracture process and bridging zone model and influencing factors in fracture of concrete, in: Fracture of Concrete and Rock (Edited by S. P. Shah and S. E. Swartz), Springer, New York, pp.205-219 (1989) .
    [223] M. Terrien, Emission acoustiqueet comportment post-critique dun beton solliciteen traction, Bull, de Liaison des ponts et chaussees, 105, 65-72 (1980) .
    [224] D. Broek, Elementary Engineering Fracture Mechanics, Sijthoff & Noordhoff, The Netherlands, (1974) .
    [225] X. Q. Feng (冯西桥) and S. W. Yu, Micromechanical modeling of tensile response of elastic-brittle solids, Int. J. Solids Struct., 31, (in press).
    [226] X. Q. Feng (冯西桥) and S. W. Yu, Micromechanical modeling of strain softening in microcrack-weakened quasi-brittle materials, The 12th U. S. National Congress of Applied Mechanics, June 26-July 1, Seattle, (1994) .
    [227] R. G. Hoagland and J. D. Embury, A treatment of inelastic deformation around a crack tip due to microcracking, J. Am. Cera. Soc., 63, 404-410 (1980) .
    [228] N. Clauss, Fracture toughness of A12O3 with an unstablized ZrO2 dispersed phase, J. Am. Cera. Soc., 59, 49-51 (1976) .
    [229] C. C. Wu, S. W. Freiman, et al, Micro structural aspect of crack propagation in ceramics, J. Mater. Sci., 13, 2659-2670 (1978) .
    [230] Y. Fu, Mechanics of Microcrack Toughing in Ceramics, Ph.D Thesis, University of California at Berkeley, (1983) .
    [231] A. G. Evans and Y. Fu, Some effects of microcracks on the mechanical properties of brittle solids, Acta Metall, 33,1515-1531 (1985) .
    [232] A. G. Evans and K. T. Faber, Crack-growth resistance of microcracking brittle materials, J. Am. Cera. Soc., 67, 255-260 (1984) .
    [233] A. G. Evans and K. T. Faber, Toughening of ceramics by circumferential microcracking,J. Am. Cera. Soc. ,64, 394-398 (1981) .
    [234] P. G. Charalambides and R. M. McMeeking, Finite element method simulation of crack propagation in brittle microcracking solids, Mech. Mater., 6, 71-87 (1987) .
    [235] P. G. Charalambides and R. M. McMeeking, Near tip mechanics of stress-induced microcracking in brittle materials, J. Am. Cera. Soc., 71, 465-472 (1988) .
    [236] M. Ruhle, A. G. Evans, et al, Microcrack toughing in Alumina / Zirconia, Acta Metall., 35, 2701-2710 (1987) .
    
    
    [237] J. W. Hutchinson, Mechanisms of toughening in ceramics, in: Theoretical and Applied Mechanics (Edited by P. Germain, et al), Elsevier Science Publishers, North-Holland, pp. 139-144 (1989) .
    [238] D. C. Shetty, A. R. Rosenfield and W. H. Duckworth, Mixed mode fracture of ceramics in diameter compression,J. Am. Cera. Soc., 69, 437-443 (1986) .
    [239] G. J. Rodin, An example of crack tip analysis in brittle damaged materials, Int. J. Fract.. 33, R31-R35 (1987) .
    [240] P. S. Steif, A semi-infinite crack partially penetrating a circular inclusion, J. Appl. Mech., 54, 87-92 (1987) .
    [241] Z. H. Li, Y. Zhao and S. Schmauder, A cohesive model of microcrack toughening, Eng. Fract. Mech., 44, 257-265 (1993) .
    [242] N. Laws and J. R. Brockenbrough, Microcracking in polycrystalline solids, J. Eng. Mater. Tech., 110, 101-104 (1988) .
    [243] C. Mauge and M. Kachanov, Anisotropic material with interacting arbitrarily oriented cracks, Int. J. Fract., 65,115-139 (1994) .
    [244] H. Horii and S. Nemat-Nasser, Interacting microcracks near the tip in the process zone of a macro-crack, J. Mech. Phys. Solids, 35, 601-629 (1987) .
    [245] D. Gross, Stress intensity factor of systems of cracks, Ing.-Arch., 51, 301-310(1982) .
    [246] S. X. Gong and H. Horii, General solutions to the problems of microcracks near the tip of a main crack, J. Mech. Phys. Solids, 37, 27-46 91989) .
    [247] A. Dolgnopolsky, V. Karbhari and S. S. Kwah, Microcrack induced toughening-an interaction model, Ada Metall., 37, 1349-1354 (1989) .
    [248] K. Y. Lam, C. Wen and Z. Tao, Interaction between microcracks and a main crack in a semi-infinite medium, Eng. Fract. Mech., 44, 753-761 (1993) .
    [249] L. R. F. Rose, Microcrack interaction with a main crack, Int. J. Fract., 31,233-241 (1986) .
    [250] A. A. Rubinstein and H. C. Choi, Microcrack interaction with transverse array of microcracks, Int. J. Fract., 36,15-26 (1988) .
    [251] H. Cai and K. T. Faber, On the use of approximation method for microcrack shielding problems,J. Appl. Mech., 59, 497-501 (1992) .
    [252] S. W. Yu and X. Q. Feng (冯西桥), Analysis of mode-I crack tip shielding by microcracking in brittle materials, Int. J. Fract., (submitted).
    [253] B. Budiansky, J. W. Hutchinson and J. C. Lambropoulos, Continuum theory of dilatant transformation toughening in ceramics, Int. J. Solids Struct., 19,337-355(1983) .
    [254] J. R. Rice, Mathematical analysis in the mechanics of fracture, in: Fracture (Edited by H. Liebowitz), Academic Press, New York, pp.191-311
    
    (1968).
    [255] C. H. Wu, A semi-infinite crack penetrating an inclusion, J. Appl. Mech., 55, 736-738 (1988).
    [256] C. H. Wu, Maximal crack shielding by microcracking, J. Appl. Mech., 57, 252 (1990).
    [257] D. S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104 (1960).
    [258] G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances Appl. Mech., 7,, 55-129 (1962).
    [259] 诸艾,王自强,断裂过程区应力应变场的数学分析,力学学报,25,591-605 (1993).
    [260] C. Zhang and D. Gross, Ductile crack analysis by a cohesive damage zone model, Eng. Fract. Mech., 47, 237-248 (1994).
    [261] J. Janson, Dugdale crack in a material with continuous damage formation, Eng. Fract. Mech., 9, 891-899 (1977).
    [262] S. W. Yu and X. J. Fan, Temperature Fields at crack tip in a damaging medium, ZAMM, 72, T166-T169 (1992).
    [263] 王吉伟,匡震邦,单向拉伸界面裂纹的条形损伤-塑性区域模型,力学学报,26,284-296 (1994).
    [264] 靳志和,余寿文,脆性损伤材料裂纹尖端的局部解,固体力学学报,11,209-216 (1990)。
    [265] X. T. Zhang, K. C. Hwang and T. H. Hao, Asymptotic solution of mode-Ⅲ crack in damaged softening materials, Int. J. Fract., 62, 269-282 (1993).
    [266] X. M. Wang and Y. P. Shen, The Dugdale crack on bimaterial interface, Acta Mechanica, 59, R25-R32 (1993).
    [267] W. Becker, Dugdale-Riβ-Los(?)ngen und deren Verwendung zur mikromechanischen Modellierung von anisotropem Damage, VDI Verlag, Dusseldorf, (1988).
    [268] X. Q. Feng (冯西桥) and S. W. Yu, Analyses of damage localization at the crack tip in a brittle damaged material, Eng. Fract. Mech., (submitted).
    [269] J. F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London, (1973).
    [270] W. T. Koiter, General theorems for elastic-plastic solids, In: Progress in Solid Mechanics (Edited by I. N. Sneddon and R. Hill), North-Holland, Amsterdam, pp. 165-221 (1961).
    [271] J. A. K(?)nig, Shakedown of Elastic-Plastic Structures, PWN-Polish Scientific Publishers, Warszawa, (1987).
    [272] J. A. K(?)nig and G. Maier, Shakedown analysis of elastoplastic structures, a review of recent developments, Nucl. Eng. Design, 66, 81-95 (1981).
    [273] 冯西桥,刘信声,影响结构安定的各种因素,力学进展,23,214-222
    
    (1993) .
    [274] 冯西桥,结构的安定理论及其应用,清华大学硕士学位论文, (1991) .
    [275] C. Polizzotto, A unified treatment of shakedown theory and related bounding techniques, Solid Mech. Arch., 7, 19-76 (1982) .
    [276] M. Carpurso, Some upper bound principles to plastic strains in dynamic shakedown of elastic-plastic structures, J. Struct. Mech.. 7, 1-20 (1979) .
    [277] T. Panzeca, C. Polizzotto and S. Rizzo, Bounding techniques and their applications to plastic analysis of structures, in: Mathematical Programming Method in Structural Plasticity (Edited by D. L. Smith), Springer-Verlag, Wien, pp.315-348 (1990) .
    [278] X. Q. Feng (冯西桥) and S. W. Yu, An upper bound of elastic-plastic structures at shakedown, Int. J. Damage Mech., 3, 277-289 (1994) .
    [279] X. Q. Feng (冯西桥) and S. W. Yu, Bounding technique to damage factor in shakedown of structures subjected to variable loads, in: Proc. of the Asia-Pacific Symp. on Advances in Engineering Plasticity and its Applications (Edited by B. Y., Xu and W. Yang), International Academic Publishers, Beijing, pp.149-154, (1994) .
    [280] A. Hachemi and D. Weichert, An extension of the static shakedown theorem to a certain class of inelastic materials with damage, Arch. Mech., 44, 491-496(1992) .
    [281] A. Siemasko, Inadaptation analysis with hardening and damage, Eur. J. Mech. A, 12, 237-248(1993) .
    [282] R. Piques and A. Pineau, Global and local approach of creep crack initiation and growth applied to an austenitic stainless and an Aluminum alloy, in: Proc. of ICF7 (Edited by K. Salama, et al), Pergamon, Oxford, pp.1707-1714(1989) .
    [283] G. Maier, A shakedown matrix theory allowing for work-hardening and second geometric effects, in: Foundations of Plasticity (Edited by A. Sawczuk), North-Holland, Amsterdam, pp.417-433 (1973) .
    [284] F. Tin-Loi and P. Grundy, Deflection stability of workhardening structures, J. Struct. Mech., 16, 331-347 (1978) .
    [285] D. Weichert and J. Gross-Weege, The numerical assessment of elastic-plastic sheet under variable mechanical and thermal loads, Int. J. Mech. Sci., 30, 757-767 (1988) .
    [286] 冯西桥,刘信声,随动应变强化结构的安定性分析,力学学报, 24,500-503 (1992) .
    [287] X. Q. Feng (#) and S. W. Yu, Damage and Shakedown analysis of structures with strain-hardening, Int. J. Plasticity, (in press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700