用户名: 密码: 验证码:
补肾活血法治疗强直性脊柱炎临床研究及抗骨化分子机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强直性脊柱炎(ankylosing spondylitis, AS)的发病机制至今不明,脊柱及外周关节(尤其是髋关节)骨化强直可致患者活动能力丧失,严重影响患者的生活、工作。因此,抑制或延缓骨化发生是AS治疗的关键,然而,没有证据显示目前的治疗方法可以延缓AS骨化的发生发展。中医中药在控制AS病情及延缓AS骨化发生具有巨大的潜能。本论文在导师冯兴华教授补肾活血法治疗AS学术思想的指导下,首先对以补肾活血立法组方的补肾强脊汤治疗AS的疗效与安全性进行系统的综合的评价;然后以体外培养的AS成纤维细胞系统作为研究对象,采用中药血清药理学方法,借助western blotting技术,在蛋白表达层面从BMP/Smad信号传导通路探讨中药复方补肾活血方药抑制AS成纤维细胞向成骨型分化、抗AS骨化作用的可能分子机制。
     理论研究
     1通过分析古代医籍关于脊强、肾痹、骨痹、大偻等与AS相似疾病的病因病机的论述,对腰痛、足跟痛、肩背痛等AS相关症状病因病机的阐述,总结得出AS的发病当是肾本虚,风、寒、湿、热、瘀血等邪气侵袭人体、痹阻经脉而致。2导师冯兴华教授从事中医风湿病治疗40余年,在强直性脊柱炎的治疗方面享誉盛名,文章从症状学的角度总结导师经验,分析AS发病的原因与机制。导师认为,提炼为“肾虚是AS的根本原因;风、寒、湿、热、瘀血是AS发病的诱因,是标实的表现”,患者先天不足,或后天失养,致使肾虚督空,风、寒、湿、热等外邪乘虚侵袭人体,痹阻筋脉、经络,或内生的湿、热、瘀血阻滞经脉,气血、水湿运行受阻,瘀滞而致生本病。治疗应以“补肾活血”为基本原则。
     二临床研究
     目的:评价补肾强脊汤治疗强直性脊柱炎的有效性和安全性。分别从AS评价(Assessment in ankylosing spondylitis, ASAS) 20达标率、Bath强直性脊柱炎疾病活动指数(Bath AS disease activity index, BASDAI) 50达标率、Bath强直性脊柱炎功能指数(Bath ankylosing spondylitis functional index, BASFI)、Bath强直性脊柱炎测量学指数(Bath ankylosing spondylitis metrology index, BASMI)等多种疗效评价指标,从脊柱疼痛、晨僵、夜间痛等症状改善情况,从中医证候指标等多个方面与西药柳氮磺胺吡啶比较,评价补肾强脊汤对肾虚瘀阻型AS患者的疗效;并观察其对患者肝肾功能、心血管、血液系统的影响。
     方法:采用随机分组、对照,将来自于2008年9月至2009年6月中国中医科学院广安门医院风湿病科门诊的、90例中医辨证为肾虚瘀阻型AS患者分为两组,中药组45例,给予补肾强脊方药煎汤治疗,日两次;西药组45例,给予柳氮磺胺吡啶1g,口服日两次,共治疗24周。以4周、12周、24周为评价点,分别评价并比较两组的ASAS20、BASDAI50达标率。以24周为评价点,分别评价两组治疗前后BASDAI、BASFI、BASMI、脊柱疼痛、晨僵、夜间痛、患者总体评价(PGA)及急性时相反应物血沉(ESR)和C反应蛋白(CRP)的变化情况,以及中医证候指标的改善情况,并比较两组间的差异。
     结果:补肾强脊汤在各评价点(4周、12周、24周)的ASAS20达标率分别为27.27%、65.91%、86.36%, BASDAI50达标率分别为6.98%、27.27%、63.64%,均较西药组为高。中医肾虚血瘀证候总有效率为86.36%,高于西药组的58.14%。补肾强脊汤可以有效的改善BASDAI、BASFI、BASMI等的评分,对患者总体评价、脊柱疼痛、夜间痛、晨僵、肌腱端不适等临床症状有明显缓解作用,对ESR、CRP亦有显著改善作用。试验过程中,中药组患者均未出现不良事件。
     结论:补肾强脊汤治疗强直性脊柱炎的疗效确切,且起效迅速,疗效持久稳定。在各评价点(4周、12周、24周)的ASAS20达标率分别为27.27%、65.91%、86.36%, BASDAI50达标率分别为6.98%、27.27%、63.64%,均较西药组为高。中医肾虚血瘀证候总有效率为86.36%,高于西药组的58.14%。可以有效的改善AS患者的疾病活动度、躯体功能,改善脊柱疼痛、夜间痛、晨僵、肌腱端不适等相关临床症状。对AS患者颈椎、腰椎、髋关节活动范围都有很好的改善作用。补肾强脊汤治疗AS临床疗效满意,安全性和依从性良好。
     三实验研究
     以国家自然科学基金为依托,本课题以体外培养AS成纤维细胞系统作为研究对象,采用中药血清药理学方法,应用western blotting技术,研究BMP/Smad信号传导通路在AS成纤维细胞向成骨型分化的作用,并从该通路出发探讨补肾活血方药抗AS骨化作用的分子机制。
     1实验一rhBMP-2对体外培养的正常人髋关节囊成纤维细胞增殖及分化的影响
     目的:观察不同浓度重组人骨形态发生蛋白(rhBMP-2)作用下,体外培养的正常人髋关节囊成纤维细胞增殖活性及碱性磷酸酶活性,以了解rhBMP-2能否诱导正常人髋关节囊成纤维细胞向成骨型分化,为探索BMP-2在AS骨化发生中的作用提供基础。
     方法:在北京大学人民医院骨关节矫形中心协助下,取因外伤骨折需行全髋关节置换手术患者(男性,18-55岁)的髋关节囊,采用组织块培养法培养人髋关节囊成纤维细胞。应用MTT比色法检测rhBMP-2 (100、200、400ng/ml)刺激成纤维细胞12h、24h、48h、72h,细胞增殖的时效变化;检测不同浓度rhBMP-2(50、100、200、400、800、1600ng/ml)刺激成纤维细胞24h,细胞生长及增殖量效变化;用酶动力学方法检测不同浓度rhBMP-2作用下细胞分泌ALP的活性。
     结果:不同浓度的rhBMP-2随刺激时间的增加均对成纤维细胞的增殖有促进作用,并于刺激24小时后增殖进入高峰,与刺激12小时后增殖情况有显著差异(P<0.05),与刺激48小时、72小时后的增殖情况没有显著差异(P>0.05)。但400ng/ml的rhBMP-2刺激72小时细胞增殖明显减少。rhBMP-2在较低浓度时对成纤维细胞的增殖即有显著的促进作用,并随浓度的升高促进作用增强,与空白对照组间差异有显著的统计学意义(P<0.05)。当浓度为200ng/ml时,增殖活性达到最大值,并由此细胞进入增殖的平台期。同时,成纤维细胞的ALP活性与空白对照组相比,活性均有显著增加,差异均具有显著的统计学意义(P<0.05),但各浓度组组间的差异无统计学意义(P>0.05)。
     结论:正常人髋关节囊成纤维细胞具有向成骨型分化的潜能,在外源性rhBMP-2的诱导下可以表达成骨表型,并且可以促进细胞增殖。
     2实验研究二BMP/Smad信号传导通路在体外培养正常人髋关节囊成纤维细胞的表达情况
     目的:验证BMP-2可以开启正常人髋关节囊成纤维细胞向成骨型分化的信号传导通路。观察正常人髋关节囊成纤维细胞在rhBMP-2刺激下,信号蛋白Smad1、Smad4的表达情况,以及Smad1磷酸化的水平,证实正常人髋关节囊成纤维细胞在BMP-2的刺激下BMP/Smad信号传导通路活化。
     方法:在北京大学人民医院骨关节矫形中心协助下,取因外伤骨折需行全髋关节置换手术患者(男性,18-55岁)的髋关节囊,采用组织块培养法培养人髋关节囊成纤维细胞。应用蛋白印迹western blotting法检测在200ng/ml rhBMP-2刺激不同的时间(2h、6h、12h、24h)后,正常成纤维细胞中pSmad1、Smad1及Smad4的表达情况。
     结果:正常人髋关节囊成纤维细胞在受到rhBMP-2的刺激后,pSmad1、Smad1、Smad4表达量都较未有受到BMP-2刺激组的表达量要高。pSmad1在受到rhBMP-2刺激6h后表达即显著升高(差异有显著性,P<0.05),随之持续稳定的表达(与12h组、24h组比较,差异没有显著性,P>0.05)。Smad1蛋白受到刺激6h后表达有所增加,与空白对照组及2h组相比差异有显著性(P<0.05),并随时间的增加其表达量逐渐升高。Smad4蛋白在受到rhBMP-2刺激后,表达量明显增加,刺激24小时后表达量增加尤为明显(与空白对照组及2h、6h、12h组对比,P<0.05)。
     结论:BMP-2可以刺激正常人髋关节囊成纤维细胞的BMP/Smad信号传导通路活化。正常人髋关节囊成纤维细胞在受到外源性rhBMP-2刺激后信号蛋白Smad1发生磷酸化,Smad1和Smad4表达上调,显示BMP-2启动了正常人髋关节囊成纤维细胞BMP/Smad的级联反应,激活BMP/Smad通路的信号传导。表明正常人髋关节囊成纤维细胞中的BMP/Smad信号传导通路具有进一步活化的潜能,正常人髋关节囊成纤维细胞在rhBMP-2诱导下向成骨型分化可能是由于BMP-2激活了BMP/Smad信号传导通路。
     3实验研究三BMP/Smad通路在强直性脊柱炎成纤维细胞中的表达情况
     目的:通过与正常人髋关节囊成纤维细胞比较,观察AS髋关节囊成纤维细胞中pSmad1、Smad1及Smad4的表达情况,以了解AS髋关节囊成纤维细胞中BMP/Smad信号传导通路是否处于活化状态。并用rhBMP-2刺激AS成纤维细胞,观察成骨标志基因Cbfa-1的表达变化,证实BMP/Smad信号传导通路活化可以诱导AS成纤维细胞向成骨型转化。
     方法:在北京大学人民医院骨关节矫形中心及北医三院骨科的协助下,取因外伤骨折需行全髋关节置换手术患者(男性,18-55岁)的髋关节囊以及全髋关节置换手术AS患者的髋关节囊,采用组织块培养法培养人髋关节囊成纤维细胞。应用蛋白印迹western blotting法检测AS成纤维细胞和正常成纤维细胞中pSmad1、Smad1和Smad4的表达情况。然后用rhBMP-2刺激AS成纤维细胞48h后,用western blotting方法检测其Cbfa-1表达的变化。
     结果:在AS成纤维细胞中pSmad1、Smad1、Smad4的表达都较正常成纤维细胞多(P<0.05)。在rhBMP-2的刺激下,Cbfa-1表达量明显增加(与AS成纤维细胞组相比,差异具有显著性,P<0.05)。
     结论:BMP/Smad信号传导通路的活化是AS髋关节囊成纤维细胞向成骨型分化的可能机理之一,可能是AS骨化发生的机制之一。AS髋关节囊成纤维细胞中pSmad1、Smad1、Smad4蛋白表达上调,BMP/Smad信号传导通路在AS成纤维细胞中处于活化状态。而AS成纤维细胞在BMP-2的诱导下Cbfa-1表达升高,表达成骨表型。
     4实验研究四补肾活血方药对AS成纤维细胞BMP/Smad信号传导通路的影响
     目的:验证补肾活血方药可以通过抑制BMP/Smad信号传导通路活化,抑制相关蛋白pSmad1、Smad1、Smad4的表达而抑制AS成纤维细胞向成骨型分化,从而发挥抗AS骨化作用。
     方法:在北京大学人民医院骨关节矫形中心及北医三院骨科的协助下,取因外伤骨折需行全髋关节置换手术患者(男性,18-55岁)的髋关节囊以及全髋关节置换手术AS患者的髋关节囊,采用组织块培养法培养人髋关节囊成纤维细胞。将成纤维细胞分成正常成纤维细胞组、AS成纤维细胞组、AS成纤维细胞+BMP组、AS成纤维细胞+BMP+对照血清组、AS成纤维细胞+BMP+含药血清组,根据分组情况细胞培养48h后,应用western blotting技术检测各组中Cbfa-1、Smad1、Smad4及pSmad1的表达情况。
     结果:AS成纤维细胞在受到rhBMP-2的刺激后,成骨标志基因Cbfa-1表达显著提高,而使用了含药血清处理的AS成纤维细胞Cbfa-1的表达则受到抑制,二者的差异具有显著性(P<0.005)。rhBMP-2刺激AS成纤维细胞后,Smadl蛋白明显发生磷酸化,pSmadl的表达量显著增多(P<0.001), Smad1、Smad4表达亦增加;而使用了补肾活血方药含药血清处理的成纤维细胞其pSmad1、Smad1、Smad4的表达较AS+BMP组的表达降低,差异具有显著性(P<0.001),与AS+BMP+对照血清组比较表达量具有显著差异性(P<0.001)。
     结论:证实抑制AS髋关节囊成纤维细胞BMP/Smad信号传导通路的活化是补肾活血方药抗AS骨化的分子机制之一。在补肾活血方药含药血清的干预作用下,AS成纤维细胞Smadl与Smad4表达受抑,Smad1磷酸化受限,BMP/Smad通路传导的信号受制,因而Cbfa-1表达减少,成纤维细胞向成骨型分化被遏。
Ankylosing spondylitis is a chronic inflammatory disease of the skeleton and associated soft tissues. Ankylosis of the spine and hip could lead to disability in activity, work and life. As a result, inhibiting or delaying ossification is the key target for treatment. However, there is no definite evidence showing that any treatment can delay ossification occurring in AS patients. Traditional Chinese medicine shows huge potential in delaying ossification. This thesis based on Professor Feng Xinghua's academic thinking of using the therapeutic principle of supplementing kidney and promoting blood circulation in treating AS, firstly assesses the clinical effect and safety of Bushenqiangji Decoction in treating AS. And then study the roles of BMP/Smad signal transductive pathway played in the molecular mechanism of Bushenhuoxue Decoction in inhibiting AS fibroblast differentiating into osteoblast from protein perspective and with western blotting technique and hebal serum pharmacology.
     1 Theoretical Research
     Research one:through analyzing the relative discussions about Jiqiang (spinal ankylosis), Shenbi (kidney impediment), Gubi (bone impediment), Dalv, et al of whose clinical manifestation were similar to AS, and the discussions about causes and pathogenesis of AS symptoms, we concluded that the pathogenesis of AS was that because of kidney deficiency, pathogenic wind, cold, dampness, heat and blood stasis invaded human, and caused meridians blocked. Research two:Dig out Professor Feng Xinghua's experience in treating AS with traditional Chinese medicine from the perspective of symptoms and analyze the cause and mechanism of AS. Conclusions were that kidney deficiency was the basic cause for AS; while pathogenic wind, cold, dampness, heat, blood stasis was the incentive. AS patients were weak innately or were lack of good care, causing kidney deficiency and Du meridian vacuity, and exogenous pathogen invaded and blocked the tendons and meridians, or endogenous pathogen blocked qi, blood circulation, and water flowing, then caused AS happen. The key therapeutic principle for AS was supplementing kidney and promoting blood circulation.
     2 Clinical Research
     Objective:Assess the effects of Bushenqiangji Decoction (the therapeutic principle was supplementing kidney and promoting blood circulation) in treating AS and its safety. Therapeutic effects of Bushenqiangji Decoction for AS patients with kidney deficiency and blood stasis pattern were assessed from the measurements of ASAS20 response ratio, BASDAI50 response ratio, BASFI, BASMI, et al, from the improvements of clinical symptoms like spinal pain, stiffness, night pain, from syndrome indexes, compared with the effects of sulfasalazine. And the effects of the decoction on patients'liver, kidney, cardiovascular system, and hematological system were evaluated.
     Methods:90 patients with the pattern of kidney deficiency and blood stasis were outpatients from Rheumatism Department of Guang'anmen hospital from 2008 September to 2009 June. They were randomly divided into two groups.45 patients as the treatment group were treated with Bushenqiangji Decoction, while 45 patients as the control group were treated with sulfasalazine tablets, twice a day, and the course was 24 weeks. The response ratios of ASAS20 and BASDAI50 of the two groups were evaluated after 4 weeks',12 weeks',24 weeks'treatment, and their differences between the two groups were compared. And the changes of Bath ankylosing spondylitis disease activity index (BASDAI), Bath ankylosing spondylitis functional index (BASFI), Bath ankylosing spondylitis metrology index (BASMI), spinal pain, stiffness, night pain, patient global assessment and ESR, CRP were compared after 24-week-treatment.
     Results:ASAS20 responsive ratio of Bushenqiangji Decoction at 4th week,12th week, and 24th week was 27.27%,65.91%,86.36%, respectively. BASDAI50 responsive ratio was 6.98%、27.27%、63.64% respectively at 4th week,12th week, and 24th week. Syndrome total effective rate of the treatment group was 86.36%, much higher than the control group (58.14%). Bushenqiangji Decoction could improve the scores of BASDAI, BASFI, BASMI and, PGA, and it could alleviate spinal pain, stiffness, night pain and uncomfort in enthesis, and down regulate ESR and CRP. There was no adverse incidence happening in treatment group.
     Conclusion:Bushenqiangji Decoction was of definite clinical effect, and effected fast, consistently and steadily. It could improve AS patients's disease activity, function, and alleviate clinical symptoms like spinal pain, night pain, stiffness, and enthesis. It could improve the morbility of cervical vertebrae, spinal vertebrae, and hip joint. Bushenqiangji Decoction was effective, safe and reliable.
     2 Experiment Research
     With the support from National Natural Science Foundation of China, this research using AS fibroblast system in vitro as the object, and taking the advantage of herbal serum pharmacological method and the technique of western blotting, aimed to study the effect of BMP/Smad signaling pathway on AS fibroblasts differentiating into osteoblasts, and to dig out the molecular mechanisms of Bushenhuoxue Decoction in anti-ossification of AS.
     2.1 Experiment One
     Objective:To investigate the effects of different concentrations of recombinant human bone morphogenetic protein -2 (rhBMP-2) on fibroblast proliferation and alkaline phosphatase (ALP) activity, in order to see if BMP-2 could induce fibroblast from normal patients'(without AS) capsula articularis coxae differentiate into osteoblast.
     Methods:The fibroblasts used in these researches were available with primary tissue culture, by planting capsula articularis coxae biopsies obtained during surgery for hip replacements from those who got fracture by accidence. Fibroblast proliferation was detected by methyl thiazolyl tetrazolium (MTT) after different concentrations of rhBMP-2 (100,200,400ng/ml) stimulating the cells for 12h,24h, 48h and 72h. And fibroblast alkaline phosphatase was evaluated with the method of enzyme kinetics.
     Results:Fibroblast proliferation was promoted in the presence of different concentration of rhBMP-2 as time went by. Fibroblast proliferation went to the peak when cells were stimulated by rhBMP-2 after 24h. rhBMP-2 at a low concentration could significantly increased fibroblast proliferation in a dependent way, which was statistically different (P<0.05). With the concentration of rhBMP-2 at 200ng/ml, proliferative activity was increased to the peak, and then increased no more no matter how high the concentration of rhBMP-2 was. In the other hand, compared with the controlled group, ALP activity secreted by the fibroblasts improved obviously with statistically differences (P<0.05).
     Conclusion:Fibroblast from capsula articularis coxae of normal patients was potential to differentiate into osteoblast. At the stimulation of exogenous rhBMP-2, fibroblast proliferation increased, and fibroblast could differentiate into osteoblast.
     2.2 Experiment Two
     Objective:Verify that BMP-2 could initiate the signal transduction of fibroblast from capsula articularis coxae of normal patients differentiating into osteoblast. Find out the changes of signal proteins pSmadl, Smadl and Smad4 expression after rhBMP-2 stimulating fibroblast for different periods, in order to testify that BMP/Smad signal transduction pathway was activated when fibroblast was stimulated by BMP-2.
     Methods:The fibroblasts used in these researches were available with primary tissue culture, by planting capsula articularis coxae biopsies obtained during surgery for hip replacements from those who got fracture by accidence. The expression of Smadl, Smad4, pSmadl in normal fibroblast was detected by western blotting after rhBMP-2 affected the cells 2h,6h,12h,24h.
     Results:Compared with those without rhBMP-2 treatment, pSmadl, Smad1 and Smad4 expressions of fibroblast treated with rhBMP-2 were much higher. The expression of pSmad1 increased immediately after treating rhBMP-2 for 6h (the difference between 6h group and control group was significant,P<0.05), and the expression persisted steadily (the difference between 12h group and 24h group was not obvious, P>0.05). The expression of Smad1 increased after treating rhBMP-2 for 6h, much higher than that of control group and 2h group (P<0.05), and kept on increasing as time goes by. The expression of Smadl increased after treating rhBMP-2 for 24h, much higher than that of control group,2h group,6h group and 12h group (P<0.05).
     Conclusion:BMP-2 could activate BMP/Smad signal transduction pathway in fibroblast from capsula articularis coxae of normal patients. Exogenous rhBMP-2 could phosphorylate signal protein Smadl, and up-regulate the expression of Smadl and Smad4, indicating that BMP-2 initiated the BMP/Smad signal transduction cascades in fibroblast from capsula articularis coxae of normal patients, activating the BMP/Smad pathway. It was believed that it was potential for BMP/Smad signal transduction pathway in fibroblast from capsula articularis coxae of normal patients to be further activated, and that rhBMP-2 induced fibroblast differentiating into osteoblast was that BMP-2 activated BMP/Smad signal transduction pathway.
     2.3 Experiment Three
     Objective:Expressions of pSmad1, Smadl and Smad4 in fibroblast from capsula articularis coxae of AS patients were compared with those from normal patients, and found out whether BMP/Smad pathway was activated in AS fibroblast. And then the expressions of Cbfa-1 were detected after AS fibroblast was stimulated by rhBMP-2, in order to testify that activation of BMP/Smad signal transduction pathway could induce AS fibroblast differentiating into osteoblast.
     Methods:The fibroblasts used in these researches were available with primary tissue culture, by planting capsula articularis coxae biopsies obtained during surgery for hip replacements from those who got fracture by accidence and those AS patients. Expressions of Smad1, Smad4, pSmad1 in normal fibroblast and AS fibroblast were dectected by western blotting, and the expressions of Cbfa-1 after fibroblast was treated with rhBMP-2 for 48h were western blotting.
     Results:Expressions of pSmad1, Smadl and Smad4 improved, comparing with those from control group (P<0.05). Expression of Cbfa-1 increased significantly with rhBMP-2 stimulation, whose difference between control group and between AS fibroblast without rhBMP-2 stimulation group was obvious (P<0.05).
     Conclusion:Activation of BMP/Smad signal transduction pathway was the potential mechanisms of AS fibroblast differentiating into osteoblast, and maybe it was one of the ossification mechanisms for AS. pSmad1, Smad1 and Smad4 in AS fibroblast were of high expressions, indicating that the pathway was activated in AS fibroblast. BMP-2 could induce AS fibroblast into osteoblast.
     2.4 Experiment Four
     Objective:Testify Bushenhuoxue Decoction inhibited AS fibroblast differentiating into osteoblast through inhibiting BMP/Smad pathway from activating, and constraining the expression of pSmadl, Smadl and Smad4, so that inhibiting ossification occurring was achieved.
     Methods:The fibroblasts used in these researches were available with primary tissue culture, by planting capsula articularis coxae biopsies obtained during surgery for hip replacements from those who got fracture by accidence and those AS patients. The fibroblasts were divided into normal fibroblast group, AS fibroblast group, AS fibroblast+BMP group, AS fibroblast+BMP+control serum group, and AS fibroblast+BMP+decoction-containing serum group. All the cells were treated according to the grouping for 48h, and then the expression of pSmad1, Smad1, Smad4 and Cbfa-1 were detected by western blotting.
     Results:Cbfa-1 expression increased obviously after AS fibroblast was stimulated by rhBMP-2, while its expression of decoction-containing serum treated group was inhibited, the difference between whom was significant (P<0.005). Expressions of pSmad1, Smad1, and Smad4 all increased after AS fibroblast was stimulated by rhBMP-2 (P<0.001), while their expression of decoction-containing serum treated group decreased. The expressions of all these proteins were quite different from each groups (P<0.001).
     Conclusion:Inhibiting the activation of BMP/Smad signa1 transduction pathway in AS fibroblast was one of the molecular mechanisms of Bushenhuoxue Decoction delaying ossification occurring in AS patients. With the interference of Bushenhuoxue Decoction, the expression of Smadl and Smad4 was inhibited, phosphorylation of Smadl was constrained, and BMP/Smad transductive signal was restrained, so Cbfa-1 expression decreased and differentiation of fibroblast into osteoblast was inhibited.
引文
[1]刘继刚.焦树德教授治疗强直性脊柱炎的经验介绍.贵阳中医学院学报,2002,24(3):14—15
    [2]项红.焦树德治疗强直性脊柱炎的临床经验.北京中医,2004,23(3):142-143
    [3]焦树德.强直性脊柱炎的治疗经验.河北中医,2004,26(10):725-726
    [4]王为兰.中医治疗强直性脊柱炎.北京:人民卫生出版社1999,7(1):4
    [5]刘志勤.王为兰治疗强直性脊柱炎经验.中医杂志,2005,46(5):341-342
    [6]邓长财,鞠中斌.张鸣鹤治疗活动期强直性脊柱炎经验探讨.山东中医药大学学报,2006,30(5):372-373
    [7]顾军花,茅建春,周时高,等.陈湘君运用扶正法治疗强直性脊柱炎经验撷菁[J].上海中医药杂志,2008,42(3):16—17
    [8]王义军.胡荫奇治疗强直性脊柱炎经验.中国中医药信息杂志,2004,11(12):1102
    [9]孔维萍等阎小萍教授治疗强直性脊柱炎的学术思想及临床经验.中医正骨,2008,20(6):64
    [10]刘慧敏,阎小萍,王昊,等.从“痹证有瘀”探讨强直性脊柱炎发病.中医杂志,2010,51:S74-75
    [11]刘宏潇,冯兴华治疗强直性脊柱炎经验.中医杂志,2004,45(7):495-496
    [12]张显彬,王海隆.冯兴华教授治疗强直性脊柱炎的经验.四川中医, 2007,25(1):4
    [13]潘文萍,周丽萍.周翠英治疗强直性脊柱炎的经验.四川中医,2002,20(11): 1
    [14]马芳,周彩云.房定亚治疗强直性脊柱炎经验.中医杂志,2009,50(8):685-686
    [15]李洪波,梁衍涛.健脾利湿法治疗强直性脊柱炎的临床观察.中华临床杂志,2005,6(2):37-40
    [16]张海波,傅禹砜.傅警龙治疗强直性脊柱炎经验.中医药优秀论文选:246-248
    [17]陈永刚,宋欣伟.宋欣伟教授治疗强直性脊柱炎的经验.云南中医中药杂志,2009,30(1):21
    [18]刘宏潇,冯兴华,何夏秀,等.补肾强脊颗粒治疗强直性脊柱炎疗效与安全性评价.中国中西医结合杂志,2006,26(5):403-406
    [19]路平,阎小萍,陶庆文,等.补肾强督方治疗强直性脊柱炎37例临床研究.西南国防医药,2008,18(3):372-373
    [20]郝亮.补肾强脊汤治疗强直性脊柱炎30例.实用中医药杂志,2009,25(3):148-149
    [21]王绍东,李军,姜益常.脊痹宁治疗寒湿痹阻型强直性脊柱炎42例疗效观察.中国中医药科技,2008,15(2):127
    [22]王玉明,王北,张秦,等.清热养阴除湿丸治疗活动期强直性脊柱炎对炎性指标的影响及临床疗效观察.中成药,2008,30(5):635-638
    [23]张剑勇,邱侠,陈德黎,等.通痹泰颗粒剂治疗强直性脊柱炎湿热伤肾证临床研究.世界中西医结合杂志,2007,2(7):393-395
    [24]盛长健,刘健,谢秀丽,等.新风胶囊对强直性脊柱炎的疗效及生活质量的影响.安徽中医学院学报,2010,29(5):16-19
    [25]尹国富,岳敏,刘福华,等.强脊胶囊治疗早中期强直性脊柱炎30例.中医研究,2008,21(4):20-22
    [26]刘晓玲,李拥军,刘琼,等.通痹合剂治疗强直性脊柱炎80例临床观察.新中医,2009,41(12):54-57
    [27]王建明,马骁,周童亮,等.补肾强督方对强直性脊柱炎患者外周血IL-18. IFN-γ、IL-4 mRNA表达水平的影响.中国中医药信息杂志,2007,14(3):14-16
    [28]王国琼.骨风宁胶囊对强直性脊柱炎Th1/Th2类细胞因子表达影响的研究.现代医药卫生,2009,25(11):1665-1666
    [29]王海隆,冯兴华,姜泉,等.补肾强脊颗粒对强直性脊柱炎患者外周血CD4+T淋巴细胞凋亡相关基因表达的影响.中医杂志,2009,50(9):801-803
    [30]何夏秀,张显彬,冯兴华.苦参碱对体外培养的强直性脊柱炎患者外周血单个核细胞增殖的影响.北京中医药,2010,29(5):382-384
    [31]刘迅,高根德,程春葵,等.通痹灵胶囊对体外培养的强直性脊柱炎成纤维细胞的影响.中医正骨,2002,14(2):3-6
    [32]王萧枫,高根德,程春葵.通痹散对体外培养的强直性脊柱炎患者成纤维细胞成骨作用的研究.中国骨伤,2006,19(12):724-726
    [33]高根德,Krug HE.中药治疗强直性脊柱炎的实验研究.中国中医骨伤科杂志,2002,10(1):11-14
    [34]刘宏潇,冯兴华,李丽,等.强直性脊柱炎成纤维细胞增殖、细胞周期及凋亡的初步研究.中华风湿病学杂志,2005,9(12):758-760
    [1]Xiang Zhang, Jane EA, Robert DI. Molecular and cellular biology of new bone formation:insights into the ankylosis of ankylosing spondylitis. Curr Opin Rheumatol,2003,15:387-393
    [2]Francois RJ. The spine in ankylosing spondylitis. PhD Thesis. Universite Catholique de Louvain; 1975
    [3]Ward MM, Hendrey MR, Makkey JD, et al. Clinical and immunogenetic prognostic factors for radiographic severity in ankylosing spondylitis. Arthritis Rheum, 2009,61(7):859-66
    [4]Itasaki N, Hoppler S. Crosstalk between Wnt and bone morphogenetic protein signaling:A turbulent relationship. Dev Dyn,2009.
    [5]Miyazono K, Maeda S, Imamura T. BMP receptor signaling:transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev, 2005,16:251-263
    [6]Kronenberg HM. Develomental regulation of the growth plate. Nature,2003, 423:32-336
    [7]Luyten FP, Lories RJ, De Bari C, et al. Bone morphogenetic proteins and the synovial joint. In Bone Morphogenetic Proteins:Regeneration of Bone and Beyond. Edited by Vukicevic S, Sampath KT. Basel:Birckhauser AG,2004:45-72
    [8]Balemans W, Van Hul W. Extracellular regulation of BMP signaling in vertebrates:cocktail of modulators. Dev Biol,2002,250:231-250
    [9]Francois RJ, Neure L, Sieper J, et al. Immunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis:detection of tumor necrosis factor a in two patients with early disease and transforming growth factor β in three more advanced cases. Ann Rheum Dis,2006,65:713-720
    [10]Park MC, Park YB, Lee SK. Relationship of bone morphogenetic proteins to disease activity and radiographic damage in patients with ankylosing spondylitis. Scand J Rheumatol,2008,37(3):200-204
    [11]李建明,初同伟,周跃.BMP-2和bFGF在强直性脊柱炎活动期骶髂关节滑膜组织中的表达.第三军医大学学报,2008,30(3):251-253
    [12]Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest, 2005,115:1571-1579
    [13]Lories RJ, Matthys P, Derese I, et al. Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. Arthritis Rheum,2006,54:1736-1746
    [14]Krug HE. Fibroblasts from mice with progressive ankylosis proliferate excessively in response to transforming growth factor-beta 1. J Investig Med,1998, 46(4):134-139
    [15]Park MC, Chung SJ, Park YB, et al. Suppression of bone morphogenetic proteins attenuates syndesmophytosis by down-regulating smad pathway in aggrecan-induced spondylitis mice. Arthritis Rheum,2008,58:S346
    [16]Mao. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signaling. Nature,2002,417:664-667
    [17]Holmen. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res,2004,19:2033-2040
    [18]Glinka. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature,1998,391:357-362
    [19]Bafico. Novel mechanism of Wnt signaling inhibition mediated by Dickkopf-1 interaction with LRP6. Nat Cell Biol,2001,3:683-686
    [20]MacDonald BT, Joiner DM, Oyserman SM, et al. Bone mass is inversely proportional to Dkk-1 levels in mice. Bone,2007,41:331-339
    [21]Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med,2007,13:156-163
    [22]Uderhardt S, Diarra D, Katzenbeisser J, et al. Blockade of Dickkopf-1 induces fusion of sacroiliac joints. Ann Rheum Dis,2009. E-pub ahead of print
    [23]Dimitrios D, Stamatis-Nick CL, Elena ES, et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum,2010,62(1):150-158
    [24]van der Heijde D, Landewe R, Einstei S, et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum,2008,58:1324-1331
    [25]van der Heijde D, Landewe R, Baraliakos X, et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum,2008,58:3063-3070
    [26]van der Heijde D, Landewe R, Maksymowych W, et al. Adalimumab (HUMIRA) therapy for ankylosing spondylitis over 2 years does not demonstrate inhibition of radiographic progression compared with a historical control group. Arthritis Rheum,2008,58:S413
    [27]Baraliakos X, Listing J, Rudwaleit M, et al. Radiographic progression in patients with ankylosing spondylitis after 2 years of treatment with the tumor necrosis factor alpha antibody infliximab. Ann Rheum Dis,2005,64:1462-1466
    [28]Baraliakos X, Listing J, Brandt J, et al. Radiographic progression in patients with ankylosing spondylitis after 4 years of treatment with the anti-TNF-alpha antibody infliximab. Rheumatology (Oxford),2007,46:1450-1453
    [29]Lories RJ, Derese I, De Bari C, et al. Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondyloarthritis. Arthritis Rheum,2007,56:489-497
    [30]Roux S, Orcel P. Bone loss. Factors that regulate osteoclast differentiation: an update. Arthritis Res,2000,2:451-456
    [31]Zwerina J, Tuerk B, Redlich K, et al. Imbalance of local bone metabolism in inflammatory arthritis and its reversal upon tumor necrosis factor blockade:direct analysis of bone turnover in murine arthritis. Arthritis Res Ther,2006,8:R22
    [32]Gilbert LC, Rubin J, Nanes MS. The p55 TNF receptor mediates TNF inhibition of osteoblast differentiation independently of apoptosis. Am J Physiol Endocrinol Metab,2005,288(5):1011-1018
    [1]van der Heijde D, Landewe R, Einstei S, et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum,2008,58:1324-1331
    [2]van der Heijde D, Landewe R, Baraliakos X, et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum,2008,58:3063-3070
    [3]van der Heijde D, Landewe R, Maksymowych W, et al. Adalimumab (HUMIRA) therapy for ankylosing spondylitis over 2 years does not demonstrate inhibition of radiographic progression compared with a historical control group. Arthritis Rheum,2008,58:S413
    [4]Baraliakos X, Listing J, Rudwaleit M, et al. Radiographic progression in patients with ankylosing spondylitis after 2 years of treatment with the tumor necrosis factor alpha antibody infliximab. Ann Rheum Dis,2005,64:1462-1466
    [5]Baraliakos X, Listing J, Brandt J, et al. Radiographic progression in patients with ankylosing spondylitis after 4 years of treatment with the anti-TNF-alpha antibody infliximab. Rheumatology (Oxford),2007,46:1450-1453
    [6]Miyamoto S, Takaoka K, Yonenobu K, Ono K. Ossification of the ligamentum flavum induced by bone morphogenetic protein. An experimental study in mice [J]. J Bone Joint Surg Br,1992,74:279-283
    [7]Hayashi K, Ishidou Y, Yonemori K, et al. Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum[J]. Bone,1997,21:23-30
    [8]Inanc B, Elcin AE, Elcin YM. Osteogenic induction of human periodontal ligament fibroblasts under two- and three-dimensional culture conditions. Tissue Engineering,2006,12(2):257-266
    [9]Ozec Y, Ozurk M, Kylyc E, et al. Effect of recombinant human bone morphogenetic protein-2 on mandibular distraction osteogenesis. J Craniofacial Surg, 2006,17(1):80-83
    [10]Hoshi K, Amizuka N, Sakou T, et al. Fibroblasts of spinal ligaments pathologically differentiate into chondrocytes induced by recombinant human bone morphogenetic protein-2:Morphological examinations for ossification of spinalligaments. Bone,1997,21:155-162
    [11]Kon T, Yamzaki M, Tagawa M, et al. BMP-2 stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int,1997,60(3):291-296
    [12]王修文,颜廷宾,张佐伦,等.骨形态发生蛋白-2对后纵韧带骨化作用.中国公共卫生,2008,24(8):977-978
    [13]Yonemori K, Imamura T, Ishidou Y, et al. Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament. Am J Pathol,1997, 150:1335-1347
    [14]Tanaka H, Nagai E, Murata H, Tsubone T, Shirakura Y, Sugiyama T, Taguchi T, Kawai S Involvement of bone morphogenetic protein-2 (BMP-2) in the pathological ossification process of the spinal ligament. Rheumatol,2001, 40:1163-1168
    [15]Kawaguchi H, Kurokawa T, Hoshino Y, et al. Immubohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor β in the ossification of the posterior longitudinal ligament of the cervical spine. Spine, 1992,17(Suppl.3):S33-S36
    [1]Braun J, Bollow M, Remlinger G, et al. Prevalence of spondyloarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum,1998,41:58-67
    [2]Braun J, Sieper J:The sacroiliac joint in the spondyloarthropathies. Curr Opin Rheumatol,1996,8:275-287
    [3]Maksymowych WP. Ankylosing spondylitis:pathology, etiology and pathogenesis. In:Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH, editors. Rheumatology.4th ed. New York:Mosby, Harcout Health Sciences,2008. p. 1115-30
    [4]Cruickshank B. Lesions of cartilaginous joints in ankylosing spondylitis. J Pathol Bacteriol,1956,71:73-84
    [5]Engfeidt B, Romanus R, Yden S. Histological studies of pelvo-spondylitis ossificans (ankylosing spondylitis) correlated with clinical and radiological findings. Ann Rheum Dis,1954,13:219-228
    [6]Sieper J, Appel Heiner, Braun J, et al. Critical appraisal of assessment of structural damage in ankylosing spondylitis. Arthritis Rheum,2008,58(3):649-656
    [7]孙瑛,主编.实用关节炎诊断治疗学.北京:北京医科大学出版社,2002
    [8]van der Heijde D, Landewe R, Einstei S, et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum,2008,58:1324-1331
    [9]van der Heijde D, Landewe R, Baraliakos X, et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum,2008,58:3063-3070
    [10]van der Heijde D, Landewe R, Maksymowych W, et al. Adalimumab (HUMIRA) therapy for ankylosing spondylitis over 2 years does not demonstrate inhibition of radiographic progression compared with a historical control group. Arthritis Rheum,2008,58:S413
    [11]Baraliakos X, Listing J, Rudwaleit M, et al. Radiographic progression in patients with ankylosing spondylitis after 2 years of treatment with the tumor necrosis factor alpha antibody infliximab. Ann Rheum Dis,2005,64:1462-1466
    [12]Baraliakos X, Listing J, Brandt J, et al. Radiographic progression in patients with ankylosing spondylitis after 4 years of treatment with the anti-TNF-alpha antibody infliximab. Rheumatology (Oxford),2007,46:1450-1453
    [13]Baraliakos X, Listing J, Rudwaleit M, et al. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther,2008,10(5):R104
    [14]Maksymowych WP, Chiowchanwisawakit P, Clare T, et al. Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis:Evidence of a relationship between inflammation and new bone formation. Arthritis Rheum,2009,60(1):93-102
    [15]Lories RJ, Derese I, De Bari C, et al. Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondyloarthritis. Arthritis Rheum,2007,56:489-497
    [16]Roux S, Orcel P. Bone loss. Factors that regulate osteoclast differentiation: an update. Arthritis Res,2000,2:451-456
    [17]Zwerina J, Tuerk B, Redlich K, et al. Imbalance of local bone metabolism in inflammatory arthritis and its reversal upon tumor necrosis factor blockade:direct analysis of bone turnover in murine arthritis. Arthritis Res Ther,2006,8:R22
    [18]Gilbert LC, Rubin J, Nanes MS. The p55 TNF receptor mediates TNF inhibition of osteoblast differentiation independently of apoptosis. Am J Physiol Endocrinol Metab,2005,288(5):1011-1018
    [19]Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med,2007,13:156-163
    [20]Chiowchanwisawaki P, Pedersen SJ, Lambert R, et al. Presentation: Resolution of inflammation following treatment of ankylosing spondylitis with anti-TNF agents is associated with new bone formation. Presented at:2009 ACR/ARHP Scientific meeting, Philadelphia, Oct 19,2009. Presentation no.1257
    [21]Lories RJ, Derese I, de Bari C, et al. Bone morphogenetic proteins in destructive and remodeling arthritis. Arthritis Res Ther,2007,9:207-215
    [22]Francois RJ, Neure L, Sieper J, et al. Immunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis:detection of tumor necrosis factor alpha in two patients with early disease and transforming growth factor beta in three more advanced cases. Ann Rheum Dis,2006,65:713-720 [Epub 2005 Oct 25]
    [23]Braun J, Bollow M, Neure L, et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum,1995,38:499-505
    [24]Wendling D, Cedoz JP, Racadot E, et al. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine,2007,74: 304-305
    [25]Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest, 2005,225:1571-1579
    [26]Sieper J, Baraliakos X, Listing J, et al. Persistent reduction of spinal inflammation as assessed by magnetic resonance imaging in patients with ankylosing spondylitis after 2 yrs treatment with the anti-tumor necrosis factor agent infliximab. Rheumatology (Oxford),2005,44:1525-30
    [27]Lambert RG, Salonen D, Rahman P, et al, for the M03-606 Study Group. Adalimumab significantly reduces both spinal and sacroiliac joint inflammation in patients with ankylosing spondylitis:a multicenter, randomized, double-blind, placebo-controlled study. Arhtritis Rheum,2007,56:4005-14
    [28]Appel H, Loddenkemper C, Grozdanovic Z, et al. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther,2006,8:R143
    [29]Ding J, Ghali O, Lencel P, et al. TNF-a and IL-1βinhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sciences,2009,84:499-504
    [30]Fukui N, Zhu Y, Maloney WJ, et al. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. J Bone Joint Surg (Am),2003,85A:59-66
    [31]Lories RJU, Derese I, Ceuppens JL, et al. Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis. Arthritis Rheum, 2003,48:2807-2818
    [32]McGonagle D, Wakefield RJ, Tan AL, et al. Distinct topography of erosion and new bone formation in achilles tendon enthesitis:Implications for understanding the link between inflammation and bone formation in spondylarthritis. Arthritis Rheum,2008,58:2694-2699
    [1]焦树德.“大偻”刍议.中国中医药信息杂志,2000(7):1-3
    [2]王洪图,编著.《内经》.人民卫生出版社,2000年
    [1]吴东海,王国春.临床风湿病学.北京:人民卫生出版社,2008:268
    [2]刘宏潇,冯兴华,何夏秀,等.补肾强脊颗粒治疗强直性脊柱炎疗效与安
    全性评价.中国中西医结合杂志,2006,26(5):403-406
    [3]路平,阎小萍,陶庆文,等.补肾强督方治疗强直性脊柱炎37例临床研究.西南国防医药,2008,18(3):372-373
    [4]王玉明,王北,张秦,等.清热养阴除湿丸治疗活动期强直性脊柱炎对炎性指标的影响及临床疗效观察.中成药,2008,30(5):635-638
    [5]盛长健,刘健,谢秀丽,等.新风胶囊对强直性脊柱炎的疗效及生活质量的影响.安徽中医学院学报,2010,29(5):16-19
    [6]尹国富,岳敏,刘福华,等.强脊胶囊治疗早中期强直性脊柱炎30例.中
    医研究,2008,21(4):20-22
    [7]Zochling J, van der Heijde D, Burgosvargas R, et al. ASAS/EULAR recommenda- tions for the management of ankylosing spondylitis. Ann Rheum Dis, 2005,4:1136-1137
    [8]Zochling J, van der Heijde D, Dougados M, et al. Current evidence for the management of ankylosing spondylitis. A systematic literature review for the ASAS/EULAR management recommendations in ankylosing spondylitis. Ann Rheum Dis,2005,4:1129-1136
    [9]Zochling J, Braun J. Assessment of ankylosing spondylitis. Clin Exp Rheumatol, 2005,23:S133-S141
    [10]Calin A, Garrett S, Whitelock H, et al. A new approach to defining functional ability in ankylosing spondylitis:the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol,1994,21:2281-2285
    [11]Garrett S, Jenkinson T, Kennedy LG, et al. A new approach to defining disease status in ankylosing spondylitis:the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol,1994,21:2286-2289
    [12]Jenkinson T, Mallorie P, Whitelock H, et al. Defining spinal mobility in ankylosing spondylitis. The Bath AS Metrology Index. J Rheumatol,1994,21:1694-1698
    [1]Matthews S J. Biological acticity of bone morphogenetic proteins (BMPs). Injury,2005,36 (suppl 3):34-37
    [2]Kaffagiri t, Yamaguch A, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblast into theosteoblast lineage. J-Cell-Biol, 1994,127:1755
    [3]Suzawa M, Takeucki Y, Fukumoto S, et al. Extracellular matrix-associated bone morphogenetic proteins are essential for differentiation of murine osteoblastic cells in vitro. Endocrinology,1999,140:2125-2133
    [4]Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop,1998, (346):26-37
    [5]Murphy MG, Mailhot J, Borke J, et al. The effects of rhBMP-2 on human osteosarcoma cells and human gingival fibroblasts in vitro. J Oral Implantol,2001, 27(1):16-24
    [6]李建明,初同伟,周跃.BMP-2和bFGF在强直性脊柱炎活动期骶髂关节滑膜组织中的表达.第三军医大学学报,2008,30(3):251-253
    [7]Lories RJ, Derese I, Luyten F.P. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest, 2005,115:1571-1579
    [8]Park MC, Chung SJ, Park YB, et al. Suppression of bone morphogenetic proteins attenuates syndesmophytosis by down-regulating smad pathway in aggrecan-induced spondylitis mice. Arthritis Rheum,2008,58:S346
    [9]Miyamoto S, Takaoka K, Yonenobu K, Ono K. Ossification of the ligamentum flavum induced by bone morphogenetic protein. An experimental study in mice. J Bone Joint Surg Br,1992,74:279-283
    [10]Kon T, Yamzaki M, Tagawa M, et al. BMP-2 stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int,1997,60(3):291-296
    [11]Christopher DB, Darrell P, Janet ML, et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol,2001, 22(4):199-204
    [12]Brouty BD, et al. Chemokines and CD40 expression in human fibroblasts. Eur J Immunol,2000,30:914-919
    [13]Hogaboam, et al. Novel roles for chemokines and fibroblasts in interstitial fibrasis. Kidney Int,1998,54:2152-2159
    [14]Pap, et al. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res,2000,2:361-367
    [15]Christopher DB, Darrel P, Janet ML, et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol,2001,22(4): 199-204
    [16]刘宏潇,冯兴华,李丽,等.强直性脊柱炎成纤维细胞增殖、细胞周期及凋亡的初步研究.中华风湿病学杂志,2005,9(12):758-760
    [17]Hayashi K, Ishidou Y, Yonemori K, et al. Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum. Bone,1997,21:23-30
    [1]Qin, BY, Lam, et al. Structural basis of Smad 1 activation by receptor kinase phosphorylation. Mol Cell,2001,6:1303-1312
    [2]Massague J, Hata A, Liu F. TGF-(3 signaling through the Smad pathway. Trends Cell Biol,1997,7:187-192
    [3]Lagna G, Hata A, Ali HB, et al. Partnership between DPC4 and SMAD proteins in TGF-β signaling pathways. Nature,1996,383:832-836
    [4]Sakou T, Onishi T, Yamamoto T, et al. Localization of Smads, the TGF-p family intracellular signaling components during endochondral ossification. J Bone Miner Res,1999,14(7):1145-1151
    [5]Moustakas A, Heldin CH. Non-Smad TGF-β signals. Cell Sci J,2005,118: 3573-3584
    [6]Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β- dependent responses in human mesangial cells. FASEB J,2003,17:1576-1578
    [7]Attisano L, Wrana JL. Signal transduction by the TGF-β superfamily. Science, 2002,296:1646-1647
    [8]Lai CF, Cheng SL. Signal transduction induced by bone morphogenetic protein-2 and transforming growth factor-β in normal human osteoblastic cells. J Biol Chem,2002,277:15514-15522
    [9]Weston CR, Lambright DG, Davis RJ. MAP kinase signaling specificity. Science,2002,296:2345-2347
    [10]Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest 2005; 115:1571-1579
    [11]Kretzschmar M, Massague J. Smads:mediators and regulators of TGF-β signaling. Curr Opin Genet Dev,1998,8:103-111
    [12]Derynek R, Y. Zhang, X. H. Feng. Smad:transcriptional activators of TGF-beta responses. Cell,1998,95:737-740
    [13]Kawabata M, Imamura T, Miyazono K. Sigal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev,1998,9:49-61
    [14]Miyazono K. Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Bone,1999,25:91-93
    [15]Massague J, Wotton D. Transcriptional control by the TGF-β/Smad signaling. EMBO J,2000,19(8):1745-1754
    [16]Siychekbytskyi S, Tamaki K, Engstrom U, et al. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem,1997,272(44): 28107-28115
    [1]Levanon D, Nereanu V, Ben stein Y, et al. The human members of the runt domain gene -family:cDNA structure, expression, and chromosomal localization. Genomics,1994,23:425-432
    [2]Ducy P, Starbuck M, Priemel M, et al. A Cbfal-dependent genetic pathway controls bone formation beyond embryonic development. Genes Der,1999,13:1025-1036
    [3]Panos GZ, Efthinia KB, Athanasios GP. Runx2 of bone and stretch. Int J Biochem Cell Bio J,2008,40:1659-1663
    [4]Schroeder TM, Jensen ED, Wsetendorf JJ. Runx2:a master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Res C Embryo Today,2005,75:213-225
    [5]Banerjee C, Javed A, Chou JY, et al. Differential regulation of the two principal Runx2/Cbfal N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocinology,2001,142: 4026-4039
    [6]Takazawa Y, Tsuji K, Nifuji A, et al. An osteogenesis-related transcription factor, core-binding factor A1, is constitutively expressed in the chondrocytic cell line TC6, and its expression is upregulated by bone morphogenetic protein-2. J Endocrinol, 2000,165:579-586
    [7]Lee KS, Kim HJ, Li QL, et al. Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol,2000; 20:8783-8792
    [8]Helvering LM, Sharp RL, Ou X, et al. Regulation of the promoters for the human bone morphogenetic protein 2 and 4 genes. Gene,2000,256:123-138
    [9]Nishimura R, Kato Y, Chen D, et al. Smad 5 and DPC4 are key molecules in mediating BMP 2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J Biol Chem,1998,273:1872-1879
    [10]Fujii M, Takeda K, Imamura T, et al. Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast an chondroblast differentiation. Mol Biol Cell,1999,10:3801-3813
    [11]Zaidi SK, Sullivan AJ, van Wijnen AJ, et al. Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci USA, 2002,99:8049-8053
    [1]刘宏潇,冯兴华,何夏秀,等.补肾强脊颗粒治疗强直性脊柱炎疗效与安全性评价.中国中西医结合杂志,2006,26(5):403-406
    [2]Krug HE. Fibroblasts from mice with progressive ankylosis proliferate excessively in response to transforming growth factor-beta 1. J Investig Med,1998, 46(4):134-139
    [3]刘迅,高根德,程春葵,等.通痹灵胶囊对体外培养的强直性脊柱炎成纤维细胞的影响.中医正骨,2002,14(2):3-6
    [4]王萧枫,高根德,程春葵.通痹散对体外培养的强直性脊柱炎患者成纤维细胞成骨作用的研究.中国骨伤,2006,19(12):724-726
    [5]高根德,Krug HE中药治疗强直性脊柱炎的实验研究.中国中医骨伤科杂志,2002,10(1):11-14
    [6]李仪奎,吴健宇.中药的血清药理研究方法[A].金正均.药理学进展[M].北京:人民卫生出版社,1998
    [7]李仪奎.中药血清药理学实验方法的若干问题.中药新药与临床药理,1999,10(2):95-98
    [8]田代真一.汉方方剂の血中浓度测定.和汉医药学会志,1986,3:274-275
    [9]张群豪,陈可冀.血清药理学在中药及复方研究中应用的评价.中国中西医结合杂志,2000,14(3):51-53
    [10]刘宏潇,冯兴华,李丽,等.强直性脊柱炎成纤维细胞增殖、细胞周期及凋亡的初步研究.中华风湿病学杂志,2005,9(12):758-760

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700