用户名: 密码: 验证码:
转rol ABC基因枳橙砧木的评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是我国重要的果树,培育矮化砧木和接穗品种一直是柑橘育种的重要目标之一。柑橘天然矮化砧木种质极少,传统育种因面临漫长的童期、高度杂合,以及珠心胚干扰等问题,目前进展缓慢。应用矮化基因,通过基因工程技术将一个或多个基因转入到柑橘基因组中,可望加快柑橘砧木矮化育种的进程。
     rol ABC基因克隆于Agrobactecium rhizogenes菌A4的Ri质粒的TL-DNA区,转入rol基因可诱发植株出现节间变短,分枝增多,顶端优势散失,大量毛根形成,植株显著矮化等性状,rol基因的表达与植物矮化性状形成关系密切,其诱发的大量毛状根在提高植物抗逆性方面引起重视,通过遗传转化技术将rol基因转入林木和果树砧木的研究近年来已有报道。
     枳橙[Citrus sinensis (L.) Osb x Poncirus trifoliate (L.) Raf.]是一种重要的柑橘杂交砧木,因具有抗柑橘衰退病和脚腐病特性,在欧美国家已成为新兴的柑橘砧木被大力推广应用,如进一步改良获得矮化、抗性枳橙将有更大的应用价值。
     本实验室及合作者通过农杆菌介导法己将rol ABC基因转入Troyer枳橙中,并通过组织培养繁殖B、D、E三个转rol ABC基因枳橙株系,转基因枳橙表现出典型的rol基因性状,根系也产生大量毛状根。在此基础上,本研究系统阐述了转rol ABC基因枳橙的分子基础、形态特征、生理特性、外源基因表达模式变化,并研究其用作基砧、中间砧对柑橘接穗生长发育的影响,探索转rol ABC基因枳橙自身及诱导接穗矮化的机理,并按照农业部转基因安全办要求,对转rol ABC基因枳橙砧木的安全性进行了综合评价。主要研究结论如下:
     1、PCR、Southern杂交鉴定确定,rol ABC基因已经转入到Troyer枳橙,B,D系插入一个拷贝,E系中插入两个拷贝,Semi-RT PCR和qRT PCR证实rol A、rol C基因在转基因B、D、E系中均能正常转录表达,其中rol C基因表达量最高,其次是rol A基因,rol B基因转录水平十分微弱。
     2、转rol基因枳橙及其实生后代表现出典型的rol基因形态特征,E系生长势较旺盛,植株较高,表现出更好的环境适应性,基部分枝相比B、D系更多。三者均表现良好的嫁接亲和力。B、D、E系转基因枳橙具有狭长而密集的导管结构,单位面积细胞数未有减少;光合速率明显高于野生植株,叶绿素含量增加与光合效率提高有密切关系;SOD、POD、Pro均显著提高,多年栽培表现出良好的抗逆性。
     3、建立适合于rol A、rol B、rol C基因实时荧光定量RT-PCR分析方法。2009年6月15至9月15,每隔15天,采取转基因枳橙B、D、E系7个组织(芽、幼茎、嫩叶、功能叶、皮、老叶、根),相对定量法分析外源基因的时空表达与植株生长的关系。发现在B、D、E系转rol基因枳橙中,rol C基因表达最强,其次是rol A, rol B基因表达水平最低。rol A、rol C基因表达在6月30日和7月30日呈现两个表达峰值,7月15日呈现一个明显的低谷,并且证实高温抑制生长与rol基因表达下调有关。rol A基因表达主要在老叶、芽、功能叶中表达,rolB基因主要在根系中表达,rol C基因主要在嫩茎、芽和功能叶中表达。取4个时间点,分析rol基因时空表达与矮化性状的相关性发现:植株生长高度减少率(plant height reduced rate, RPHRR)与rol A(r=0.75, p<0.01), rol C(r=0.74, P<0.01)基因在韧皮部的转录水平成正相关,除根中rol基因的表达外,rol A、rol C基因在其它6个组织中的表达也直接促进转基因枳橙矮化。
     4、转rol基因枳橙既不属于GA缺陷型,也不属于GA不敏感型,喷施GA3能促进其茎伸长生长,但恢复不到野生型水平。幼芽中GA1、GA4和IAA显著降低(P<0.05), POD酶活性显著提高(P<0.05)。转rol基因枳橙幼芽中GA20oxl基因mRNA水平相比对照显著下调(P<0.01)。在幼芽、嫩茎中,rol C基因与GA20ox1表达负相关。故认为rol基因通过在幼芽中的高表达下调了GA20ox1基因转录表达,进而抑制了活性GAs在幼芽中的合成,顶端分生组织较低量的活性GAs限制植物茎伸长。
     5、转rol ABC基因枳橙果实种子变小,且从楔形变成椭圆形,萌发比野生植株晚一周左右。T1代在幼苗期植株就表现出典型的rol基因矮化性状,萌芽率有所下降,99%为珠心苗,生长一致,但主干粗度有所下降。PCR, RT-PCR鉴定确认rol基因在实生后代表达同T0代,认为转rol ABC基因枳橙T1代能稳定遗传rol基因的典型性状。
     6、以转rol ABC基因枳橙B、D、E做基砧和中间砧木,嫁接大红甜橙、沙田柚,嫁接4年后,提取接穗DNA进行PCR和qRT PCR分析,确证外源基因不能通过嫁接转移。rol ABC基因枳橙一年生嫁接树光合作用明显提升,四年生嫁接树未见与对照有差别;两个接穗品种均表现12%-30%不同程度的诱导矮化效果;2009年和201O年连续2年果实品质分析发现,E系上嫁接大红甜橙,果实总糖含量分别上升14.2%和19.3%。
Citrus is one of the most important fruit crops in the world. In the past tens of years, obtaining dwarf characteristics was one of the main goals of citrus genetic improvement. There are no useful dwarfing rootstocks for citrus (Deng 1994; Grosser et al.,1988). Citrus traditional hybridization has made slow progress due to long juvenile period, high heterozygosity, sexual incompatibility and nucellar embryony. Biotechnology methods allow the introduction of one or few genes of dwarf genes into a citrus genome relatively quickly, and offer an alternative way to promote citrus rootstock dwarfing breeding.
     The rol A, rol B and rol C genes of Agrobacterium rhizogenes A4 are located on the TL-DN A of the Ri plasmid. rol genes have been introduced into a range of crops, and a wide of morphological and physiological changes occurred, these include dwarfing effects on plant height due to short internodes, wrinkled leaves and delayed flower timing, increased branching associated with loss of apical dominance, and inducing full hairy-root syndrome. Recently, rol genes were used to transform fruit trees for dwarfing breeding, especially for creating dwarfing rootstock with tolerance to environmental stress.
     Troyer citrange [Citrus sinensis (L.) Osb.χPoncirus trifoliata (L.) Raf.] is an important hybridization rootstock in citriculture. Which were find widespread use in European and America countries due to resist citrus tristeza virus (CTV) and citrus foot rot. To obtain dwarf and resistance by genetic improvement could enhance the value of Troyer citrange to a certain extent.
     Previously, rol ABC genes were transferred into Troyer citrange and three clones were obtained. These transgenic clones were propagated by tissue culture during the past six years. Many years observations showed that transgenic clones had typical dwarfing characters (up to 50% height reduction), and increased rooting ability. In the present study, morphological characteristics of rol ABC transgenic citrange clones were observed, molecular confirmation and expression of transgenes were investigated at different time intervals and in various tissues using qRT-PCR, many aspects of physiological property were determined, and the rootstock-scions interaction were surveyed, with the aim of evaluating the potential of transgenic Troyer citrange and understanding the induction mechanism of dwarfing by rol genes.
     1. PCR. southern blot analysis revealed that rol A, rol B and rol C were integrated into the citrange genome, exactly two copies in clones B and D, and one in clone E. Semi RT-PCR and quantitative RT-PCR results indicated that rol A and rol C were over-expressed, with the highest expression for rol C, while rol B had a very weak expression signal.
     2. The transgenic citrange clones B, D and E showed typical dwarfing characteristics of rol gene. E clone showed stronger growth vigour and better environmental resistance, also the lateral branches growth thickly compare with B, D clones. Three clones have a narrow and intensive vessel structure, the cell number per cm2 was not decreased, all transgenic citranges reveal good grafting compatibility with Dahong sweet orange and Shatian pumelo, POD, SOD, Pro and chlorophyll content all dramatically increased compare to wild type citrange, and transgenic citrange show an stronger photosynthesis and environmental resistance.
     3. Developing suitable qRT-PCR method for analysising the expression of rol A, rol B, rol C genes in transgenic citrange. From 15 June to 15 September in 2009. seven plant tissues including buds, tender leaves, young stems, functional leaves, old leaves, bark and roots were used as materials for q RT PCR analysis, at the same stage, 10 plants per transgenic clone and wild-type citrange were chosen for morphological observations. Try to study the relation between rol genes'expression and plant growth. The result indicated that rol C gene had the highest relative expression in all tested tissues except old leaves, rol B had the lowest expression, and the expression of rol A was intermediate of the three genes. The expression of rol A and rol C showed two peaks on 30 June and 30 July, and one lowest point on 15 July. The temporal changes of rol genes'expression were found to be influenced by environmental condition. On July 15, the highest temperature was supressed rol genes'expression and restrained plant growth activity. The expression of rol A was mainly in old leaves, buds and functional leaves. Expression of rol B was highest in roots, and very low in other tissues. Expression of rol C was primarily in buds, tender stems and functional leaves, The summed expressions of the rol genes at four different sampling times (15 June, 15 July,15 August and 15 September), the relationship between the expression of rol genes in single tissues and RPHRR were showed the expression of rol A and rol C in bark was significantly positively correlated with RPHRR (r=0.75 and r=0.74, respectively; P<0.01). The expression of rol A and rol C in buds, tender stems, tender leaves, functional leaves and old leaves was significantly correlated with their expression in bark. This indicates that expression of rol A and rol C in these tissues was also involved in the induction of dwarfing.
     4. Transgenic citrange was neither defective genotype of GA3, nor unsensitive genotype of GA3. However, the spraying of GA3 elongated the internode of transgenic citrange, it was still shorter than wild type citrange. The content of IAA. GA] and GA4 decreased (P<0.05) while peroxidase activity increased markedly in the tender buds of transgenic citrange (P<0.05). The GA20ox1 expression quantity markedly decreased in apical bud (P<0.01), the expression of GA20oxl in tender leaves was higher than wild type. The expression of rol C gene and GA20oxl gene reveal negative correlation in tender bud, tender stems, we supposed that rol genes' expression could inhibit GAs'synthesis by down regulate the expression of GA20αχl gene in bud, lower bioactive GAs could suppress citrange growth.
     5. The seed of transgenic citrange was smaller than CK, the shape was turned into ellipse from wedge-shape. Germination was later than CK about seven days, the germination rate of T1 seed was decreased partly, dwarf character was exhibited in young seedling.99% of the seedlings were originated from nucellus and growing congruously, However, the trunk diameter of transgenic citrange was smaller compare with CK plants, rol genes were steadily inherited to next generation, which was detected by PCR and RT-PCR.
     6. Taking transgenic citrange as inter-rootstock, we grafted Shatian pummel (Citrus grandis [L.] Osbeck cv. Shatian) and Dahong sweet orange on it, rol gene weren't detected in the leaves of scions by PCR and qRT PCR after 4 years, the result indicated rol gene didn't transfer into scions through grafting. The photosynthesis (Pn) ability of Shatian Pummelo scions enhanced compared to control rootstocks after grafting for one year, but the Pn difference of scions wasn't observed after 4 years. The dwarfing rate of scions were from 12%-30% after grafted on transgenic rootstock or inter-rootstock. The fruit quality improved dramatically, the total sugar of E-Dahong was increased 14.2% and 19.3% compare to CK-Dahong in 2009 and in 2010, respectively.
引文
陈旦蕊,2000,柑橘砧木的研究进展[J].浙江柑橘.17(4):8-10.
    陈杰忠,邹浚渝.1993,不同砧木甜橙幼树生长量及叶片矿质含量的研究[J].华南农业大学学报,1(4):84-88
    陈长兰,贾敬贤,侯潇等.2000,梨树矮化中间砧嫁接树的解剖及酶活性测定[J].中国农学通报,16(2):20-2]
    陈善春,张进仁,黄自然,等.1997,根癌农杆菌介导柞蚕抗菌肽D基因转化柑橘的研究.中国农业科学,30(3):7-13.
    丛郁,转rolc基因八棱海棠的获得及表达研究.[博士研究生论文].南京,南京农业大学,2006.7
    段艳欣.根癌农杆菌介导的柑橘转化体系优化与转LFY、APl基因植株的培育.[博士研究生论文].武汉,华中农业大学,2006.7
    邓秀新.1994,枳的矮化突变及其生物学特性观察[J].园艺学报,21(3):293-294.
    邓秀新,章文才,1995,柑橘原生质体培养与融合研究,自然科学进展,5:35-41.
    邓秀新,郭文武,于桂红.2000,柑橘体细胞融合再生9个组合的二倍体植株.园艺学报27(1):1-5.
    邓秀新2005,世界柑橘品种改良的进展[J].园艺学报,32(6):1140-1146.
    甘海峰,刘可慧,傅翠娜等.2010,NaCl胁迫对不同柑橘砧木品种抗氧化系统的影响.生态环境学报.19(1):183-187
    费小雯,邓晓东,王永胜,等.2004,水稻矮化突变体G蛋白α亚基基因的结构和表达[J].中山大学学报(自然科学版),43(1):70-74
    付春华,原生质体融合创造柑橘新材料及其遗传分析.[博士研究生论文].武汉,华中农业大学,2003.7
    傅大雄,阮仁武,殷家民,等.2004,小麦显性矮杆基因复等位多态特性的研究[J].中国农业科学,37(9):1251-1260
    郭文武,邓秀新.2000,柑橘胞质杂种及其胞质遗传重组[J],园艺学报,27(增刊):487-491.
    何天富,柑橘学[M].北京:中国农业出版社,1999:293-300.
    胡春华,谢玉明,黄训才等.2006,转rolABC基因枳橙快繁技术[J].果树学报,23(1):142-144.
    胡春华, pthA-nls及其ScFv基因转化柑橘获得抗溃疡病新种质的研究,[博士研究生论文].长沙,湖南农业大学,2008.
    胡国谦,张谷雄,周中建等.1992,利用叶片过氧化物酶同工酶鉴定柑橘砧木资源矮化性能[J].热带作物科技,(1):15-17
    胡国谦,张谷雄,周中建等.1993,柑橘砧木矮化性与叶片过氧化物酶同工特性的关系[J].南京农 业大学学报,16(1):123-126
    计长远,彭长江.2009,柑橘抗碱砧木-资阳香橙.中国热带农业,(1):52-53.
    李学拄,罗泽民,何绍兰等.1990,不同砧木获荃夏橙对土壤 pH 值的适应性[J].园艺学报,17(4):263·269
    李文斌,张映南,刘庚峰等.1989,柑橘矮化砧及半矮化砧果氧化物酶同工酶及活性的比较[J].园艺学报,16(4):261-265
    刘继红,邓秀新.2000,柑橘非对称融合植株再生及鉴定[J]。植物学报,42(11):1144-1149
    吕斌,陈学年,李质怡等.1999,不同砧木先锋橙叶片POD活性与树体生长势的关系[J].西南农业学报,12(2):63-67.
    马文涛,不同柑橘实生砧木的抗旱性.[中国硕士研究生论文],贵阳,贵州大学,2007
    苗平生.1997,现代果业技术与原理[M].北京:中国林业出版社,138-141
    聂华堂,钟广炎,陈竹生,等.1991,叶片过氧化物酶活性作为柑桔短枝型品系预选指标初探[J].果树科学,8(1):46-48
    农业部转基因生物安全办公室,《农业转基因生物安全管理条例》[M],2002.3
    庞晓明,用分子标记研究柑橘属及其近缘属植物的亲缘关系和枳的遗传多样性.[博士研究生论文].武汉,华中农业大学,2002.7
    史宝胜,马宝馄,徐继忠等.2001,秋末SH中间砧红富士苹果幼树生理生化特性的研究[J].中国农学通报,17(2):21-23
    石健全,沈丽娟.1991,甜橙中间砧研究初报[J].浙江柑橘, (3):8-11
    孙艳香,吕增仁,张成合.2001,四种桃亚属(Amygdalus)砧木对杏苗生长势生理特性的影响闭[J].园艺学报,28(6):551-553
    孙小镭,邬树桐,宋绪峨.1990,中国矮生刺黄瓜品系特性的研究初报[J]园艺学报,1:59-64.
    王丽琴,唐芳,赵飞等.2002,苹果紧凑型品种和矮化砧木内源激素的变化[J].园艺学报,29(1):5-8
    王若仲,萧浪涛,蔺万煌等.2002,亚种间杂交稻内源激素的高效液相色谱测定法,色谱,20(2):148-150.
    王淑杰,王家民,王连军等.2001,葡萄接穗对砧木生理特性的影响[J].中外葡萄与葡萄酒,(4):30-31
    韦杰.柑橘反转录转座子基因的特征分析及其相关分子标记的开发.[博士研究生论文].武汉,华中农业大学,2007
    吴可红,庄伊美,谢志南等.1991,不同砧木椪柑光合速率的研究[J].福建林学院学报,11(2):209-214
    吴延军,徐昌杰,张上隆.2002,桃组织培养和遗传转化研究现状及展望[J].果树学报,19(2):123-127
    肖慈木,范丹,范昭明等.1996,砧木影响梁平袖树体生长的生理生化特性研究[J].中国南方果树,25(2):14-16
    肖慈木,范昭明,王丹.1998,不同砧木梁平抽树体生长与内源激素含量[J].中国南方果树,27(1):3-6
    谢让金.柑橘属及其近缘植物基于AFLP分子标记的分类与进化研究.[硕士研究生论文]西南大学.2008
    谢玉明,柑橘遗传转化体系的建立及chit42和phyB基因的导入,[博士研究生论文].长沙,湖南农业大学,2007.
    谢玉明,郭琛,张家银,韩健,袁飞荣,邓子牛.2008,农杆菌介导phyB基因转化枳壳研究,湖南农业大学学报(自然科学版),34(1):68-72.
    徐继忠,史宝胜,马宝馄等.2002,苹果不同矮砧与其对应中间砧植株POD, IOD酶活性的研究[J].中国农业科学,35(4):415-420
    叶荫民,2000,柑橘品种改良的世界回顾与展望.中国南方果树,29(3):15-17.
    赵大中,陈民,罗先实.1997,柑桔矮化砧木的生理生化预选指标的研究[J].西北植物学报,17(1):28-33
    赵大中,陈民,罗先实.1998,不同种类柑桔幼苗生长势与叶片过氧化物酶活性、GA和ABA含量的关系[J].果树科学,15(3):267-269
    赵大中,陈民,罗先实.1998,不同种类柑桔幼苗生长势与叶片过氧化物酶活性、GA和ABA含量的关系[J].果树科学,15(3):267-269
    钟广炎,聂华堂,陈竹生,等.1989,叶片过氧化物酶活性用作柑橘矮化砧预选指标的初步研究[J].中国柑橘,18:19-20.
    赵学源,何新华.1997,八种来源不同的枳对枳砧甜橙黄环病的反应田中国南方果树,26(4):9.43-46.
    周开兵,2种柑橘体细胞杂种砧木资源评价和穗砧互作机理的研究.[博士研究生论文].武汉,华中农业大学,2004.7
    周开兵,郭文武,夏仁学等.2005,柑桔接穗对砧木生长及若干生理生化特性的影响[J].亚热带植物科学,34(3):11-14.
    周开兵,夏仁学.2005,中国柑橘砧木选择研究进展与展望[J].中国农学通报,21(1):213-218.
    周开兵,夏仁学.2006,柑橘砧穗生理互作研究进展与展望[J].中国农学通报,22(2):239-245.
    朱利华,章文才.1991,砧木对柑橘嫁接幼树早果影响的生理生化研究[J].园艺学报.,18(4):296-302
    朱捷,杨成君,王军.2009,荧光定量PCR技术及其在科研中的应用[J].生物技术通报,2:73-76.
    张绍铃.1989,矮化中间砧红星苹果树各器官营养元素含量变化研究[J].华北农学报,5(2):71-77
    张绍铃.1994,矮化中间砧红星苹果树钙含量的变化[J].果树科学,11(4):237-239
    庄伊美,王仁矶,谢志南等.1993,砧木对椪柑生长结果及叶片矿质成分的影响[J],园艺学报,20(3):209-215
    张宇和.1963,砧木研究[M].上海:上海科学技术出版社,1-102
    庄伊美.1993,柑桔营养与施肥[M].北京:中国农业出版社:254-270
    章镇,孙爱君,房经贵,等.2001.农杆菌介导rol C基因转化烟草植株的研究[J].南京农业大学学报,24(1):25-29
    Aach H. Bode H. Robinson D G. Graebe J E.1997, Ent-kaurene synthesis is located in proplastids of meristmatic shoot tissues[J]. Planta,202:211-219.
    Aach. H, Bose. G, Graebe. J E.1995, Ent-Kaurene biosythesis in a cell-free system from whsat(Triticum aestivum L.) seedlings and the localization of ent-kaurene synthetase in plastids of three species[J]. Planta,197:333-342
    Abu-Hilal 1, Collesano G. Larry E. et al.2000, The effect of rootstock and applied water on vine status and gas exchange of cabernet sauvignon [J].Acta Horticulturae, (526):163-168
    Agusti M, Almela V, Juan M,'Navelate'Sweet Orange[J].et al.2003, Rootstock influence on the incidence of rind breakd Journal of Hrticultural Science & Biotechnology,78(3):554-558
    Andersen CL, Jensen JL. Orntoft TF.2004, Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Res,64(15):5245-5250.
    Ait-Ali T. Swain S, Reid J, Sun T P, Kamiya Y.1997, The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A [J]. The plant Journal,11:443-454.
    Altamura M M et al.1994. The plant oncogene rol B stimulates formation of flower and root meristemoids in tobacco thin celll layer [J]. New Phytol,126:283-293
    Amador V, Monte E, Garcia-Martinez J L. Prat S.2001, Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo[J]. Cell,106:343-354.
    Amir A, Ashkenazi S. Shaked A, et al.1988, Exocortis Viriod (CEV) Dwarf Trees in Yizreel Valley, Israel[C]. Israel:Proceedings of the Sixih International Citrus Congress,913-915
    Ashikari M, Wu J Z, Yano M, SasaKi T, Yoshimura A.1999, Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTP-binding protein[J]. Proceeding of the National Academy of Sciences of the USA,96:10284-10289.
    Azpiroz R, Wu Y, Locascio J C, et al.1998, An Arabidopsis brassinosteriod-dependent mutant is blocked in cell elongation [J]. Plant Cell,10:219-230
    Beckman. T G.2004, Modifying Bloom and Harvest Date of Peach with Interstems and Rootstocks [J].Journal ofArnerican Pomological Society,58(1):12-20
    Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P.1995, Cloning and characterization of the maize Anl gene[J]. The Plant Cell,7:75-84.
    Bitters WP, Cole DA, Brusca JA.1969, The citrus relatives as citrus rootstocks[C]. Proceeding Int Citrus Symp, (1):411-415
    BK Kristensen, SKB Rasmussen.1999, Barely coleoptile peroxidases purification, molecular cloning, and induction by pathogens[J]. Plant physiol, (120):501-512
    Bowman K D. New hybrid citrus rootstocks developed by U.S.2003, department of Agriculture. In: Albrigo L G eds. Proc. Inter. Soc. of Citriculture 9th Congress. Orlando,1:51
    Brunner A M. Yakovlev 1A. Strauss SH.2004. Validating internal controls for quantitative plant gene expression studies [J]. BMC Plant Biol.4:14.
    Carrera E. Bou J. Garcia-Martinez.J L. Prat S.2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants [J]. Plant J.22:247
    Castle W S. Tucker D P H. Krezdom A H, et al.1989, Rootstocks for Florida Citrus[M], Institute of Food and Agricultural Science, Universtiy of Florida,1-22.
    Chichirico G et al.1992, Expression of the rolB oncogene from Agrobacterium rhizogenes during zygotic embryogenesis in tobacco [J]. Plant Cell Physicol., 33:827-832
    Davidson S E. Elliott R C. Helliwell C A, Poole A T, Reid J B.2003, The pea gene NA encodes ent-kaurenoid acid oxidase [J]. Plant Physiol.131:335-344
    Davidson S E, Smith J J, Helliwell C A, Poole A T, Reid J B.2004, The pea gene LH encodes ent-kaurene oxidase [J]. Plant Physiol,134:1123-1134.
    Delbarre A et al.1994. The rol B gene of Agrobacterium rhizogenes dose not increase the auxin sensitivity of tobacco protoplasts by modifying the intracellular auxin [J]. Plant Physical.. 105:563-569
    Derma D W. Munger H M.1963. Morpholgy of the bush and vine habits and the allelism of the bush genes in cucurbita maxima and C.pepo squash [J]. Proceedings of the American Society for horticultural Science.82:370-377.
    Ding, B., A. Itaya and Y. Qi.2003. Symplasmic protein and RNA tra(?)c:regulatory points and regulatory factors. Curr.Opin. Plant Biol.6:596-602.
    Eriksson M E, israelsson M, Olsson O, Moritz T.2000, Increased gibberellin biosynthesis in transgenic trees promotes growtth, biomass production and xylem fiber length [J]. Nat biotechnol, 18:784-788.
    Eshdat Y, Holland D, Faltin Z, et al.1997, Plant glutathione peroxidases [J]. Plant physiology, (100):234-240
    Foguet JL.2003, New rootstocks for citrus industry in Argentina. In:Albrigo L G eds. Proc. Inter. Soc. of Citriculture 9th Congress, Orlando,1:56-57
    Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y.1999, Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice[J]. Proc Natl Acad Sci USA,96:7575-7580.
    Gocal G F W, Sheldon C C, Gubler F, Moritz T, Bagnall D B, MacMillan C P, Li S F, Parish R W, Dennis E S, Weigel D, King R W.2001, GAMYB-like genes, flowering and gibberellin signaling in Arabidopsis[J]. Plant physiol,127:1682-1693.
    Forner JB, Forner MA, Alcaide A, Verdejo-Lucas S, Sorribas FJ.2003, New hybrid citrus rootstock released in Spain. In:Albrigo LG eds. Proc. Inter. Soc. of Citriculture 9th Congress, Orlando,1: 58-61
    Gomi K. Sassaki A, ltoh H, Ueguchi-Tanaka M. Ashikari M, Kitano H. Matsuoka M.2004. GID2. an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice[J]. Plant J.37:626-634
    Grobelindemann E. Lewis M J. Hedden P, Graebe J E.1992. Gibberellin biosynthesis from gibberellin A12-aldehyde in a cell-free system from germinating barley (Hordeum vulgare L.,cv. Himalaya) embryo[J]. Planta,188:252-257.
    Grosser J W, Chandler J L.2003, Development of citrus rootstocks via somatic hybridization. In: Albrigo L G eds. Proc. Inter. Soc. of Citriculture 9th Congress, Orlando,1:47-50
    Gubler F, Chandler P, White R, Llewellyn D, Jacobsen J.2002. GA signaling in barley aleurone cells: control of SLN 1 and GAMYB expression [J]. Plant Physiol,129:191-200.
    Guivarch A et al.1996, The pleiotropic effects induced by the rol C gene in transgenic plants are caused by expression restricted to protopholoem and companion cells [J]. Transgenic Res.,5:3-11
    Guo W W. Cheng Y J, Deng X X.2000, Regeneration and molecular characterization of intergeneric somatic hybrids between Citrus reticulata and Poncirus trifoliata[J]. Plant Cell Report, (20):829-834.
    John. D. Cox L.2001, Sporingtime 15Nitrogen Uptake, Pardoning, and Leaching Losses from Young Bearing Citrus Trees of Differing Nitrogen Status [J]. Journal of the American Society Horticultural Science,126 (2):242-251
    Hedden P, Kamiya Y.1997, Gibberellin biosynthesis:enzymes, genes and their regulation [J]. Annu Rev Plant Physiol, Plant Physiol Plant Mol Biol, 48:431-460.
    Helliwell C A, Sheldon C C, Olive M R. Walker A R, Zeevaart J A D. Peacock W J, Dennis E S.1998. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3[J]. Proceedings of the National Academy of Sciences of the USA,95:9019-9024
    Huang H X, Zhang X Q, Wei Z C, Li Q H etc.1998, Inheritance of male-sterility and dwarfism in watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai][J]. Scientia Horticulturae, 74:175-181.
    ltoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M.2001, Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice[J]. Proc Natl Acad Sci USA,98:8909-8914.
    Iwasaki T, Nishiura M, Shichijo T, Okudai N.1961, Double working of satsuma orange II Effects of interstocks on tree growth, fruit quality and yield [J]. Japanese Society for Horticultural Science,(30):62-72
    Labanauskas CK, Bitters WP.1974, The influence of rootstocks and interstocks on the nutrient concentration in 'Valencia'orange leaves [J]. Journal of American Society Horticutral Science, 99(1):32-33
    Lamport DAT.1965, The protein component of mary cell wall [J]. Adv Bot Res,2:151-218.
    Lange T, Kappler J. Fischer A. Frisse A. Frisse A, Padeffke T. Schmidtke S, Lange M.J P.2005. Gibberellin biosynthesis in developing pumpkin seedlings[J]. Plant Physiol.139:213-223
    Lange T. Kegler C. Hedden P. Phillips A L. Graebe J E.1997. Molecular charaterization of gibberellin 20-oxidase:structure-untion studies on recombinant enzymes and chimaeric proteins[J]. Physiol Plant,100:543-549.
    Lee D J. Zee vaart J A D.2002. Differential regulation of RNA levels of gibberellin dioxygenases by photoperiod in spinach [J]. Plant Physiol,130:2085-2094.
    Lester D R, Ross J J. Davies P J. Reid J B.1997, Mendel's stem length gene(Le) encodes a bibberellin 3β-hydroxylase[J]. The Plant Cell.9:1435-1443.
    MacMillan J, Ward D A, Phillips A L, Sanchez-Beltran M J. Gaskin P. Lange T, Hedden P.1997, Gibberellin biosynthesis protein containing tetratricopeptide repeat[J]s. J Biol Chem,272: 9316-9324.
    Marti E, Gisbert C, Bishop G J, Dixon M S. Garcia-Martinez J L.2006. Genetic and Physiological characterization of tomato cv. Micro-Tom[J]. Journal of experimental botany,57:2037-2047.
    Martin D N, Proebsting W M, Hedden P.1999. The SLENDER gene of pea encodes a gibberellin 2-oxidase [J]. Plant Physiol,121:775-781.
    Maurel C et al.1994, Alteration of auxin perception in rol B-transformed of tobacco protoplasts, time course of rol B mRNA expression and increase in auxin sensitivity reveal multiple control by auxin[J]. Plant Physiol.,105:1209-1215.
    McGinnis K M, Thomas S G, Soule J D, Strader L C, Zale J M. Sun T P, Steber C M.2003, The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase [J]. Plant Cell,15:1120-1130
    Michael T,Spena Angelo.1995, The plant oncogene rol A. B and C from Agrobacterium rhizogenes, effects on morplology, development, and hormone metabolism [J]. Methods Mol.,44:204-222
    Mielke K, Shaked A.1975, Performance of Valencia Orange Trees Budded on Citrus volkameriana [M]. Bet Dagan:Volcani Center,20-25.
    Miklos S, Kimga N, Zsuzsanna K K, Mathur J,1996, Brassinosteroid rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and deetiolation in Arabidopsis[J]. Cell, 85:171-182.
    Miller JE, Maritz JGJ.2003, Potential citrus cultivars in South Africa's scion and rootstock development pipeline. In:Albrigo L G eds. Proc. Inter. Soc. of Citriculture 9th Congress, Orlando, 1:62-65
    Jacobsen S E, Olszewshi N E.1993, Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction [J]. Plant cell,5:887-896.
    Kaneyoshi J, Kobayashi S.1999, Characteristic of transgenic trifoliate orange (Poncirus trifoliate Raf.) possessing the rol C gene of Arobacterium rhizogenes Ri plasmid [J]. J Jpn Soc Hort Sci, 68:734-738
    Kappel. F 2003, Influence of Pruning and Interspecific Pruns Hybrid Rootstocks on tree Growth. Yield and Fruit Size of Apricot [J]. Journal ofAmerican Pomological Society,57(3):100-105
    Kim. M.. W. Canio. S. Kessler and N. Sinha.2001. Develop-mental changes due to long-distance movement of a homeo-box fusion transcript in tomato. Science 293:287-289.
    Kiyakawa S. Kobayashi K. Kikuchi Y. et al.1994. Root-inducing region of mikimopine type Ri plasmid Ri1724 [J]. Plant Physiol.,104:801-802
    Knauber D C. Banowetz G M.1992. Phenotypic anlysis of a dwarf wheat (Triticum aestivum L.) with altered phytochrome-mediated growth responses [J]. Plant Physiology.100:1901-1908.
    Kusaba S. Kano-Murakami Y. Sakamoto T. et al.1998. A rice homeobox gene. OSH1. alerts morphology of kiwifruit and inhabits the gibberellin biosynthesis [J]. Acta Hotic.463:53-60
    Lucas. W J. and J. Y. Lee.2004. Plasmodesmata as a supracel-lular control network in plants. Nat. Rev. Mol. Cell Biol.5:712-726.
    Mallory. A.C., S. Mlotshwa. L. H. Bowman and V. B. Vance.2003. The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. Plant J.35:82-92.
    Ogawa M. Kaufmann. Henderson J. Somerville C.1999, PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis [J]. Proc Natl Acad Sci USA.96:13839-13844.
    Omran R.G.1980, Peroxide Levels and the Activities of Catalase. Peroxidase, and Indoleacetic Acid Oxidase during and after Chilling Cucumber Seedlings, Plant Physiol.,65:407-408
    Pfaffl MW, Tichopad A. Prgomet C, Neuvians TP.2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations [J]. Biotechnol Lett,26(6):509-515.
    Prinsen E, Chriqui D, Vilaine F, et al.1994, Endogenous phytoformones in tobacco plants transformed with Agrobacterium rhizogenes pRi TL-DNA genes [J]. J. Plant Physiol.,14:80-85
    Richards D E, King K E, Ait-AIi T, Harberd N P.2001, How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling[J]. Annu Rev Plant Physiol Plant Mol Biol,52:67-88.
    Richard L B, Ralph S, Chinnathambi S, et al.1999, Transformation of'Beure Bosc'pear with the rol C gene[J]. J Amer Soc Hort Sci,124(6):570-574
    Ross J J, Murfet 1 C, Reid J B.1997, Gibberellin mutants [J]. Physiol Plant,100:550-560
    Rugini E, Pellegineschi A, Mencuccini M, et al.1991, Increasing of rooting ability in woody species kiwi (Actinidia delicosa A. Chev.) by transformation with Arobacterium rhizogenes rol genes[J]. Plant Cell Rep,10:291-295
    Rutledge RG, Cote C.2003, Mathematics of quantitative kinetic PCR and the application of standard curves[J]. Nucleic Acids Res,31:e93
    SakamotoT. MorinakaY, Ishiyama K, Kobayashi M, IhohH. KayanoT, lwahori S, Matsuoka M. TanakaH.2003. Genetic manipulation of gibberellin metabolism in transgenic rice[J]. Nat Biotechnol.,21:909-913.
    Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A. Heinen E. 1999. Housekeeping genes as internal standards:use and limits[J].J Biotechnol,75(2-3):291-295.
    Silverstone A L, Yamaguchi S, Ait-Ali T, Kamiya Y.1998, The first step of gibberellin biosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate synthases encoded by differentially regulated genes[J]. Plant Physiol.118:1411-1419.
    Sun T P, Goodman H M. Ausubel F M.1992, Cloning the Arabidopsis GA1 Locus by Genomic Subtraction [J]. The Plant Cell,4:119-128.
    Swain S M. Redi J B. Kamiya Y.1997, Gibberellins are required for embryo growth and seed development in pea [J]. Plant J.12:1329-1338
    Swain S M, Tseng T, Thornton T M, Gopalrsj M, Olszewski N E,2002. SPINDLY is nuclear-localized repressor of gibberellin signal transduction expressed throughout the plant[J]. Plant Physiol,129: 605-615.
    Tang, Y. W., Bonner J,1947, The enzymatic inactivation of indoleacetic acid. Some characteristics of the enzyme contained in pea seedlings [J]. Arch biochem. Biophys,13:11-25.
    Toyomasu T, Kawaide H, Sekimoto H, Numers C V, Phillips A L, Hedden P, Kamiya Y.1997. Cloning and characterization of a cDNA encoding gibberellin 20-oxidase from rice (Oryza sativa) seedings [J]. Physiol Plant, 99:111-118.
    Valdivia W, Garcia S S, Perez-Barraza M H.2000,'Esmeralda'insterstocks reduce'Ataulfo'mango tree size with no reduction in yield:results of the first five years [J]. Acta Horticulture, 1(509):291-296
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F,2002, Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol,3(7):RESEARCH0034.
    Williamson JG, Maus BE.1995, Growth of Budded. Containerizes Citrus Nusery Plants When Photosynthesis of Rootstock Shoots Is Limited [J]. HOIZTSCIENCE,30 (7):1363-1365
    Yamaguchi, S.2008, Gibberellin metabolism and its regulation. Annual. Rev. Plant Biol.59:225-251.
    Yamaguchi S, Sun T P, Kawaid H, Kamiya Y.1998, The GA2 Locus of Arabidopsis thaliana Encodes ent-Kaurene Synthase Of Gibberellin Biosynthesis[J]. Plant Physiology,116:1271-1278.
    Yang T, Davies P J, Reid J B, et al.1996, Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. [J]. Plant Physiol, 110:102-103
    Zhu LH, Welander M.1999, Growth characteristic of apple cultivar Gravenstein plants grafted onto the transformed rootstock M26 with rolA and rolβ genes under non-limiting nutrient conditions [J]. Plant Sci,147:75-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700