用户名: 密码: 验证码:
红壤坡地柑橘园水土保持水文效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果业在江西是仅次于水稻和蔬菜的第三大产业,在江西经济中占有重要地位,尤其是柑橘类产业在全国总种植面积排名第二,是江西果业的支柱。柑橘园林生态系统是区域生态系统的重要组成部分,针对江西柑橘果业开发中存在的严重水土流失问题和柑橘园水文特征,以椪柑(Citrus reticulata Blanco cv. Ponkan)为研究对象,通过在江西省水土保持生态科技园的15个标准径流小区和宁都县东坑、城源两个小流域脐橙园内,对林外降雨、林内降雨、树干茎流、枯落物截流、地表径流以及土壤含水量的动态变化的长期观测,研究椪柑林生态系统的水分分配、运输以及动态变化等,掌握水分循环的过程及规律,探讨红壤坡地柑橘园林水土保持措施对水文过程及其效益的影响。研究内容包括降雨特征分析、冠层截留、土壤水分动态特征、坡面产流产沙特征以及入渗和产流的模型模拟。主要研究成果如下:
     1.研究区内降雨量、降雨强度的年内、年际变化
     根据研究区2001-2010年降雨观测资料的分析表明:研究区域雨水资源丰富,多年平均降雨1317mm,平均雨强为1.68mm/h,2001-2010年间共降雨1508场次。全年降雨量的70.9%集中在3-8月份,其余7个月的降雨量只占全年降雨量的29.4%。全年降雨呈双峰型曲线,一年中最大降雨出现在4月份,5、6、7月逐渐回落,而8月份出现又一峰值,多年平均降雨量最小值在12月。通过采用Mann-Kendall趋势分析法,对2001-2010年10年来降雨量特征的分析,得出年际降雨量特征存在时间段上波动,基本保持稳定状态;春季、秋季和冬季表现出不显著下降趋势,只有夏季表现出不显著上升趋势;汛期保持平稳趋势,主汛期和非汛期分别呈现不显著下降和上升趋势。
     2.椪柑林地冠层截留和枯落物特性
     椪柑林冠截留率平均为29.61%,茎流率为25.67%,而穿透雨比例占44.72%,也就是说70.39%的降水将进行第二次分配。单株林冠截留量与林外降雨量的关系表现为林外降雨量增大,林冠截留的降雨也随着增大,二者呈现显著线性相关。当降雨量低于20mmm时,二者相关性更强;当降雨量超过20mmm后,二者的相关性较差。说明林冠的截留能力存在一个最大值,即容许最大截留量,或林冠截留容量。茎流量与林外降雨量关系密切,林外降雨量越大,茎流量也越大,二者呈显著的线性相关关系。43场降雨的茎流量观测数据平均为4.72mm,占到林外降水量的25.67%。试验显示碰柑枯落物的最大持水率为325.73%,为枯落物自身干重的3.26倍。
     3.不同水保措施下椪柑林地土壤水分分布、特征与变化
     由于地表径流和壤中流的作用,全年土壤平均含水量随着深度的增加基本呈增加的趋势,0-10cm土层土壤含水量在11%-29%之间,10-20cm土层土壤含水量在12%-31%之间,20-30cm土层土壤含水量在14%-32%之间,30-40cm土层土壤含水量在18%-38%之间。通过对各处理措施小区的比较,在10cm土层,狗牙根(Cynodon dactylon (L.) Pars.)带状覆盖的平均土壤含水量最高,20cm和30cm土层,百喜草(Paspalum riatatu)带状覆盖含水量最高,40cm土层百喜草全园覆盖的含水量最高。坡地椪柑林地生草种植能够有效拦截径流,蓄积水分,使降雨和地表径流蓄积在坡面上,而不是顺坡流失,条带植草覆盖因其耗水量小所以保水效果最好。
     多年未翻耕的裸露小区,平均土壤含水量保持在较高水平,表明地表结皮可降低蒸发保持土壤水分。
     各处理小区土壤水分随季节的变化有着较为一致的变化趋势。在10cm土层,整体看来,各小区的土壤含水量一年内随季节变化的特征都有三峰两谷。第一次峰值出现在春季4月,6月份的土壤水分含量最大,达到第二个峰值。8月份土壤含水量全年最低,呈现土壤水分的第一个低谷,到10月份,土壤含水量回升,达到第三个峰值,12月份土壤含水量较低,呈现土壤水分的第二个低谷。在20cm土层、30cm土层和40cm土层,土壤含水量随季节的变化与10cm土层有着相似的变化趋势。水保措施对土壤水分的保持具有重要作用,植被覆盖度越高,土壤水分含量的变化越小
     4.不同处理下红壤坡地椪柑林地产流产沙特征
     降雨是地表径流的主要来源,2001-2010年从试验观测数据中选取了59场独立的单场降雨,进行了回归分析,径流量随雨量、雨强、历时增大而增大,与雨量相关性最高,与雨强的相关性次之,与降雨历时的相关性最差。这说明降雨量显著影响径流量;而雨强对径流量的影响程度不如降雨量对径流量的影响程度显著。
     统计分析2001-2010年降雨产流观测数据,结果表明水土保持措施均能显著提高坡地果园的减流效益。红壤坡地泥沙量与降雨量、30min.降雨强度、降雨动能呈显著线性相关,但泥沙量与降雨量的相关性普遍小于径流量与降雨量的相关性;大暴雨和特大暴雨是红壤坡地椪柑林地产生土壤流失的主要降雨类型。此外,泥沙量与降雨径流量显著相关,且相关性较泥沙量与降雨量、30min.降雨强度、降雨动能和前期降雨量更为密切。
     5.不同处理椪柑园地侵蚀性降雨及降雨侵蚀力特征
     不同处理椪柑园地侵蚀性降雨标准差异很大,侵蚀性降雨标准从小到大的顺序为清耕果园9.8mm、耕作组10.37mm、梯田组11.34mm、林草措施组14.69mm。
     降雨侵蚀力与降雨量的年际变化基本一致,即降雨量大的年份降雨侵蚀力值也大,而降雨量小的年份降雨侵蚀力也小。
     6.不同处理径流泥沙年际变化特征
     通过对各试验小区的年际径流泥沙特征变化分析得出:各小区的径流泥沙随着时间的延长,呈现出不同程度的减少趋势。通过在椪柑园实施水土保持植物、耕作和工程措施,可以起到了很好的蓄水保土效应,对于增加椪柑产量,改善当地的生态环境具有明显的促进作用。
Citrus reticulata Blanco cv. Ponkan is an important economic fruit tree in Jiangxi Province. Study of the ecosystem effects on hydrological processes of Citrus reticulata Blanco cv. Ponkan is an important part of exploring hydrological processes of regional forest ecosystem. Standard runoff plots are set in the Jiangxi Provincial Soil and Water Conservation Eco-science Park. Through years of observation, testing and experiments, effects of soil and water conservation and hydrological on citrus forest in red soil slope are studied. This research explores the hydrological effects mechanism of the different artificial building models on citrus forest and concludes the means of planting citrus forest to protect water and soil resources which can provide a scientific reference for citrus fruit industry and sustainable development of ecological environment construction. The study includes analysis of rainfall characteristics, canopy interception, soil moisture dynamics, runoff and sediment characteristics of slope, infiltration and runoff model for simulation. The main results are as follows:
     1. During the year and annual change of rainfall and rainfall intensity in the study area
     According to the rainfall observation data of study area from 2001 to 2010 shows that the water resource is rich, average rainfall is 1317 mm, the average rainfall intensity is 1.68mm h-1. The total rainfall is 1508 matches from 2001 to 2010.70.9% of annual rainfall concentrated from March to August, the remaining 6 months of rainfall accounted for only 29.4% of annual rainfall. The trend of rainfall is bimodal curve one year, and the highest rainfall is in April, May, June, July gradually fell, and another peak occurred in August, the minimum annual average rainfall is in December. By using Mann-Kendall trend analysis method, rainfall characteristics of interannual rainfall fluctuations remain stable from 2001 to 2010. The difference not decrease significant in spring, autumn and winter, but increase significant in summer. In flood days it shows steady trend, and it shows no significant change in the main flood season and dry season.
     2. Citrus forest canopy interception and litter characteristics
     Interception average rate of citrus canopy is 29.61%, and stem flow rate is 25.67%, and the proportion of through rain is 44.72%. It is that 70.39% of the precipitation will be the second allocation. The relationship between plant outside the forest canopy interception showed significant correlation. But the correlation is strong when rainfall is less than 20mm and poor when rainfall exceeds 20mm. It proves that there is a maximum canopy interception capacity, allowing the maximum interception or canopy interception capacity. The correlation of stem flow and gross rainfall is close in rainfall outside. There are a significant linear relationship between rainfall outside of forest and stem flow. The average stem flow is 4.72mm in 43 rainfall observations, accounting for 25.67% of precipitation outside the forest. Test shows that the largest citrus litter water-holding rate is 325.73%, and is 3.26 times of their litter dry weight.
     3. Soil moisture characteristics and changes of citrus under different soil and water conservation measures
     The average soil moisture increases with soil depth increasing because surface runoff and subsurface flow effect. The soil moisture increases from 11% to 29% in 0-10cm, from 12% to 31% in 10-20cm, from 14% to 32% in 20-30cm, and from 18% to 38% in 30-40cm. The soil moisture of 6 Cynodon dactylon (L.)Pars. plot(bermudagrass cover band) is highest in 10cm, and of 4 Paspalum natatu plot (bare check) in 20cm and 30cm is highest. In 40cm layer 4 plot (bare check) is the highest and 1 plot (the whole park bahia grass cover) is highest in plots which set measures. Planting grass in citrus forest can effectively intercept-runoff,accumulate,rainfall and surface runoff to accumulate on the slope, not down slope loss. Their water consumption is small in grass cover bands so the water conservation is the best.
     The seasonal change of soil moisture has a consistent trend. In the 10cm soil layer, the characteristics of soil moisture changes are two valleys and three peaks. The first peak appears in April, and the soil moisture content is maximum in June, reaching a second peak. The soil moisture is lowest in August, and shows the first valley. In October, soil moisture is highest, and third peak. In December, soil water content decreases, shows a second valley. Soil moisture changes in 20cm,30cm and 40cm with the seasons has a similar trend to the 10cm soil layer. Soil and water conservation measures to play an important role in maintaining soil moisture, the higher the vegetation coverage, the smaller the change of soil moisture content.
     4. Runoff and sediment characteristics of citrus in red soil slope under different soil and water conservation measures
     Rainfall is the main source of surface runoff.59 separate single rainfall data are selected from the experimental observations from 2001 to 2010, and carried out regression analysis. Runoff increases along with rainfall, rainfall intensity increasing, and the highest correlation with the rainfall is highest, and next is rainfall intensity, and rainfall duration is worst. This shows that rainfall influence runoff significantly.
     Statistical analysis of rainfall runoff observation data from 2001 to 2010 shows that the soil and water conservation measures can significantly improve effects of runoff reduction. Red soil sediment and rainfall,30min rainfall intensity, rainfall kinetic energy have a significant linear correlation, but the amount of sediment associated with rainfall is generally less than the correlation of runoff and rainfall. Sediment volume with the impact of previous rainfall is more correlative with the previous rainfall, but less than its impact of rainfall. Heavy rain and torrential rain are the major rainfall types which cause soil erosion in citrus of red soil slope. In addition, the amount of sediment and rainfall, runoff are significantly correlated which are more close than the relationship with rainfall, 30min. rainfall intensity, rainfall kinetic energy and the pre-rainfall.
     5. Characteristics of erosive rainfall and rainfall erosivity under different treatments in citrus forest
     The standards variability of erosive rainfall is widely under different treatment in citrus forest. The order of erosive rainfall standard is clean tillage orchard, for 9.8mm, farming groups, for 10.37mm, terraced group, for 11.34mm, and grass measures group, for 14.69mm. The changes of rainfall erosivity and rainfall inter-annual are consistent. 6 Annual variations of runoff and sediment under different treatment
     The characteristics of the inter-annual runoff and sediment show that the runoff and sediment are decreasing trend with time. The soil and water conservation can play a very good role in water and soil conservation effect by plants in the citrus orchards, farming and engineering measures, which can also increase citrus production and improve the local ecological environment.
引文
[1]Rutter A J,et al.A predictiver model of rainfall interception in forest, Ⅰ:Derivation of model from observation in a plantation of Corsican Pine.Agric,Meteorol,1971,9:367-384
    [2]Gash J H C.An analytical model of rainfall interception by forests,quarterly.Journal of Royal Meteorological Society,1979,105(443):43-45
    [3]Gash J.H.C.et al.Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology,1980,48:89-105
    [4]Gash J.H.C.et al.Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology,1995,170:79-8
    [5]常学问,赵爱芬,王金叶等.祁连山林区大气降水特征与森林降水的截留作用.高原气象,2002,21(3):274-280
    [6]宋吉红,张洪江,孙超等.缙云山自然保护区不同森林类型林冠的截留作用.中国水土保持科学,2008,6(3):71-75
    [7]刘向东,吴钦孝,苏宁虎,等.六盘山林区森林树冠截留、枯枝落叶层和土壤水文性质的研究.林业科学,1989,25(3):220—227
    [8]杜阿朋.六盘山叠叠沟小流域坡面植被水文影响与模拟,中国林业科学研究院,博士学位论文,2009
    [9]范世香,裴铁,蒋德明等.两种不同林分截留能力的比较研究.应用生态学报,2000,11(5):671-674
    [10]马雪华,杨茂瑞,胡星弼.亚热带杉木\、马尾松人工林水文功能的研究.林业科学,1993,29(3):199-206
    [11]刘世海,余新晓,于志民.北京密云水库集水区板栗林水化学元素性质研究.北京林业大学学报,2001,23(3):12-15
    [12]鲍文,何丙辉,包维楷等.森林植被对降水的截留效应研究.水土保持研究,2004,11(1):193-196
    [13]马雪华,杨茂瑞等.亚热带杉木、马尾松人工林水文功能的研究.见:周晓峰.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994,346—353.
    [14]曾庆波.海南岛尖峰岭热带林生态系统的水分循环研究.见:周晓峰.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994,413—429
    [15]王佑民.中国林地枯落物持水保土作用研究概况.水土保持学报,2000,14(4):108-113
    [16]Bormann F H, Likens G E. Pattern and Processes in a Forested Ecosystem[M]. Springer Verlag, New York,1979.
    [17]Putuhena W.M.and Cordery.I.Estimations of interception capacity of the forest floor.Journal of Hydrology,1996,180:283-299
    [18]陈丽华,余新晓,张东升.贡嘎山冷杉林区苔藓层截持降水过程研究.北京林业大学学报,2002,21(4):60-63
    [19]雷志栋,杨诗秀,谢森传.土壤动力学[M].北京:清华大学出版社,1988
    [20]高峰,胡继超,卡赞.国内外土壤水分研究进展.安徽农业科学,2007,35(34):11146-11148
    [21]吕刚,吴祥云.土壤入渗特性影响因素研究综述.农业工程科学,2008,24(7):494-499
    [22]蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试.水土保持通报,1984,4(4)7-9
    [23]Helalia A M. The relation between soil infiltration and effective porosity in different soils, Agricultural Water Management,1993,24(8):39-47
    [24]Cerda A.Effects of rock fragment cover on soiLinfiltration,interrill runoff and erosion.European Journal of Soil Science,2001,(52):59-68
    Cerda.Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone.Journal of Hydrology.1997,198:209-225
    [25]程琴娟,蔡强国,郑明国.黄土土壤结皮对产流临界雨强的影响分析.地理科学,2007,27(5):678-682
    [26]王月玲,蒋齐,蔡进军,张源润,等.半干旱黄土丘陵区土壤水分入渗速率的空间变异性.水土保持通
    报,2008,28(4):52-55,74
    [27]朱元骏,邵明安.不同碎石含量的土壤降雨入渗和产沙过程初步研究.农业工程学报,2006,22(2):64-67
    [28]关红杰,冯浩,吴普特.土壤砂砾覆盖对入渗和蒸发影响研究进展.中国农学通报,2008,24(12):289-293
    [29]周振民.灌溉水质对土壤结构和畦人渗的试验研究.灌溉排水学报,2006,25(3):52-55
    [30]张永涛,杨吉华,夏江宝等.石质山地不同条件的土壤入渗特性研究.水土保持学报,2002,16(4):123-126
    [31]马雪华.森林水文学.北京:中国林业出版社,1993
    [32]Bronstert A.,Bardossy A.Uncertainty of runoff modelling at the hillslope scale due to temporal variations of
    rainfall intensity.Physics and Chemistry of the Earth.2003,28:283-288
    [33]Bergkamp Ger.A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands.Catena.1998,33:201-220
    [34]黄新会,王占礼,牛振华.水文过程及模型研究主要进展水土保持研究.2004,11(4):105-108
    [35]曹丽娟,刘晶淼.陆面水文过程研究进展.气象科技,2005,32(2):97-103
    [36]何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化[J].山地学报,2003,21(2):149—156
    [37]贾志清,宋桂萍,李清河等.宁南山区典型流域土壤水分动态变化规律研究[J].北京林业大学学报,1997,19(3):15—20
    [38]徐学选,刘江华,高鹏等.黄土丘陵区植被的土壤水文效应[J],西北植物学报,2003,23(8):1347—1351
    [39]李瑜琴.西安地区不同降水年份人工林地土壤水分变化研究[J].干旱区资源与环境,2010,24(1):143—147
    [40]崔利强,吴波,杨文斌等.毛乌素沙地东南缘不同植被盖度下土壤水分特征分析[J],干旱区资源与环境,2010,24(2):177—182
    [41]王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J].地理学 报,2000,55(1):84-91
    [42]马福武,贾志军.晋西黄土丘陵沟壑区不同地类土壤水分变化规律研究[J],中国水土保持,1998,(2):26-28
    [43]郭忠升,邵明安.雨水资源\土壤水资源与土壤水分植被承载力[J].自然资源学报,2003,18(5):522-528
    [44]李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析[J].应用生态学报,2003,14(4):515—519
    [45]陈云明,刘国彬,侯喜录.黄土丘陵半干旱区人工沙棘林水土保持和土壤水分生态效益分析[J].应用生态学报,2002,13(11):1389—1393
    [46]王兴鹏,张维江,周丽娜.风蚀沙化过渡地带沙地的研究进展[J].农业科学研究,2005,26(1):85—88
    [47]陈林,王磊,张庆霞等.风沙区不同土地利用类型的土壤水分灰色关联分析[J].干旱区研究,2009,26(6):840—845
    [48]郭忠录,彭艳平,丁树文等.等高绿篱模式下红壤丘陵岗区浅沟坡面土壤水分时空分布[J].水土保持研究,2010,17(4):62—66
    [49]周海光,刘广全,焦醒等.黄土高原水蚀风蚀复合区人工植被土壤水分状况[J].水土保持学报,2008,22(5):194—197,203
    [50]陈杰,刘文兆,张勋昌等.黄土丘陵沟壑区林地水文生态效应[J].生态学报,2008,28(7):2954—2963
    [51]Marin C T, W Bouten J. Sevink. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. Journal of Hydrology,2000,237:40-57
    [52]Ogee J, Brunet Y. A forest floor model for heat and moisture including a litter layer. Journal of Hydrology,2002,255(14):212-233
    [53]Rodrigo A. Influence of sampling size in the estlmation of mean througlfall in two Nediterranean holm oak forests. Journal of Hydrology,2001,243:216-227
    [54]鲍文,包维楷,何丙辉,等.岷江上游23年生油松纯林下凋落物与土壤截留降水的效应.水土保持学报,2004,18(5):115-119
    [55]常学向,王金叶.祁连山林区大气降水特征与森林对降水的截留作用.高原气象,2002,21(3):274-280
    [56]陈吉虎.关于森林对降水截留过程的研究.河南水利与南水北调,2008,1:23-29
    [57]程金花,张洪江,史玉虎,等.三峡库区三种林下枯落物储水特性.应用生态学报,2003,14(11):1825-1828
    [58]范世香,裴铁,蒋德明,等.两种不同林分截留能力的比较研究.应用生态学报,2000, 11(5):671-674
    [59]范世香,蒋德明,阿拉木萨,等.林内穿透雨量模型研究.生态学报,2003,23(7):1403-1407
    [60]高人,周广柱.辽宁东部山区几种主要森林植被类型枯落物层持水性能研究.沈阳农业大学学报,2002,33(2):115-118
    [61]郭明春.六盘山叠叠沟小流域森林植被坡面水文影响的研究,中国林业科学研究院,博士学位论文,2005
    [62]李振新,郑华,欧阳志云,等.岷江冷杉针叶林下穿透雨空间分布特征.生态学报,2004,24(5):1015-1021
    [63]刘益军,王昭艳.水力侵蚀模型WEPP气象数据输入方法.水土保持科技情报,2003,(4):4-5
    [64]饶良懿,朱金兆,毕华兴.重庆四面山森林枯落物和土壤水文效应.北京林业大学学报,2005,27(1):33-37
    [65]宋吉红.重庆缙云山森林水文生态功能研究.北京林业大学博士学位论文,2008
    [66]王佑民.中国林地枯落物持水保土作用研究概况.水土保持学报,2000,14(4):108-113
    [67]魏晓华,李文华,周国逸,等.森林与径流关系—一致性和复杂性.自然资源学报,2005,20(5):761-770
    [68]战伟庆,张志强,武军,等.华北油松人工林冠层穿透雨空间变异性研究.中国水土保持科学,2006,4(3):26-30,35
    [69]张洪江,程金花,余新晓,等.贡嘎山冷杉纯林枯落物储量及其持水特性.林业科学研究,2003,39:148-151
    [70]赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究.生态学杂志,2002,21(6):20-23
    [71]周晓峰,赵惠勋.正确评价森林水文效应.自然资源学报,2001,16(5):420-426
    [72]于静洁,刘昌明.森林水文学研究综述[J].地理研究,1989,8(1):88-98.
    [73]潘维俦,谌小勇.森林水文学研究中的生态系统观念.见:全国森林水文学学术讨论会文集,北京:测绘出版社,1989a:25-31.
    [74]Hornbeck J W, Swank W T. Watershed ecosystem analysis as a basis for multiple use management of eastern forests. Ecol. Apple,1992, (2):238-247.
    [75]刘世荣,温远光,王兵等.中国森林生态系统水文生态功能规律.北京:中国林业出版社,1996
    [76]李德生.山东泰安黄前水库流域主要植被类型的水文特征研究.北京林业大学博士论文,2007
    [77]莫菲.六盘山洪沟小流域森林植被的水文影响与模拟,中国林业科学研究院,博士学位论文,2008
    [78]Elliot, W.J., Foster G.R and Elliot A.V.Soil erosion:Processes, impacts and prediction, in R.Lar and F.J.pierce(eds), soil management for sustainability, Soil and water conservation soctety, Iowa:2004,25-34
    [79]Wischmeier WH, Smith D.D. Predicting rainfall erosion losses. USDA. Handbook, No.537,1978.
    [80]Wischmeier, W.H. Use and misuse of the universal soil loss equation. J.Soil Water Conserv. 1976,31(1):5-9
    [81]Beven,K.J. A discussion of distributed hydrological modelling. In M.B. Abbott and J.C. Refsgaard(eds.), Distributed Hydrological Modelling, Dordrecht, Boston:1996,255-278.
    [82]Bouraoui, Faycal. Development of a continuous, physically-based, ditribued parameter, nonpoint source model. Phd Thesis, The Virginia Polytechnic Institute and State Universiyt, April 1994, Blacksburg, Virginia
    [83]张靖宇,杨洁,王昭艳等.红壤丘陵区不同类型梯田产流产沙特征研究[J].人民长江,2010,41(14):99.103.
    [84]郑海金,方少文,杨洁等.赣北第四纪红壤坡地降雨侵蚀力的计算与分析[J].中国水土保持科学,2010,8(2):36-40.
    [85]杨洁,谢颂华,喻荣岗等.红壤侵蚀区水土保持植物配置模式[J].中国水土保持科学,2010,8(1):40-45.
    [86]张华明,王昭艳,喻荣岗等.赣北丘陵区果园不同套种模式对退化红壤理化性质的影响[J].水土保持研究,2010,17(4):258-261,268.
    [87]谢颂华,曾建玲,杨洁等.南方红壤坡地不同耕作措施的水土保持效应[J].农业工程学报,2010,26(9):81-86.
    [88]喻荣岗,胡建民,左长清等.赣北第四纪红壤坡地土壤侵蚀规律研究[J].江西农业学报,2007,19(12):31-34.
    [89]刘洋,张展羽,张国华等.天然降雨条件下不同水土保持措施红壤坡地养分流失特征[J].中国水土保持,2007,12:14-16.
    [90]王昭艳,左长清,杨洁等.第四纪红壤侵蚀区优良水土保持草本植物的选择与评价[J].草业科学,2008,25(5):87-91.
    [91]武艺,杨洁,汪邦稳等.红壤坡地水土保持措施减流减沙效果研究[J].中国水土保持,2008,10:37-38,43.
    [92]杨勤科,李锐.中国水土流失和水土保持的定量评价研究进展[J].水土保持通报,1998(5):13-188.
    [93]蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展[J].地理科学进展,2003.22(3):242—250.
    [94]郑粉莉,刘峰,杨勤科等.土壤侵蚀预报模型研究进展[J].水土保持通报,2001.21(6).
    [95]张光辉,梁一民.植被覆盖对水土保持功效影响的研究综述[J].水土保持研究,1996.3(2):104-110.
    [96]杨勤科,李锐.我国区域土壤侵蚀与环境研究述评[J].中国人口·资源与环境,2006.16(6):90-94.
    [97]杨勤科,锐李,曹明明.区域土壤侵蚀定量研究的国内外进展[J].地球科学进展,2006.21(8):850-856.
    [98]Posen J W, J. Boardman, B. Wilcox, and C. Valentin. Water erosion monitoring and experimentation for global change studies[J]. Journal of Soil and Water Conservation,1996.51: 386-390.
    [99]De Jong S M P M L, Bertolo F, et al. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data[J]. Catena,1999.37(34):291-308.
    [100]Kirkby M A, R; McMahon, MD; Shao, J; Thornes, JB. MEDALUS soil erosion models for global change [J]. Geomorphology,1998.24(1):35-49.
    [101]Kirkby M J. From Plot to Continent:Reconciling Fine and Coarse Scale Erosion Models. In: D.E. Stott, R.H. Mohtar, and G.C. Steinhardt (eds). Sustaining the Global Farm-Selected papers from the 10th International Soil Conservation Organization Meeting, May 24-29,1999, West Lafayette, IN. International Soil Conservation Organization in cooperation with the USDA and Purdue University, West, Lafayette,2001:p.860-870.
    [102]Kirkby M J, Le Bissonais, Y, Coulthard, T J, Daroussin, J, McMahon, M D The development of land quality indicators for soil degradation by water erosion[J]. Agriculture, Ecosystems & Environment,2000.81(2):125-136.
    [103]Moore I D, R.B. Grayson,A.R. Ladson. Digital terrain modelling:a review of hydrological, geomorphological, and biological applications[J]. Hydrological processes,1991,5(1):3-30.
    [104]杨勤科,R.M.Tim,李领涛,et al. ANUDEM—专业化数字高程模型插值算法及其特点[J].干旱地区农业研究,2006,24(3):36-41.
    [105]王万忠.黄土地区降雨特性与土壤流失关系的研究III——关于侵蚀性降雨标准的问题[J].水土保持通报,1984,4(2):58-62.
    [107]谢云,刘宝元,章文波.侵蚀性降雨标准研究.水土保持学报,2000,14(4):6-11
    [108]Wischmeier W H, Smith D D. Predicting rainfall erosion losses:A guide to conservation planning[M].U.S. Dep. Agric., Agric. Handb. No.537,1978.
    [109]Rapp A, Axelsson V, Berry L, et al. Soil erosion and sediment transport in the Morogoro River catchment,Tanzania[J].Geografiska Annaler,1972,54A(3/4):125-155.
    [110]Morgan R P C. Field studies of sediment transport byoverland flow[J]. Earth Surface Processes, 1980,5:307-316.
    [111]Hudson N W. Soil Conservation[M].2nd ed. London:Batsford,1981.
    [112]王万忠.黄土地区降雨特性与土壤流失关系的研究(I)[J].水土保持通报,1983,3(4):7-13.
    [113]江忠善,李秀英.黄土高原土壤流失方程中降雨侵蚀力和地形因子的研究[J].中国科学院西北水土保持研究所集刊,1988,(7):40-45.
    [114]张宪奎,许谨华,卢秀琴,等.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1-9
    [115]杨子生.滇东北地区坡耕地土壤流失方程研究.水土保持通报,1999,19(1):1-9
    [116]Olson T C, Wischmeier W H. Soil erodibility evaluation for soils on the runoff and erosion stations[J]. Soil Sci. Soc. of Am. Proc,1963.27(5):590~592
    [117]Green W H, Ampt G A. Studies on Soils Physics:Ⅰ. Flow of Air and Water Through Soils [J]. J Agr Sci.1911,4:1-24.
    [118]Horton R E. An approach toward a physical interpretation of infiltration capacity [J]. Soil Sci. Soc. Am. Proc.1940,5:399-417.
    [119]Philip J R. The theory of infiltration [J]. Soil Science,1957,83(5):254-264.
    Mein R G., Lason C L. Modeling infiltration during a steady rain [J]. Water Resources Research,1973, 9(2):384-394.
    [120]Chu S T. Infiltration during an unsteady rain [J]. Water Resources Research,1978,14(3): 461-466.
    [121]郭维东,李宝筏,纪志军,等.坐水播种时耕层土壤水分入渗的二维数值模拟[J].农业工程学报,2001,17(2):24-27.
    [122]Bronstert A, Plate E J. Modeling of runoff generation and soil moisture dynamics for hillslops and micro-catchments [J]. Jouural of Hydrology Amsterdam,1997,198:1-4,177-195.
    [123]陈力,刘青泉,等.坡面降雨入渗产流规律的数值模拟研究[J].泥沙研究,2001,(4):61-67.
    [124]张国华,张展羽,左长清,等.坡地自然降雨入渗产流的数值模拟[J].水利学报,2007,38(6):668-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700