用户名: 密码: 验证码:
炭质页岩隧道软弱破碎围岩大变形机理与控制对策及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通隧道、水工隧道及其它地下工程在穿越高地应力、较大残余构造应力、浅埋偏压区域及软弱破碎围岩体时,围岩大变形是一种常见的、危害极大的施工地质灾害。我国基础建设事业的蓬勃发展,公路、铁路以及地下工程迅猛发展,穿越软弱破碎岩体或相对高地应力条件下,围岩产生具有累进性扩展和时间效应的塑性变形,常规支护难以抑制该变形,给施工处理带来极大的困难,处理不当将造成塌方、侵限等,进而造成施工机具毁坏、工期延误、施工成本增加等问题。本文以在建的贵广铁路天平山隧道为依托工程,综合运用室内试验、粘弹塑性理论、地质力学模型试验和三维数值仿真等手段,深入研究了软弱破碎围岩隧道的大变形机理,分析了软弱破碎岩体的大变形机制以及软弱破碎围岩隧道的施工力学性态,提出了大变形控制综合技术体系,取得了一系列有意义的研究成果。
     (1)系统地调查研究了国内外大变形隧道的变形特征及支护对策,分析了现场软弱破碎围岩大变形段的地质勘察及施工等实际情况,采集了典型软弱破碎围岩岩样,在室内开展了三轴常规压缩和三轴压缩流变试验,依据试验结果曲线,分析炭质页岩的流变力学特性,建立了可以描述依托工程炭质页岩蠕变全过程的粘弹塑性应变软化蠕变力学模型,基于模型的一维本构方程,推导了该蠕变力学模型的三维本构方程,确定了模型的4个参数。借助MATLAB程序对模型的参数进行了辨识,为软弱破碎围岩隧道大变形的时间效应研究奠定了试验基础。
     (2)通过对软弱破碎围岩大变形新定义的探讨,发现了软弱破碎围岩的累进性扩展和时间效应两大特征;为充分考虑岩体的流变特性,在5项合理假设前提条件下,推导了隧道表面位移及表面位移速率的解析解,实现了对大变形理论的拓展,对比发现解析解与数值解基本吻合。结合依托工程超大断面开挖和软弱破碎围岩的流变特性,开展了现场炭质页岩大变形段施工过程的三维数值仿真,针对隧道施工过程中掌子面前方的先行位移、掌子面位移及掌子面后方位移分别进行了分析和探讨,并考虑了流变时效特征。结果表明,掌子面位于隧道纵深方向某一位置时,受开挖卸荷的影响,掌子面前方1倍洞径左右的岩体将产生较大先行位移,掌子面处位移约占最终位移量量的36%;对于倾斜地层,岩层倾向与掘进方向成钝角时掘进引起的掌子面挤出变形比岩层倾向与掘进方向成锐角时掌子面的挤出变形大。隧道贯通后流变计算的结果表明,流变变形占开挖变形的25%左右,并且主要发生在初期,变形速率达到4.76mm/d,趋于稳定的时间约为60天。
     (3)基于地质力学模型试验相似理论和现场岩样力学特性的测试结果,研制了软弱破碎岩体隧道施工过程及超载渐近破坏过程的地质力学模型试验系统。该系统包括相似材料、三维组合式模型试验台架、非均匀梯度加载系统和多元信息监测系统等。设计研制了新型低强度单轴压缩蠕变装置,对所研制的软弱围岩相似材料开展了单轴压缩蠕变特性试验研究。研制了大型三维组合式模型试验钢结构台架、非均匀梯度加载液压控制系统。基于光纤光栅传感技术,构建了以全自动信息采集的光纤监测系统为核心的多元信息并行实时监测方法,并辅以自主研发和改进的高精度机械式和光栅尺型微型多点位移计,配合电阻应变采集系统,能够全面捕捉开挖和超载过程中试验材料的位移场、应力场等多场信息的微小变化信号和大幅度波动值,解决了监测方法、仪器和数据处理软件对采集信息造成差异性的难题。经校核计算,模型试验系统主要构件满足强度、刚度要求,可实现同埋深和岩层产状条件下隧道施工过程及围岩渐进性破坏试验。
     (4)开展了软弱破碎围岩隧道的施工过程及超载渐近性破坏试验,首次从试验角度分析了隧道施工过程中的掌子面挤出变形规律,以及掌子面前方的先行位移变化规律,针对不同支护条件,开展了隧道周围位移的影响范围及其最终沿径向分布规律研究。根据固定断面位移随开挖推进的变化规律,给出了软弱破碎围岩隧道施工过程中纵深影响范围以及掌子面前方径向位移变化规律,分析了隧道施工过程中掌子面挤出变形规律,试验结果与数值仿真结果吻合较好,分析结果对实际工程的施工和设计起到了一定的指导作用。
     (5)基于软弱破碎围岩隧道大变形的理论分析、模型试验与数值仿真所揭示的规律,通过对软弱破碎围岩的变形特征进行总结,分析了大变形的原因,建立了软弱破碎围岩隧道施工期大变形的综合防治技术体系。该体系对软弱破碎围岩隧道施工期所产生的掌子面前方先行位移、挤出变形以及掌子面后方位移分别提出了针对性控制对策。基于该技术体系,将相应的控制对策在依托工程贵广线天平山隧道和沪蓉西高速公路龙潭隧道进行应用,成功穿越了天平山隧道DK372+535~DK372+335段和龙潭隧道YK70+969~YK70+800段,取得了良好的效果,证实了该体系的有效性和实用性。
With the rapid development of the highway, railway and other underground engineering, the situation that the tunnels have to pass through surrounding rocks with high geo-stress, high residual tectonic stress, shallow bias, and fractured weak zone, will follows. Large deformation of surrounding rocks is a commonly encountered and high harmful geological hazard in this situation. As the tunnels pass through surrounding rocks with high geo-stress, high residual tectonic stress, shallow bias, and fractured weak zone, cumulative extension and plastic deformation with time-dependence is likely to occur. Conventional support techniques cannot effectively control the deformation, which may result into great difficulties in the tunnel construction. Collapse and intrude limit may happen if the treatment measures are not suitable. And then a lot of additional problems may occur such as damage of construction equipment, schedule delays, cost increase, etc.
     This paper is based on the Tianpingshan tunnel which lies in Guiguang railway and the Longtan tunnel which lies in Hurongxi highway. During the research, various means, such as laboratory test, theoretical analysis, and 3D numerical simulation, are used. In this paper the mechanisms of large deformation in tunnels with fractured weak zone are studied and mechanisms and mechanics behaviors during construction are analyzed. A comprehensive technology system for controlling large deformation is presented and a serious of useful research results are obtained.
     (1) Geological survey data in areas of large deformation with fractured weak zone are collected and analyzed systematically. Typical rock samples are collected and the triaxial compression and triaxial compression rheological tests are also carried out. According to the test curves, rheological characteristics of carbonaceous shale are summarized. And the viscoelastic plasticity strain softening creep mechanical model which can describe the overall creep process of black cat of the based engineering is established. Based on the one-dimensional constitutive equations, the three-dimensional constitutive equations of the model are deduced and 4 parameters of the model are decided. Parameters are identified using MATLAB, which is the experimental fundamental of the research of large deformation of surrounding rocks in tunnels with time effect.
     (2) By discussing the new definition of soft fracture rock mass, two characteristics, namely cumulative extension and time-dependence, are proposed. Five reasonable assumptions have been made on the large deformation theory and geometric field theory, Considering MR effect, the characteristic theory of large deformation has been expended. The analytical solutions of the tunnel surface displacement and the surface displacement rate have been obtained. Based on the project, three dimensional numerical simulation of large section tunnel construction process with soft fracture rock conditions, Considering rheological aging characteristics, targeted antecedent displacement, tunnel face displacement and the displacement behind tunnel face respectively, have been analyzed and discussed. The result shows that large antecedent displacement is likely to occure in front of the tunnel face, where double tunnel diameter away from tunnel face. The displacement of tunnel face accounted for 36% of the final total settlement. The extracted deformation of tunnel face caused by tunnel excavation is larger as the rock tendencies direction at an obtuse angle with driving directions than as the rock tendencies direction at an acute angle with driving directions. Calculated based on the results rheological, rheological deformation mainly concentrated at preliminary stage. The max deformation rate is 4.76mm/d, and the stable time is 60 days, which accounts for 25% of the excavation deformation
     (3) Based on the similar principal analysis of the goemechanical model test and the mechanical character test results of in-situ rock specimen, the geomechanical model test system is developed, which is used in the construction process of soften broken rock mass tunnel and the overload asymptotic process. The system is consist of similar material, triaxial combined model test-bed, non-uniform gradient loading system and multielement massage monitoring system. The newly low intensity axial compress creep equipment is developed and based on this, the axial compress creep character research on the developed similar material for soften rock mass is carried out. The large scale 3D combined model test steel structural rack and non uniform gradient loading hydraulic control system are developed. Based on the optical grating sensor technology, the multielement message parallel real time monitoring method which the nuclear is the optical grating system of full automatic information collection is established. With the self-developed high precision mechanical and grating ruler micro multiple points meters and the resistance strain collection system, the micro change signal and substantially fluctuate data of displacement and stress in the model can be monitored fully during the excavation and over load process, which solve the problem of information diversity made by monitoring method, apparatus and data processing software. By the check and computing, the main member of the model test system can fulfill the demand of intensity and stiffness, it can be used in the model test of construction process and progressive failure of rock mass in the condition of the same embedded depth and stratum.
     (4) The model test on construction process of soft fractured surrounding rock mass surrounding tunnel and overload asymmatic damage was carried out. During the test, the displacement changing law before the tunnel face is analyzed and the affecting range of radical displacement surrounding tunnel and the ultimate radical distribution laws were carried out according to the different anchoring condition. Based on the changing law of fixed section displacement with the excavation steps, the affecting range in depth during the construction process of soft fractured surrounding rock mass and the radical displacement changing laws of tunnel face were got. The squeeze deformation law of tunnel face is analyzed, and the test results and numerical simulation results are coincident well. The results can be guidance to the construction and design of the actual engineering.
     (5) Based on the laws got by theoretical analysis, model test and numerical simulations on the large deformation of soft fractured surrounding rock mass, through the summary of the deformation character of the soft fractured rock mass, the reason of large deformation is analyzed and the comprehensive technical on the large deformation during the construction of soft fractured rock is established. Based on the technical system, the control method is applied in the Tianpingshan tunnel which lies in Guiguang railway and Longtan tunnel which lies in the Hurongxi Highway and the well effect was got, which proved the practicability of the system.
引文
[1]姜云,李永林,李天斌等.隧道工程围岩大变形类型与机制研究[J].地质灾害与环境保护,2004(4):46-51.
    [2]王树仁,刘招伟,屈晓红,等.软岩隧道大变形力学机制与刚隙柔层支护技术[J].中国公路学报,2009,22(6):90-95.
    [3]刘高,张帆宇,李新召,等.木寨岭隧道大变形特征及机理分析[J].岩石力学与工程学报,2005,24(2):5521-5526.
    [4]张志强,关宝树.软弱围岩隧道在高地应力条件下的变形规律研究[J].岩土工程学报,2000,22(6):696-700.
    [5]徐则民,黄润秋.深埋特长隧道及其施工地质灾害[M].西南交通大学出版社,2000.
    [6]张祉道.家竹箐隧道施工中支护大变形的整治.世界隧道,1997(1):7-16.
    [7]YTazawa et al Effect of rock bolts and thin linings as tunnel supports in soft rock. Proceeding of the international symposium on weak rock:A, A.Balkema. Rotterdam, Netherland.1981.757-76.
    [8]R. Lovat Soft rock TBMs. Annual Meeting-Association of Engineering Geologists. Association of Engineering Geologists. [Location varies], United States.1985,28:69.
    [9]何满朝,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [10]陈玉.共和隧道围岩大变形机制及防治措施研究[D].硕士学位论文.重庆:重庆大学,2008,5.
    [11]谢俊峰,陈建平.火车岭隧道软弱围岩大变形特征及机理分析[J].武汉科技大学学报,2007,30(6):647-651.
    [12]Aydan O., Akagi T. & Kawamoto. T. The Squeezing Potential of Rocks Around Tunnels; Theory and Prediction. Rock Mechanics and Rock Engineering,1993,26:137-163.
    [13]叶圣教.辛普伦铁路隧道的施工和回顾.铁路工程建设科技动态报告文集—铁路隧道及地下工程.成都:西南交通大学山版社,1995:120-134.
    [14]张祉道.家竹箐隧道施工中支护大变形的整治.世界隧道,1997(1):7-16.
    [15]王科.家竹箐隧道地质条件及地应力特征.世界隧道,1998,(1):11-16.
    [16]张祉道,白继承.家竹箐隧道高瓦斯、大变形、大涌水的整治与对策.世界隧道,1998(1):1-10.
    [17]喻渝.挤压性围岩支护大变形的机理及判别方法.世界隧道1999(1):46-51.
    [18]Anagnostou G. A Model for Swelling Rock in Tunneling. Rock Mechanics and Rock Engineering,1993,26 (4):307-331.
    [19]徐则民,黄润秋.深埋特长隧道及其施工地质灾害.西南交通大学出版社.2000,5.
    [20]朱维申,李术才,白世伟,等.施工过程力学原理的若干发展和工程实例分析[J].岩石力学与工程学报,2003,22(10):1586-1591.
    [21]孙钧.岩土流变材料及其工程应用[M].北京:中国建筑工业出版社,1999.
    [22]孙钧.岩土流变力学及其工程应用研究的若干进展[J].岩土力学与工程学报2007, 26(6):1081-1106.
    [23]杨圣奇,徐卫亚,谢守益,邵建富.饱和状态下硬岩三轴流变变形与破裂机制研究[J].岩土工程学报,2006,28(8):963-969.
    [24]张明,毕忠伟,杨强,程丽娟,李仲奎.锦屏一级水电站大理岩蠕变试验与流变模型选择[J].岩土力学与工程学报,2010,29(8):1531-1537.
    [25]熊良宵,杨林德,张尧,沈明荣等.锦屏二级水电站绿片岩双轴压缩蠕变特性试验研究[J].岩石力学与工程学报,2008,27(增刊):3929-3933.
    [26]徐卫亚,杨圣奇,杨松林,谢守益,邵建富,王义锋.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):533-537.
    [27]陈卫忠,谭贤君,吕森鹏,杨建平等.深部软岩大型三轴压缩流变试验及本构模型研究[J].岩土力学与工程学报.2009,28(9):1736-1744.
    [28]沈荣喜,刘长武,刘晓斐.压力水作用下炭质页岩三轴流变特征及模型研究[J].岩土工程学报,2010,32(7):1032-1034.
    [29]王志俭,殷坤龙,简文星,周春梅.三峡库区万州红层砂岩流变特性试验研究[J].岩土力学与工程学报,2008,27(4):841-847.
    [30]崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩土力学与工程学报,2006,25(5):1022-1024.
    [31]郤保平,赵阳升,赵延林,康志勤.层状盐岩储库长期运行腔体围岩流变破坏及渗透现象研究[J].岩土力学,2008,29(增刊):243-245.
    [32]陈绍杰,郭惟嘉,杨永杰.煤岩蠕变模型与破坏特征试验研究[J].岩土力学.2009,30(9):2597-2622.
    [33]赵旭峰,孙钧.海底隧道风化花岗岩流变试验研究[J].岩土力学2010,31(2):404-406.
    [34]张晓超,许模.成都裂隙性黏土流变特性试验[J].实验室研究与探索,2010,29(4):28-32.
    [35]张军辉,缪林昌.连云港海相软土流变特性试验及双屈服面流变模型[J].岩土力学,2005,26(1):146-149.
    [36]吴波,汪东林,程桦.软土流变特性试验研究[J].安徽建筑工业学院学报(自然科学版)[J],2008,16(5):2-4.
    [37]孙德安,申海娥.上海软土的流变特性试验研究[J].水文地质工程地质,2010,37(3):75-78.
    [38]王坤,蔡永昌,魏赟,等.深圳地区深层粉质粘土的流变特性试验研究[J].检测与分析,2009,12(12):
    [39]张向东,张树光,李永靖,霍宝荣.冻土三轴流变特性试验研究与冻结壁厚度的确定[J].岩土力学与工程学报,2004,23(3):396-400.
    [40]谷任国,房营光,梁建伟.膨润土对软黏土流变性质影响的试验研究[J].人民黄河,2009,31(6):98-99.
    [41]陈晓斌,张家生,封志鹏.红砂岩粗粒土流变工程特性试验研究[J].岩土力学与工程学报,2007,26(3):602-607.
    [42]陈晓斌,张家生,安关峰.红砂岩粗粒土流变机理试验研究[J].矿冶工程,2006,26(6):17-24.
    [43]傅鹤林,吴小策,何贤锋.山涧软土的流变工程特性试验研究[J].岩土力学,2009,30(增 刊):55-59.
    [44]袁静,龚晓南,刘兴旺,益德清.软土各向异性三屈服面流变模型[J].岩土工程学报,2004,26(1):89-94.
    [45]朱明礼,朱珍德,唐胡丹,陈卫忠,冯夏庭.深埋隧洞围岩双向流变特性试验[J].煤炭学报,2010,35(2):209-212.
    [46]刘学增,王华牢,周敏,苏京伟.板岩流变特性试验与模型辨识[J].同济大学学报(自然科学版),2010,38(5):665-672.
    [47]张梅花,高谦,翟淑花.高地应力围岩流变特性及竖井长期稳定性分析[J].力学学报,2010,42(3):475-481.
    [48]郤保平,赵阳升,万志军,董付科等.高温静水应力状态花岗岩中钻孔围岩的流变实验研究[J].岩土力学与工程学报,2008,27(8):1660-1666.
    [49]齐明山,徐正良,崔勤,宁佐利.厦门海底隧道围岩流变特性及其特征曲线[J].岩土力学,2007,28(增刊):494-496.
    [50]花俊杰,常晓林,周伟.高堆石坝流变研究进展[J].水力发电学报,2010,29(4):195-199.
    [51]李国英,米占宽,傅华,方维凤.混凝土面板堆石坝堆石料流变特性试验研究[J].岩土力学,2004,25(1]):1713-1716.
    [52]汪明元,黄斌,陈琴,潘家军.水布垭超高混凝土面板堆石坝的长期变形特性[J].水力发电学报,2010,29(4):168-206.
    [53]刘萌成,高玉峰,刘汉龙.混凝土面板堆石坝应力变形长期性状有限元模拟[J].岩土力学,2010,31(增刊1):413-418.
    [54]朱杰兵,汪斌,杨火平,胡建敏.页岩卸荷流变力学特性的试验研究[J].岩石力学与工程学报,2007,26(增刊):4553-4556.
    [55]闫子舰,夏才初,李宏哲,王晓东,张春生.分级卸荷条件下锦屏大理岩流变规律研究[J].岩土力学与工程学报,2008,27(10):2154-2159.
    [56]闫子舰, 夏才初.锦屏大理岩卸荷流变变形特性试验[J].长江科学院院报,2008,25(2):12-15.
    [57]石振明,张力.锦屏绿片岩分级卸荷流变规律研究[J].地下空间与工程学报,2010,6(4):757-762.
    [58]朱杰兵,汪斌,邬爱清.锦屏水电站绿砂岩三轴卸荷流变试验及非线性损伤蠕变本构模型研究[J].岩土力学与工程学报,2010,29(3):529-534.
    [59]付艳斌,宋博通,朱合华.卸载作用下淤泥质黏土流变规律试验研究[J].深圳大学学报理工版,2009,26(4):401-404.
    [60]张忠亭,陶振宇.洞室围岩收敛变形的时间效应特性研究[J].武汉水利电力大学学报,1992,25(4):429-436.
    [61]张忠亭,罗居剑.分级加载下岩石蠕变特性研究[J].岩土力学与工程学报,2004,23(2):218-222.
    [62]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报,2005,27(11):1274-1276.
    [63]宋飞, 赵法锁.分级加载下岩土流变的神经网络模型[J].岩土力学,2006,27(7):1188-1190.
    [64]朱珍德,李志敬,朱明礼,王青.岩体结构面剪切流变试验及模型参数反演分析[J].岩土 力学,2009,30(1):100-104.
    [65]庞正江,胡建教.结构面剪切流变及其长期强度试验研究[J].岩土力学,2006.27(增刊):1180-1182.
    [66]闫子舰,夏才初,王晓东,张春生.岩石节理流变力学特性及其本构模型[J].同济大学学报(自然科学版),2009,37(5):602-606.
    [67]伍国军,陈卫忠,贾善坡,杨建平.岩石锚固界面剪切流变试验及模型研究[J].岩石力学与工程学报,2010,29(3):521-527.
    [68]陈小婷,彭轩明,黄润秋.粉砂质泥岩剪切流变特性试验分析[J].三峡大学学报(自然科学版),2008,30(4):44-46.
    [69]杨天鸿,芮勇勤,朱万成,申力等.炭质泥岩泥化夹层的流变特性及长期强度[J].实验力学,2008,23(5):397-401.
    [70]夏保祥,程崇国.三车道大断面公路隧道研究现状综述[J].地下空间,2002,22(4):360-366.
    [71]杨小军.铁路隧道围岩变形特征及稳定性判据研究[D].长安:长安大学,2010.
    [72]吴梦军,许锡宾,刘绪华,等.岩溶对公路隧道围岩稳定性的影响研究[J].地下空间,2003,23(1):59-62.
    [73]吕春峰,王芝银,李云鹏,等.含裂隙煤层底板突水规律的数值模拟与工程应用[J].岩土力学,2003,24(增):112-116.
    [74]李世辉.隧道围岩稳定系统分析[M].北京:中国铁道出版社,1991.
    [75]王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报,1996,15(3):201-210.
    [76]邓建,朱合华,丁文其.不等跨连拱隧道施工全过程的有限元模拟[J].岩土力学,2004,25(3):477-480.
    [77]李围.隧道及地下工程ANSYS实例分析[M].北京:中国水利水电出版社,2008.
    [78]费康,张建伟ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [79]李国,洗进.隧道及地下工程FLAC解析方法[M].北京:中国水利水电出版社,2009.
    [80]常斌,李宁,马玉扩.神经网络方法在洞室施工期应力及变形预测中的应用及其改进[J].岩石力学与工程学报,2004,23(7):1 132-1 135.
    [81]张明,卢裕杰,毕忠伟,等.利用神经网络的反馈分析方法及其在地下厂房中的应用[J].岩石力学与工程学报,2010,29(11):2 211-2 220.
    [82]李沃钊,李仲奎.监测反馈分析在二滩地下厂房施工中的应用[J].水电站设计,1999,15(1):66-72.
    [83]朱永全.隧道稳定性位移判别准则[J].中国铁道科学,2001,21(6):80-83.
    [84]中华人民共和国行业标准编写组..铁路隧道设计规范(TB100032-2005)[S].北京:中国铁道出版社,2005.
    [85]朱永全,张素敏,景诗庭.铁路隧道初期支护极限位移的意义及确定[J].岩石力学与工程学报,2005,24(9):1594-1598.
    [86]朱永全,刘勇,张素敏.洞室大小和形状对极限位移的影响[J].岩石力学与工程学报,1998,17(5):527-533.
    [87]刘志春,李文江,朱永全,等.软岩大变形隧道二次衬砌施作时机探讨[J].岩石力学与工程学报,2008,27(3):580-588.
    [88]张洋.隧道工程软弱围岩大变形控制体系研究[D].成都:西南交通大学,2006.
    [89]喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1998(1):46-51.
    [90]姜云,李永林,李天斌,等.隧道工程围岩大变形类型与机制研究[J].地质灾害与环境保护,2004,15(4):46-51.
    [91]R. Yoshinaka, M. Osada, T. V Tran. Deformation Behavior of Soft Rocks during Consolidated-Undrained Cyclic Triaxial Testing[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1996,33(6):557-572.
    [92]R. Yoshinaka, M. Osada, T. V Tran. Non-linear Stress-and Strain-Dependent Behavior of Soft Rocks under Cyclic Triaxial Conditions[J]. Int. J. Rock Mech. Min. Sci.,1998, 35(7):941-955.
    [93]R. Yoshinaka, M. Osada, T. V Tran. Pore Pressure Changes and Strength Mobilization of Soft Rocks in Consolidated-Undrained Cyclic[J]. Int. J. Rock Mech. Min. Sci.,1997, 34(5):715-726.
    [94]郭志.软岩流变过程与强度研究[J].工程地质学报,1996,4(1):75-79.
    [95]郭志.软岩力学特性研究[J].工程地质学报,1996,4(3):79-84.
    [96]周楚良.岩石强度衰减、流变与围岩稳定性分析[J].矿山压力与顶板管理,1993,(3):7-13.
    [97]C. Wang, Y Wang, S. Lu. Deformation Behaviour of Roadway in Soft Rocks in Underground Coal Mine and Principle for Stability Control[J]. Int. J. Rock Mech. & Min. Sci.,2000,37:937-946.
    [98]孙钧,汪炳蕴.地下结构有限元法解析[M].上海:同济大学出版社,1986.
    [99]李忠奎,卢达溶,洪亮.大型地下洞室群三维地质力学模型试验中隐蔽开挖模拟系统的研究和设计[J].岩石力学与工程学报,2004,23(2):181-186.
    [100]张强勇,李术才,李勇等.大型分岔隧道围岩稳定与支护三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26(supp.2):4051-4059.
    [101]罗晶,郑占强,肖毅,张林.地质力学模型试验中不同类型岩体的相似模拟研究[J].水电站设计2007,23(4):79-85.
    [102]张强勇,李术才,郭小红,等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [103]韩伯鲤,陈霞龄,宋一乐.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9.
    [104]左保成,陈从新,刘才华.相似材料试验研究[J].岩土力学,2004,25(11):1805-1808.
    [105]何显松,马洪琪,等.地质力学模型试验中变温相似材料的温度特性研究[J].2006,38(1):34-37.
    [106]孙晓明,何满潮,刘成禹,等.真三轴软岩非线性力学试验系统研制[J].岩石力学与工程学报,2005,24(16):2870-2874.
    [107]董昌周,曲晨,等.地质力学模型试验台的研制和应用[J].实验室研究与探索,2010,29(3):14-16.
    [108]朱维申,张乾兵,李勇等.真三轴荷载条件下大型地质力学模型试验系统的研制及其应用[J].岩石力学与工程学报,2010,29(1):1-7.
    [109]张强勇,陈旭光,林波,等.高地应力真三维加载模型试验系统的研制及其应用[J].岩土工程学报,2010.32(10):1588-1593.
    [110]张强勇,李术才,尤春安.新型岩土地质力学模型试验系统的研制及应用[J].土木工程学报,2006,39(12):100-103.
    [111]董建华,谢和平,等.光纤光栅传感器在重力坝结构模型试验中的应用[J].四川大学学报,2009,41(1):41-46.
    [112]陈继光,张强勇,李术才,等.基于神经网络的直接线性变换在地质力学模型试验中的应用[J].岩土力学,2008,29(4):897-900.
    [113]张乾兵,朱维申,孙林峰,郑文华.数字照相量测在大型洞群模型试验中的应用研究[J].岩土工程学报,2010,32(3):447-452.
    [114]ValanisK C. A theory of viscoplasticitywithout a yield suface [J]. Archives of Mechanics,1971,23(5):517-551
    [115]ValanisK C. On the substance of Rivlins'remarks on the endochronic theory[J]. International JournalofSolids and Structures,1981,17(5):249-265
    [116]Z. P. Bazant, et al. Endochronic theory of Inelasticity and Failure ofConcrete[J]. J. of Eng. Mech. Div, ASCE,1976,102(EM4):701-755.
    [117]章根德,何鲜,朱维耀.岩石介质流变学[M].北京:科学出版社,1999.
    [118]金丰年.岩石的非线性流变[M].南京:河海大学出版社,1998.
    [119]沈明荣.岩体力学[M].上海:同济大学出版社,1999.
    [120]杨圣奇.岩石流变力学特性研究及其工程应用[D].南京:河海大学博士学位论文,2005.
    [121]冒海军,杨春和,刘江,等.板岩蠕变特性试验研究与模拟分析[J].岩石力学与工程学报,2006,25(6):1204-1209.
    [122]李荣,孟英峰,罗勇,等.泥页岩三轴蠕变实验及结果应用[J].西南石油大学学报,2007,29(3):57-59.
    [123]任松,姜德义,杨春和,等.共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J].岩土力学,2010,31(2):416-421.
    [124]沈荣喜,刘长武,刘晓斐.压力水作用下炭质页岩三轴流变特征及模型研究[J].岩土工程学报,2010,32(7):1031-1034.
    [125]何沛田,黄志鹏,邬爱清.确定软岩岩体承载能力方法研究[J].地下空间,2004,24(1):89-93.
    [126]周德培,朱本珍,毛坚强.流变力学原理及其在岩土工程中的应用[M].成都:西南交通大学出版社,1995.
    [127]高延法,范庆忠,崔希海,等.岩石流变及其扰动效应试验研究[M].北京:科学出版社,2007.
    [128]杨峰.高地应力软岩巷道变形破坏特征及让压支护机理研究[D].徐州:中国矿业大学博士学位论文,2009.
    [129]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [130]刁心宏,王继飞.浅谈软岩流变性的研究[J].江西科学,2006,24(3):309-313.
    [131]岩石流变试验与本构模型研究进展[J].山东农业大学学报(自然科学版),2006,37(1):136-140.
    [132]J.c.耶格,N.G.W.库克.岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1983.
    [133]李晓红,卢义正,康勇,等.岩石力学实验模拟技术[M].北京:科学出版社,2007.
    [134]沈泰.地质力学模型试验技术的进展[J].长江科学院院报,2001,185(5):32-36.
    [135]陈安敏,顾金才,沈俊,等.地质力学模型技术应用研宄[J].岩石力学与工程学报,2004,23(22):3785—3789.
    [136]李仲奎,卢达溶,中山元.三维模型试验新技术及其在大型地下洞群研究中的应用[J].岩石力学与工程学报,2003,22(9):1430-1436.
    [137]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验原理及工程应用[M].北京:中国水利水电出版社,2005.
    [138]李勇,朱维申,王汉鹏,等.新型岩土相似材料的力学试验研究及应用[J].隧道建设,2007,(增):197—200.
    [139]马芳平,李仲奎,罗光福NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报.2004,23(1):48-52.
    [140]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [141]黄秋枫.地质力学模型相似材料[J].现代矿业,2009,3(3):49-53.
    [142]孟庆生,孔令伟,郭爱国等人.高速公路高填方路堤拼接离心模型试验研究[J].岩石力学与工程学报,2007,26(3):580-586.
    [143]杜应吉.地质力学模型试验的研究现状与发展趋势[J].西北水资源与水工程,1996,7(2):64—67.
    [144]李勇.高地应力条件下大型地下洞室群分步开挖稳定性及流变效应研究[D].济南:山东大学博士学位论文,2009.
    [145]张强勇,刘德军,贾超等.盐岩油气储库介质地质力学模型相似材料的研制[J].岩土力学,2009,30(12):3582—3586.
    [146]李丹.高地应力条件下交通隧道的模型试验研究及数值模似[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [147]马芳平,李仲奎,罗光福NIOS模型材料及其在地质力学相似模型试验中的应用[J].水利发电学报,2004,23(1):48-51.
    [148]王金喜,曹佳良,郝彬彬,等.深埋高应力软岩巷道变形的相似材料模拟研究[J].矿业安全与环保,2008,35(4):11-13.
    [149]张强勇, 李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    []50]张强勇, 王汉鹏, 李勇等.铁晶砂胶岩土相似材料及其制备方法:中国ZL2005101045814[P].2007-09-12.
    [151]刘德军.盐岩地下储气库注采气压变化的三维地质力学模型试验与数值计算分析研究[D].济南:山东大学硕士学位论文,2010.
    [152]朱维申,李勇,张磊,等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):1308-1314.
    [153]解延堃,李二利,刘如成.炭质页岩常规三轴试验和本构方程的研究[J].露天与采矿技术,2008, (6):7.12.
    [154]Qin Liu, Shucai Li, Liping Li, et al. Development of Geomechanical Model Similar Material for Soft Rock Tunnels[J]. Advanced Materials Research,2011,168-170, 2249-2253.
    [155]李术才,李利平,李树忱等.地下工程突涌水物理模拟试验系统的研制及应用[J].采矿与安全工程学报,2010,27(3):299-304.
    [156]左东启.模型试验的理论与方法[M].北京:水利电力出版社,1984.
    [157]MANDAL S K, SINGH M M. Evaluating extent and causes of overbreak in tunnels[J]. Tunnelling and Underground Space Technology.2009,24(1):22-36.
    [158]JEON S, KIM J, SEO Y, et al. Effect of a fault and weak plane on the stability of a tunnel[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(3): 1-6.
    [159]汪成兵,朱合华.隧道塌方机制及其影响因素离散元模拟[J].岩土工程学报,2008,30(3):450-456.
    [160]马涛.浅埋隧道塌方处治方法研究[J].岩石力学与工程学报,2006,25(增2):3976-3981.
    [161]陈洁金,周峰,阳军生,等.山岭隧道塌方风险模糊层次分析[J].岩土力学,2009,30(8):2365—2370.
    [162]汪成兵.变埋深下软弱破碎隧道围岩渐近性破坏试验与数值模拟[J].岩石力学与工程学报,2010,29(6):1113-1122.
    [163]赵瑜.深埋隧道围岩系统稳定性及非线性动力学特性研究[D].重庆:重庆大学博士学位论文,2007.
    [164]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [165]张锐,迟世春,林皋.基于大变形理论的高土石坝坝坡稳定分析[J].水电能源科学,2007,25(6):54-57.
    [166]崔世杰,张清杰.应用塑性力学[M].郑州:河南科学技术出版社,1992.
    [167]G. Galli, A. Grimaldi, A. Leonardi. Three-dimensional modeling of tunnel excavation and lining. Computers and Geotechnics,2004,31:171-183.
    [168]彭文斌FLAC 3D实用教程[M].北京:机械工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700