用户名: 密码: 验证码:
风力发电机组控制系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以风力机控制系统为研究对象,将功率、载荷控制作为目标,提出了相应的控制策略。在分析建立风力机模型的基础上,对风力机在额定风速以下的最优功率控制、在额定风速以上的变桨控制、功率预测控制以及整机的载荷减小等策略进行了深入的研究。运用提出的控制策略和方法,对风力机控制系统进行了仿真设计。全文的主要研究内容为:
     第1章:介绍了课题的研究背景,阐述了研究意义,对风力发电机组研究现状进行了归纳分析,尤其是对控制系统的策略和算法进行了详细的分析,在此基础上介绍了论文的主要内容和组织结构。
     第2章:根据风力机动态入流理论建立非定常入流模型,详细分析了采用动态入流理论建立风力机模型的合理性,指出了尾流对风力机动态特性的影响,对非定常流中的加速势方法进行了调整。以von Karman理论建立湍流风模型,得到系统需要的三维风场。将Matlab仿真模型和Bladed软件设计分析结果进行对比,验证本文所建风力机空气动力学模型的正确性。
     第3章:根据风力机运行特点,将其控制阶段分为三个区域,按照区域的不同设计相应的控制策略,重点研究了全负荷最优控制阶段的控制策略,实现控制环的解耦,确保控制平滑过渡。由于风力机功率控制系统具有延迟特性,以系统特性为基础,结合预测控制方法,减小系统延时,提高系统控制性能。分析了线性状态空间模型预测控制算法,结合风力机特征,设计系统模型预测控制器;将模型预测控制器分为干扰模型和估计器、目标计算以及动态最优等三个模块;分析了各个模块的特点并建立数学模型。采用仿真的方式验证了模型预测控制在风力机功率控制方面的优越性。
     第4章:分析了风力机线性化方法,根据本章的研究重点,选择3状态风力机线性模型作为控制对象。对单神经元的特点进行分析,推导了单神经元数学模型,并对算法进行改进,得到改进的单神经元数学模型,采用改进单神经元控制算法对常规PID进行在线参数调整,得到基于改进单神经元的自适应PID控制器,并将其应用到变桨系统的控制中,比较分析了改进单神经元自适应PID控制器和常规PID控制器的控制性能。
     第5章:建立了风力机塔架/转子运动学方程,设计了塔架前后向和侧向阻尼滤波器,增大其阻尼,减小振动。增大传动链主动阻尼并屏蔽桨叶穿越频率,避免塔架和转子发生共振;分析了多叶片坐标转换理论,结合独立变桨控制方法,将旋转坐标系运动方程转化到固定坐标系,简化控制设计过程,再利用多叶片坐标逆变换将结果转换为旋转坐标,此物理量与功率控制环输出量一起构成风力机变桨控制的输入量,可以有效减小湍流引起的不确定载荷。
     第6章:总结本文的主要研究内容和成果,并给出了今后有待进一步研究的工作和方向。
Based on the research on the wind turbine system, this dissertation sets the power and loads control as objects and further puts forward corresponding control strategies. On the basis of analyzing and establishing the model of wind turbine, the dissertation makes in-depth research on the control strategies about the optimum power control below rated wind,pitch control above rated wind , predictive control of power, and the reduction of the loads. Then, with the employment of those proposed control strategies and methods, it makes simulation design for the control system of wind turbine. The following are those main points of this dissertation.
     In chapter 1, the research background was introduced, the significance of the research was expounded and those research situation of wind turbine were summarized. Besides, the control strategies and control algorithms were especially emphasized. Then, the main content and structure of dissertation were recommended.
     In chapter 2, according to the wind turbine dynamic inflow theory, the unsteady inflow model was created. Then, the rationality of the establishment of wind turbine model by employing the dynamic inflow theory was analyzed. Furthermore, the influence of wake on the dynamic features of wind was indicated. And the acceleration potential method of unsteady flow was modified. Besides, based on the theory of von Karman, the turbulent wind model was set up and the three-dimensional turbulent wind field was gained. Finally, by comparing the analysis results between Matlab simulation model and Bladed design model, the correctness of aerodynamical model of wind turbine that has been proposed was validated.
     In chapter 3, on the basis of analyzing the features of performance of wind turbine, three districts were divided in the process. Then the corresponding control strategies of the three districts were designed owing to the difference between different districts. Focusing on the research on those control strategies in full loads period, the smooth transition of control by decoupling the control loop was realized. Then, based on the characteristic of the system, the performance of control system would be improved by combining predict control method to reduce time lag of system. Besides, with the combination of characteristics of wind turbine, by analyzing the model predictive control algorithm of linear state space, the model predicative controller of the system was designed. Afterwards, the model predictive controller was divided into three modules including disturbance model, object calculation and dynamic optimization. Then, based on the analysis of the features of those modules, their mathematical model was established. At last, with the exertion of the emulation mode, the advantage of model predictive control on power control of wind turbine was validated.
     In chapter 4, the linearization method of wind turbine was analyzed and the three states linearization model was selected as control objects according to the research focus of this chapter. Based on the analysis of single neuron, the mathematical model of single neuron was deduced and its algorithm was ameliorated to attain the improved the mathematical model of single neuron. Then, by adopting the improved control algorithm to adjust conventional PID controller parameter, the self-adaptive PID controller which was based on the improved single neuron was gained. Then, the gained controller was used to regulate pitch system and comparative analysis of the functions of the two controllers in system was made.
     In chapter 5, based on kinematic equation, the filters in fore-afterward direction and in sideward direction were designed to increase damping and reduce vibration. Furthermore, by increasing damping for train and shielding the crossover frequency of blade, the resonance between tower and rotor was avoided. Next, the multi-blade coordinate transformation theory was analyzed and the method of independent pitch control was combined and kinematic equation of rotation coordinate was converted to fixed coordinate in individual pitch control. Thus, the design process of individual pitch was simplified. Then, the results were converted to rotation coordinate via inverse transformantion. And finally, the physical quantity was integrated with output of power control loop to become the input of pitch control of wind turbine, which could effectively reduce uncertain loads.
     In chapter 6, the conclusion of the major research contents and results was achieved and the task that should be accomplished further in the future was also advanced.
引文
[1] Z Chen,S Arnalte Gómez,M McCormick.A fuzzy logic controlled power electronic system for variable speed wind energy conversion systems[C]. Power Electronics and Variable Speed Drives, 2000. Eighth International Conference on (IEE Conf. Publ. No. 475):114-119.
    [2] Kathryn E.Johnson.Adaptive torque control of variable speed wind turbines[R]. NREL/ TP-500-36265,2004.
    [3] Tony Burton,David Sharpe,Nick Jenkins,et al.Wind Energy Handbook[M].Chichester:John Wiely&Sons Ltd,2001.
    [4] Gary L.Johnson.Wind energy systems[M].America,2006.
    [5] Gillian Lalor,Alan Mullane,Mark O’Malley.Frequency control and wind turbine technologies[J]. IEEE Transactions on ,Power Systems, 2005,20(4):1905-1913.
    [6] Y.D.Song,M.Bikdash,M.J.Schulz.Control and health monitoring of variable-speed wind power generation systems[R].NREL/SR-500-29708,2001.
    [7] Alan D.Wright.Modern control design for flexible wind turbines[R]. NREL/ TP-500-35816, 2004.
    [8] E.Muljadi,K.Pierce,P.Migliore.Soft-stall control for variable-speed stall-regulated wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,85(3):277-291.
    [9] A.DWright,L.J.Fingersh,M.J.Balas.Testing state-space controls for the controls advanced research turbine[C].The 44th AIAA Aerospace Sciences Meeting and Exhibit,Reno,Nevada January 9-12,2006:1-15.
    [10]王承熙,张源.风力发电[M].北京:中国电力出版社,2003.
    [11] Wind power today&tomorrow[EB/OL].http://www.nrel.gov/docs/fy04osti/34915.pdf.
    [12]吴迪,张建文.变速直驱永磁风力发电机控制系统的研究[J].大电机技术,2006.6:51-55.
    [13]肖运启.双馈型风力发电机励磁控制与优化运行研究[D].华北电力大学,2008.
    [14] Ramler,J.R.,R.M.Donovan.Wind turbines for electric utilities:development status and economics[R].DOE/NASA/1028-79/23,NASA TM-79170,AIAA-79-0965,June 1979.
    [15] Sheldahl, R. E. ,B. F. Blackwell. Free-air performance tests of a 5-meter-diameter darrieus turbine[R]. Sandia Laboratories Report SAND 77-1063, December, 1977.
    [16]姚兴佳,隋红霞,刘颖明,等.海上风电技术的发展与现状[J].上海电力,2007,(2):111-118.
    [17]黄东风.欧洲海上风电的发展[J].能源工程,2008,(2):24-27.
    [18]李清勉,范旭娟.中国近海风力发电的发展及技术体系探讨[J].陕西电力,2010,38(8):65-68.
    [19]葛川,何炎平,叶宇,等.海上风电场的发展、构成和基础形式[J].中国海洋平台,2008,23(6):31-35.
    [20]美国科学家尝试用高空风力发电机给纽约供电.http://tech.sina.com.cn/d/ 2009-06-17/ 09493186831.shtml.
    [21]李俊峰,高虎等.中国风电发展报告2007 [R].北京:中国环境科学出版社,2007.
    [22]李俊峰,施鹏飞,高虎等.中国风电发展报告2010 [R].海南:海南出版社,2010.
    [23] Jamal A.Baroudi,Venkata Dinavahi,Andrew M.Knight.A review of power converter topologies for wind generators[J]. Renewable Energy, Volume 32, Issue 14, November 2007, Pages 2369-2385.
    [24] R. Erickson, S. Angkititrakul, and K. Almazeedi.A new family of multilevel matrix converters for wind power applications:final report[R]. NREL/SR-500-40051.
    [25] Badrul H. Chowdhury, Srinivas Chellapilla.Double-fed induction generator control for variable speed wind power generation[J]. Electric Power Systems Research 76 (2006) 786–800.
    [26] M.N. Mansouri, M.F. Mimouni, B. Benghanem,et al.Simulation model for wind turbine with asynchronous generator interconnected to the electric network[J]. Renewable Energy 29 (2004) 421–431.
    [27]李晶,方勇,宋家骅,等.变速恒频双馈风电机组分段分层控制策略的研究[J].电网技术,2005,29(9):15-21.
    [28]王琦,陈小虎,纪延超,等.基于双同步坐标的无刷双馈风力发电系统的最大风能追踪控制[J].电网技术,2007,31(3):82-87.
    [29]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的最优功率控制[J].太阳能学报,2006,27(10):1014-1020.
    [30]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006,26(23):109-114.
    [31]佘岳,欧阳红林,高平,等.三相SVPWM整流器在风能最大功率点追踪中应用[J].电力自动化设备,2006,26(5):19-22.
    [32]陈明亮,肖飞,王颢雄等.直驱型永磁同步风力发电机无传感器控制[J].电机与控制学报,2009,13(6):792-797.
    [33]刘其辉,贺益康,张建华.交流励磁变速恒频双馈型异步发电机的稳态功率关系[J].电工技术学报,2006,21(2):39-44.
    [34]李晶,王伟胜,宋家骅.双馈感应发电机的线性化动态模型及运行特性分析[J].电网技术,2004,28(13):13-17.
    [35]胡书举,李建林,许洪华.永磁直驱风电系统变流器拓扑分析[J].电力自动化设备,2008,28(4):77-81.
    [36]张岳,王凤翔.直驱式永磁同步风力发电机性能研究[J].电机与控制学报,2009,13(1):78-82.
    [37]姚俊,廖勇,庄凯。永磁直驱风电机组的双PWM变换器协调控制策略[J].电力系统自动化,2008,32(20):88-92.
    [38]赵阳,邹旭东,康勇,等。变速恒频双馈风力发电系统的速度模式控制[J].武汉大学学报(工学版),2007,40(1):114-119.
    [39] B.Boukhezzar,L.Lupu,H.Siguerdidjane,M.Hand. Multivariable control strategy for variable speed, variable pitch wind turbines[J] .Renewable Energy,2007,32(8): 1273-1287.
    [40] Md.Arifujjaman,M.Tariq Iqbal,John E.Quaicoe. Energy capture by a small wind-energy conversion system[J]. Aplied Energy, 85(2008):41-51.
    [41] V.A.Riziotis,E.S.Politis,S.G.Voutsinas, P.K.Chaviaropoulos. Stability analysis of pitch- regulated,variable speed wind turbines in closed loop operation using a linear eigenvalue approach[C].Journal of Physics:Conference Series,2007,75(1):1-16.
    [42] yousif El-Tous. Pitch angle control of variable speed wind turbine[J]. American J. of Engineering and Applied Sciences, 2008, 1 (2): 118-120.
    [43] Kathryn E.Johnson,Lucyy Y.Pao,Mark J. Balas,et al. Control of variable-speed wind turbines standard and adaptive techniques for maximizing energy capture[J]. IEEE control systems magazine,2006,6,70-81.
    [44] Lei Zhang,Chunliang E,Haidong Li,Honghua Xu. A new pitch control strategy for wind turbines based on quasi-sliding mode control[C]. Sustainable Power Generation and Supply, 2009. SUPERGEN '09. International Conference on 6-7April 2009:1-4.
    [45] Jianlin Li,Hongyan Xu,Lei Zhang,Zhuying,et al. Disturbance accommodating LQR method based pitch control strategy for wind turbines[C]. Second International Symposium on Intelligent Information Technology Application, 2008,1:766-770.
    [46] Per Brath,Jakob Stoustrup. Gain-scheduled linear quadratic control of wind turbines operating at high wind speed[C]. Control Applications, 2007. CCA 2007. IEEE International Conference on 1-3 Oct. 2007 Page(s):276– 281.
    [47] Nadhira Khezami,Xavier Guillaud,Naceur Benhadj Braiek. Multimodel LQ controller design for variable-speed and variable pitch wind turbines at high wind speeds[J]. Systems, Signals and Devices, 2009. SSD '09. 6th International Multi-Conference on 23-26 March 2009 Page(s):1–6.
    [48] Xingjia Yao,Shu Liu,Guankun Shan,et al. LQG controller for a variable speed pitch regulatedwind turbine[C]. Intelligent Human-Machine Systems and Cybernetics, 2009. IHMSC '09. International Conference on Volume 2, 26-27 Aug. 2009 Page(s):210– 213.
    [49] Jemaa Brahmi, Lotfi Krichen , Abderrazak Ouali. A comparative study between three sensorless control strategies for PMSG in wind energy conversion system Applied energy[J]:2009,86(9):1565-1573.
    [50] H.Camblong. Digital robust control of a variable speed pitch regulated wind turbine for above rated wind speeds[J]. control engineering practice,2008,16(8):946-958.
    [51] T.G.Barbounis,J.B.Theocharis. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation[J]. Neurocomputing, 2007, 70(7-9): 1525-1542.
    [52] Yao Xingjia, Liu Yingming, Xing Zuoxia,et al. Active vibration control strategy based on expert PID pitch control of variable speed wind turbine[C].Electrical Machines and Systems International Conference on 17-20 Oct. 2008:635-639.
    [53] Xingjia Yao,Yingming Liu,Changchun Guo. Adaptive fuzzy sliding-mode control in variable speed adjustable pitch wind turbine[C]. Automation and Logistics, 2007 IEEE International Conference on 18-21 Aug.2007:313-318.
    [54] Fabien Lescher,Jing Yun Zhao,Pierre Borne.Switching LPV controllers for a variable speed pitch regulated wind turbine[C].IMACS Multiconference on CESA,October 4-6,2006, Beijing,China:1334-1340.
    [55] Yanping Liu,Shuhong Liu,Hongmei Guo.The estimation of wind turbine pitch angle based on ANN[C].2009 Second International Conference on Intelligent Networks and Intelligent Systems,2009:581-584.
    [56] Lin Yonggang,Li Wei,Cui Baoling et al.Two models switched predictive pitch control for wind Turbine based on improved incremental SVR[C].Proceedings of the 6th World Congress on Intelligent Control and Automation,June 21-23,2006,Dalian,China:7498-7502.
    [57] Xingjia Yao,Changchun Guo,Zuoxia Xing.Variable speed wind turbine maximum power extraction based on fuzzy logic control[C].2009 International Conference on Intelligent Human-Machine Systems and Cybernetics:202-205.
    [58] H.Geng,G.Yang.Robust pitch controller for output power leveling of variable-speed variable-pitch wind turbine generator systems. Renewable Power Generation, IET,2009, 3(2):168-179.
    [59] V. Calderaro, V. Galdi, A. Piccolo, P. Siano. A fuzzy controller for maximum energy extraction from variable speed wind power generation systems[J]. Electric Power Systems Research, 2008, 78 :1109–1118.
    [60] Lotfi Krichen,Bruno Francois,Abderrazak Ouali. A fuzzy logic supervisor for active and reactive power control of a fixed speed wind energy conversion system[J]. Electric Power Systems Research 78(2008)414-424.
    [61] Tomonobu Senjyu,Akie Uehara,Yasuaki Kikunaga et al.Smoothing control of generated power fluctuation of WTG using gain-scheduled control[C].Transmission&Distribution Conference &E- Xposition:Asia and Pacific,2009:1-4.
    [62] Takuya Yamazaki,Rion Takahashi,Toshiaki Murata et al.Smoothing control of wind generator output fluctuations by new pitch controller[C].Proceeding of the 2008 International Conference on Electrical Machines,2008,1-6.
    [63] Ryosei Sakamoto,Tomonobu Senjyu,Tatsuto Kinjo et al.Output power leveling of wind turbine generator by pitch angle control using adaptive control method[C].2004 International Conference on Power System Technology,2004:834-839.
    [64] Ryosei Sakamoto,Tomonobu Senjyu,Toshiaki Kaneko.Output power leveling of wind turbine generator by pitch angle control using H∞control[C].Power Systems Conference and Exposition,2006.PSCE’06.:2044-2049.
    [65] Tomonobu Senjyu,Ryosei Sakamoto,Naomitsu Urasaki et al.Output power leveling of wind turbine generator for all operating regions by pitch angle control[C].IEEE Transactions on Energy Conversion,VOL.21,NO.2,JUNE 2006:467-475.
    [66] Ahmet Serdar Yilmaz,Zafer ?zer.Pitch angle control in wind turbines above the rated wind speed by multi-layer percepton and radial basis function neural networks[J].Expert Systems with Application,2009:9767-9775.
    [67] M.A.Yurdusev,R.Ata,N.S.Cetin. Assessment of optimum tip speed ratio in wind turbines using artificial neural networks[J]. Energy,2006, 31:2153-2161.
    [68] Xingjia Yao,Xianbin Su,Lei Tian.Pitch angle control of variable pitch wind turbines based on neural network PID[C]. Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on:3235-3239.
    [69] J.Y.Fu,Q.S.Li,Z.N.Xie. Prediction of wind loads on a large flat roof using fuzzy neural networks[J]. Engineering Structures,2006, 28:153-161.
    [70] [70]Feng Gao,Daping Xu,Yuegang Lv.Pitch-control for large-scale wind turbines based on feed forward fuzzy-PI[C].Proceedings of the 7th World Congress on Intelligent Control and Automation June 25-27,2008,Chongqing,China:2277-2282.
    [71] Tony B,David S,Nick J,et al .Wind energy handbook[M].Chichester:John Wiely&Sons Ltd,2001.
    [72]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社, 2006.
    [73] E A Bossanyi. GH Bladed theory manual[R]. Garrad Hassan&Partners Limited,2005.
    [74]刘桦.风电机组系统动力学模型及关键零部件优化研究[D].重庆大学,2009.
    [75] Pitt D M , Peters D A. Theoretical prediction of dynamic inflow derivatives[J]. Vertical, 5(1):1981.
    [76] Sanddeep Gupta.Development of a time-accurate viscous lagrangian vortex wake model for wind turbine applications[D]. America, 2006.
    [77]陈严,刘雄,刘吉辉,等.动态尾流模型在水平轴风力机气动性能计算中的应用[J].太阳能学报,2008,29(10):1297-1302.
    [78] Gaonkar G H,Sastry VV,Reddy T S R,et al.The use of actuator disc dynamic inflow for helicopter flap lag stability[C].8th European Rotorcraft Forum,France,Sept,1982.
    [79] Martin O.L.Hansen.Aerodynamics of wind turbines[M].UK and USA,2008.
    [80]刘雄,张宪民,陈严,等.基于动态入流理论的水平轴风力机动态气动载荷计算模型[J].太阳能学报,2009,30(4):412-419.
    [81]魏巍,李兴源,李青芸,等.基于空间脉宽调制控制技术的双馈风力发电机动态性能研究[J].电网技术,2009,33(17):124-129.
    [82]范高锋,王伟胜,刘纯.基于人工神经网络的风电功率短期预测系统[J].电网技术,2008,32(22):72-76.
    [83]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报,2005,25(3):115-119.
    [84]林勇刚,李伟,崔宝玲.基于SVR增量学习算法的变桨距风力机系统在线辨识[J].太阳能学报,2006,27(3):223-229.
    [85]孔屹刚,王志新.大型风电机组模糊滑模鲁棒控制器设计与仿真[J].中国电机工程学报,2008,28(14):136-141.
    [86] Maureen H M,Mark J B.Systematic controller design methodology for variable-speed wind turbines[R].America:National Renewable Energy Laboratory,2002.
    [87] Bianchi F D,Mantz R J,Christiansen C F.Gain scheduling control of variable-sppeed wind energy conversion systems using quasi-LVP models[J].Control Engineering Practice,2005(13):247-255.
    [88]叶杭冶.大型并网风力发电机组控制算法研究[D].浙江:浙江大学,2008.
    [89]林志明,潘东浩,王贵子,等.双馈式变速变桨距风力发电机组的转矩控制[J].中国电机工程学报,2009,29(32):118-124.
    [90]张文娟,高勇,杨媛.基于风力机参数辨识的最大风能捕获[J].电网技术,2009,33(17):152-156.
    [91]林勇刚,李伟,叶杭冶,等.变速恒频风力机组变桨距控制系统[J].农业机械学报,2004,35(4):100-104.
    [92]姚兴佳,张雅楠,郭庆鼎,等.大型风电机组三维模糊控制器设计与仿真[J].中国电机工程学报,2009,29(26):112-117.
    [93]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.
    [94]叶杭冶,潘东浩.风电机组变速与变桨距控制过程中的动力学问题研究[J].太阳能学报,2007,28(12):1321-1328.
    [95]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报,2006,26(5):43-50.
    [96]叶远茂,吴捷,张先亮,等.变桨距风力机分区段模拟方法及其控制策略[J].电网技术,2010,34(1):159-163.
    [97]姚骏,廖勇,瞿兴鸿,等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15.
    [98]姚兴佳,邢作霞,刘颖明,等.变速变距风力发电机组整机协调控制策略研究[J].太阳能学报2009,30(5):639-644.
    [99]张建忠,程明.基于非线性控制的永磁风力发电机最大风能跟踪[J].电网技术,2010,34(6):181-185.
    [100]李少林,张兴,谢震,等.双馈风力发电系统3次功率脉动的研究[J].电网技术,2010,34(4):37-42.
    [101]郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制[J].中国电机工程学报,2010,30(8):123-128.
    [102] E A Bossanyi. GH Bladed user’s manual[R].2005,Garrad Hassan&Partners Limited.
    [103]邹涛,丁宝苍,张端。模型预测控制工程应用导论[M].北京:化学工业出版社,2010.
    [104]袁新宇。模型预测控制及其应用研究[D].浙江大学,2002.
    [105] Richalet J,Bault A,Testud J L et a1.Model predictive heuristic control:application to industrial process[J].Automatica,1978,14:415-428.
    [106] Mehra R K,Rouhani R,Rault A et a1.Model algorithmic control(MAC):basic theoretical results on robnsmess[C].In:Proc JACC,1979:387~392.
    [107]丛爽,邓娟.MATLAB环境下的模型预测控制理论的应用[J].计算机工程与应用,2005,27(16):196-198.
    [108] Urban Maeder,Francesco Borrelli,Manfred Morari.Linear offset-free modal predictive control[J].Automatica,2009,(45):2214-2222.
    [109] Leonardo L.Giovanini.Model predictve control with amplitude and rate actuator saturation[].ISA Transactions:2003,(42):227-240.
    [110] Alex R. Bartman, Charles W. McFall, Panagiotis D. Christofides,et al. Model-predictive[92]姚兴佳,张雅楠,郭庆鼎,等.大型风电机组三维模糊控制器设计与仿真[J].中国电机工程学报,2009,29(26):112-117.
    [93]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.
    [94]叶杭冶,潘东浩.风电机组变速与变桨距控制过程中的动力学问题研究[J].太阳能学报,2007,28(12):1321-1328.
    [95]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报,2006,26(5):43-50.
    [96]叶远茂,吴捷,张先亮,等.变桨距风力机分区段模拟方法及其控制策略[J].电网技术,2010,34(1):159-163.
    [97]姚骏,廖勇,瞿兴鸿,等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15.
    [98]姚兴佳,邢作霞,刘颖明,等.变速变距风力发电机组整机协调控制策略研究[J].太阳能学报2009,30(5):639-644.
    [99]张建忠,程明.基于非线性控制的永磁风力发电机最大风能跟踪[J].电网技术,2010,34(6):181-185.
    [100]李少林,张兴,谢震,等.双馈风力发电系统3次功率脉动的研究[J].电网技术,2010,34(4):37-42.
    [101]郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制[J].中国电机工程学报,2010,30(8):123-128.
    [102] E A Bossanyi. GH Bladed user’s manual[R].2005,Garrad Hassan&Partners Limited.
    [103]邹涛,丁宝苍,张端。模型预测控制工程应用导论[M].北京:化学工业出版社,2010.
    [104]袁新宇。模型预测控制及其应用研究[D].浙江大学,2002.
    [105] Richalet J,Bault A,Testud J L et a1.Model predictive heuristic control:application to industrial process[J].Automatica,1978,14:415-428.
    [106] Mehra R K,Rouhani R,Rault A et a1.Model algorithmic control(MAC):basic theoretical results on robnsmess[C].In:Proc JACC,1979:387~392.
    [107]丛爽,邓娟.MATLAB环境下的模型预测控制理论的应用[J].计算机工程与应用,2005,27(16):196-198.
    [108] Urban Maeder,Francesco Borrelli,Manfred Morari.Linear offset-free modal predictive control[J].Automatica,2009,(45):2214-2222.
    [109] Leonardo L.Giovanini.Model predictve control with amplitude and rate actuator saturation[].ISA Transactions:2003,(42):227-240.
    [110] Alex R. Bartman, Charles W. McFall, Panagiotis D. Christofides,et al. Model-predictive
    [127]高文元,井明波,董立志.带有扰动观测器的双模分段风电偏航控制[J].电网技术,2008,32(13):80-83.
    [128]琚亚平,张楚华.基于人工神经网络与遗传算法的风力机翼型优化设计方法[J].中国电机工程学报,2009,29(20):106-111.
    [129]张雷,李东海,李建林,等.基于LQR方法的风电机组变桨距控制的动态建模与仿真分析[J].太阳能学报,2008,29(7):781-785.
    [130]王东风,贾增周,孙剑,等.变桨距风力机发电系统的滑模变结构控制[J].华北电力大学学报,2008,35(1):1-3.
    [131] Eduard M,Butterfield C P.Pitch-controlled variable-speed wind turbine generation[J].IEEE Trans on Industry Applications,2001,37(1):240-246.
    [132]许凌峰,徐大平,高峰,等.基于神经网络的风力发电机组变桨距复合控制[J].华北电力大学学报,2009,36(1):28-34.
    [133] Tomonobu S,Toshiaki K,Akie U,et al.Output power control for large wind power penetration in small power system[J].Renewable Energy,2009,34(11):2334-2343.
    [134]高文元,祝振敏,井明波,等.风电机组变桨距系统神经网络模糊自适应控制[J].武汉理工大学学报:信息与管理工程版,2008,30(4):533-536.
    [135]耿华,杨耕.基于逆系统方法的变速变桨距风机的桨距角控制[J].清华大学学报:自然科学版,2008,48(7):1221-1224.
    [136]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2006:199-232.
    [137]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,27(20):62-67.
    [138]徐科,胡敏强,郑建勇,等.风力发电机无速度传感器网侧功率直接控制[J].电力系统自动化,2006,30(23):43-47.
    [139]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [140]徐大平,肖运启,秦涛,等.变桨距型双馈风电机组并网控制及建模仿真[J].电网技术,2008,32(6):100-105.
    [141]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2002:87-88.
    [142] Bianchi F D,Mantz R J,Christistiansen C F. Power regulation in pitch-contro1led variable speed WECS above rated wind speed[J]. Renewerble Energy,2004,29(11): 1911-1922.
    [143] Galdi V,Piccolo A,Siano P.Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model[J].Energy Conversion and Management,2009,50(2):413-421.
    [144]高峰,徐大平,吕跃刚.大型风力发电机组的前馈模糊-PI变桨距控制[J].动力工程,2008,28(4):537-542.
    [145]林莘,王德顺,徐建源,等.单神经元PID控制器在高压断路器运动控制技术中的应用[J].电工技术学报,2009,24(6):35-41.
    [146]陶永华,尹怡欣,葛芦生.新型PID控制及应用[M].北京:机械工业出版社,2002.
    [147] Clemens Jauch,Syed M.Islam,Poul S?rensen et al.Design of a wind turbine pitch angle controller for power system stabilization[J].Renewable Energy,2007,32(14):2334-2349.
    [148] Morten H.Hansen,Anca Hansen,Torben J.Larsen et al.Control design for a pitch-regulated,variable speed wind turbine[R].Ris?-R-1500,2005.
    [149] van der Hooft E L,Schaak P,van Engelen T G.Wind turbine control algorithms[R].Holland:Dutch Ministry of Economic Affairs,2003.
    [150]单光坤,王晓东,姚兴佳等.兆瓦级风力发电机组的稳定性分析[J].太阳能学报,2008,29(7):786-791.
    [151] K.Selvam,S.Kanev,J.W.Wingerden,et al.Feedback-feedforward individual pitch control for wind turbine load reduction[J].International Journal of Robust and Nonlinear Control,2008,19(1):72-91.
    [152] Mate Jelavic,Vlaho Petrovic,Nedjeljk Peric.Estimation based individual pitch control of wind turbine[J].Automatika,2010,51(2):181-192.
    [153] Torben Juul Larsen,Helge A.Madsen,Kenneth.Active load reduction using individual pitch, based on local blade flow measurements[J].Wind Energy,2005,8(1):67-80.
    [154] E. A. Bossanyi, Garrad Hassan, Partners Ltd. Individual blade pitch control for load reduction[J]. Wind Energy,2003,6(2):119-128.
    [155] P.Schaak.Demping van zijwaartse torenbuiging via generatorkoppel[R].Technical Report Internal document, ECN Petten,June 2001.
    [156]姚兴佳,马晓岩,郭庆鼎等.基于单神经元权系数的风电机组独立变桨控制[J].可再生能源,2010,28(3):19-23.
    [157]姚兴佳,李媛,郭庆鼎等.基于坐标变换的独立桨距调节技术[J].2010,28(5):19-22.
    [158] Kausihan Selvam.Individual pitch control for large scale wind turbines[R].Energy research of the Netherlands,2007.
    [159] Gunjit S. Bir.User’s guide to MBC3[R].NREL,2008.
    [160] G. Lloyd.Rules and Guidelines IV: Industrial Services, Part I - Guideline for the Certification of Wind Turbines[S].German,2003.
    [161] van Engelen T, Markou H, Buhl T,et al.Morphological study for aeroelastic control concepts for wind turbines[R].ECN-E-06-056,ECN,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700