用户名: 密码: 验证码:
高温发汗润滑胞体的接触稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温发汗自润滑材料是基于人体汗腺结构及其发汗原理,构建和制备的具有内贯通有序微孔结构和内梯度润滑层的高温自补偿润滑仿生胞体材料。该材料由具有有序微孔结构的多孔基体(胞体)和浸渍于微孔(胞孔)中的固体润滑剂(润滑体)两部分组成。在摩擦过程中,材料基体主要起承担载荷的作用,而润滑剂则主要起降低摩擦表面的摩擦系数,减小磨损的作用。由于摩擦副的外载荷主要由基体承担,因此,要求材料基体具有高的强韧性,以保证摩擦部件在具有高耐磨性的同时,材料微孔中的固体润滑剂能顺利地排出并富集在摩擦表面,从而实现其耐磨性和自补偿润滑功能的统一。该研究是在国家自然科学基金和教育部高等学校博士学科点专项科研基金的资助下完成的。
     本文以高温发汗自润滑材料的多孔基体为研究对象,基于其厚壁均质有序微孔结构特征,建立了可表征各种孔结构形态的高温发汗自润滑材料多胞体理论模型,并引入特征值λ,导出了求解其相对密度和孔隙率的广义公式。探讨了其结构特征值对抗压强度的影响,得出了当特征参数λ<0.4时,可将多胞体材料看成连续介质体的重要结论。
     建立了高温发汗润滑厚壁胞体的接触力学模型,并应用胞壁等效曲梁计算方法求解其接触力学问题。研究表明:厚壁胞体接触强度的影响因素主要是由胞壁弯曲变形引起的胞孔孔口的应力集中现象。
     利用YE-600型液压式压力试验机研究了厚壁胞体的接触稳定性。研究表明:厚壁胞体的接触强度随着孔隙率的增大而减小;胞孔分布半径的增大和胞孔个数的增加均有助于提高厚壁胞体的接触强度;布孔方式和承载方向亦对接触强度有影响。厚壁胞体材料发生接触失效时,其裂纹萌生于最大正号的主应力点,且裂纹沿着应力梯度变化最快的方向扩展,而与外载荷的加载方向无关。提出应用外切接触应力圆法判断厚壁胞体接触过载时裂纹的萌生位置及顺序。
     通过构建具有四种典型形状胞孔的异形孔结构厚壁多胞体模型,研究了异形孔结构对厚壁胞体接触稳定性的影响。研究表明:异形孔的存在降低了厚壁胞体材料的接触强度,正三角形、正四边形和正六边形胞孔的相对孔隙率的增加均会导致材料接触强度的降低,其中正三角形胞孔的影响最大。
     通过常温及高温试验对比研究得出:温度的升高导致厚壁胞体材料接触强度的降低,变形程度的增大以及裂纹的深化。温度升高主要改变的是材料基体的力学性能,而裂纹萌生位置及扩展方向均与环境温度无关。
     研究了切向摩擦力对胞体接触稳定性的影响。研究表明:由于孔结构的对称性,切向力的存在对单孔厚壁胞体的接触稳定性影响不大;但是对多孔厚壁胞体的接触稳定性影响很大。
High temperature sweating and self-lubricating materials is one novel kind of self-compensating and lubricating materials employed at elevate temperature, which is manufactured based on the structure and sweating principle of human sweat glands. The material is constructed of matrix containing orderly micro-pores structures and solid lubricants dipped in the pores. In the friction process, material matrix plays the role of bearing loads, and the solid lubricants play the role of reducing the friction coefficient of the friction surface in order to decrease wear. As the load of friction pair is mainly supported by the matrix, it requests that the matrix possesses high strength and tenacity to ensure that the friction components have the high wear resistance, in the meanwhile, the solid lubricants can expel from the pores smoothly and enrich on the friction surface, in order to achieve the wearability and the function of self-compensating and lubricating simultaneously. The research project has been supported financially by National Natural Science Foundation and National Ministry of Education Doctoral Foundation of China.
     The porous matrix of the high temperature sweating and self-lubricating materials was taken as the research object in this dissertation. Based on its thick-walled homogeneous orderly micro-pores structure, the thick-walled cell was adopted to characterize this special structure and the relatively uniform multi-cell theoretical model for the high temperature sweating and self-lubricating materials was established. Meanwhile, the generalized formulae applied to seeking the relative density and porosity was obtained by introducing the characteristics parameters ofλ. The effects of structure characteristics on the compressive strength were discussed and the important conclusion was obtained that whenλ<0.4, the multi-cells materials can be taken as the continuum mediums.
     The thick-walled cell contact mechanics model for high temperature sweating and self-lubricating materials was established, and the equivalent curved beam calculation method was introduced to solve the contact mechanics problems of thick-walled cell. The results show that the contact strength of thick-walled cell mainly depended on the internal orifice stress concentration which was caused by the bending deformation of the cell wall.
     The YE-600 hydraulic tester was adopted to measure the contact stability of the thick-walled cell. The research shows that the contact strength of thick-walled cell decreased with the porosity. The increase of the distribution radius and the number of micro-pores were helpful to improve the contact strength of thick-walled cell. Moreover, the pores distribution and the load-bearing direction also affected the contact strength of thick-walled cell largely. When the thick-walled cell came in the contact failure, its crack initiated at the point of the maximum positive main stress, and the crack expanded towards the direction of the fastest of stress gradient changed, which was irrelevant with the loading direction. The method of contact stress excircle was proposed in this dissertation to judge the position and the order of the cracks initiation when the thick-walled cell bears contact overload.
     The effect of irregular pores structure on contact stability of thick-walled multi-cells was studied by constructing the model of thick-walled multi-cells with irregular pores structure. The research shows that the existence of irregular pores reduced the contact strength of thick-walled multi-cells. The increase of relative porosity of triangle, quadrilateral and hexagonal pores led to the reduction of contact strength of the material, and the influence of the triangle micro-pore was the largest.
     It can be concluded from the comparison of normal and high temperature experiment that the rise of temperature resulted in the reduction of contact strength of the thick-walled cell, the increase of deformation and the deepening of the cracks. The rise of temperature mainly affected the mechanics properties of the matrix, while the crack initiation position and expanding direction were independent on the environmental temperature.
     The effect of the tangential frictional force on the contact stability of thick-walled cell was studied. The research shows that due to the symmetry of the pores, the tangential force had little influence on the contact stability of thick-walled single-cell, while it affected the contact stability of thick-walled multi-cells largely.
引文
[1]Jost H P. Lubrication (Tribology)-Education and Research. A Report on the Present Position and Industry's Needs [C]. London: HM Stationery Office.1966:1-79.
    [2]Jost H P. Tribology-Origin and Future [J]. Wear 1990,136 (1):1-17.
    [3]Williams J A. Engineering Tribology [M]. Oxford:Oxford University Press,1994:56-60.
    [4]温诗铸,黄平.摩擦学原理(第2版)[M].北京:清华大学出版社,2002:68-72.
    [5]Peter J B. Elavated-temperature tribology of metallic materials [J]. Tribology International,2010,43:1203-1208.
    [6]张建华,陶德华.仿生润滑技术研究及其应用探索[J].润滑与密封,2004,6:99-100.
    [7]刘国敏.蚯蚓体表减粘降阻功能耦合仿生研究[D].长春:吉林大学,2009.
    [8]Liu, Z M. Elevated temperature diffusion self-lubricating mechanisms of a novel cermet sinter with orderly micro-pores [J]. Wear,2007,262:600-606.
    [9]Dowson D, Neville A. Bio-tribology and bio-mimetics in the operating environment [J]. Proc. IMechE Vol.220 Part J: J. Engineering Tribology:109-123.
    [10]周仲荣.关于我国生物摩擦学研究的思考[J].机械工程学报,2004,40(5):7-10.
    [11]Dowson D, Wright V.'Bio-tribology'[C]. Proceedings of the Conference on The rheology of lubrication organised by The Institute of Petroleum, The Institution of Mechanical Engineers and the British Society of Rheology,1973:81-88.
    [12]Chen Jie, Lu Xi-Yun. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch [J]. Journal of Biomechanics,2004,37: 1899-1911.
    [13]龚中良,谭建平.人体血液及其润滑性能研究的现状与展望[J].润滑与密封,2007,32(10):123-127.
    [14]Mair L H. Wear in dentistry-current terminology [J]. Journal of Dentistry,1992,20:140-144.
    [15]郑靖.牙齿的摩擦学特性研究[D].成都:西南交通大学,2004.
    [16]Unsworth A, Dowson D, Wright V. The frictional behaviour of human synovial joints-Part I-natural joints. Journal of Lubrication Technology,1975,97 (3):369-376.
    [17]Tanaka E, Michael S D, Kotaro T, et al. Lubrication of the Temporomandibular Joint [J]. 2008,36(1):14-29.
    [18]Niladri K M. Complete sacralization of L5 vertebrae:traits, dimensions, and load bearing in the involved sacra [J]. The Spine Journal,2010,10:610-615.
    [19]Mattheck C, Burkhardt S. A new method of structure shape optimization based on biological growth [J]. International Journal of Fatigue,1990,12(3):185-190.
    [20]BertheR A, WesthoV G, Bleckmann H, et al. Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae) [J]. Journal of Comparative Physiology A,2009,195:311-318.
    [21]胡友耀,丁建宁,杨继昌,等.蛇类表皮的生物摩擦学性能研究[J].润滑与密封,2006,11:56-59.
    [22]李安琪,任庵泉,陈秉聪,等.蚯蚓体表液的组成及其减粘脱土机理分析[J].农业工程学报,1990,6(3):8-14.
    [23]许亚婷,李建桥,孙久荣,等.蚯蚓体表形貌及润湿性的研究[J].华中农业大学学报,2005,10:40-43.
    [24]Gravish N, Wilkinson M, Sponberg S, et al. Rate-dependent frictional adhesion in natural and synthetic gecko setae [J]. Journal of the royal society interface,2010,7:259-269.
    [25]Jin Z M, Dowson D, Fisher J. Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus [J]. Proc Instn Mech Engrs, Part H, 1997,211:247-256.
    [26]Yamane T, Nishida M, Maruyama O, et al. Hemodynamic tribology in artificial hearts [J]. Journal of Japanese Society of Tribologists,2006,51(10):713-718.
    [27]黎红,周仲荣,张杰,等.天然牙及几种牙科修复材料的摩擦磨损性能比较研究[J].摩擦学学报,2001,21(3):172-175.
    [28]Dai Zhendong, Tong Jin, Ren Luquan. Researches and developments of biomimetics in tribology [J]. Chinese Science Bulletin,2006,51(22):2681-2689.
    [29]戴振东,佟金,任露泉.仿生摩擦学研究及发展[J].科学通报,2006,51(20):2353-2359.
    [30]Wu Tongfei, Pan Yongzheng, Li Lin. Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid [J]. Journal of Colloid and Interface Science, 2010,348:265-270.
    [31]Arvind S R, Kim R J, Kim J, et al. A Biomimetic Approach for Effective Reduction in Micro-Scale Friction by Direct Replication of Topography of Natural Water-Repellent Surfaces [J]. Journal of Mechanical Science and Technology,2007,21:624-629.
    [32]王绍敏.仿生结构化船体表面减阻性能分析[J].舰船科学技术,2010,32(5):11-13.
    [33]Lee S J, Jan Y G. Control of flow around a NACA 0012 airfoil with a micro-riblet film [J]. Journal of Fluids and Structures,2005,20(5):659-672.
    [34]田丽梅,任露泉,韩志武,等.仿生非光滑表面脱附与减阻技术在工程上的应用[J].农业机械学报,2005,36(3):138-141.
    [35]刘彬,张吴,郭东杰,等.倾斜仿生刚毛的设计、制备及黏附性能研究[J].摩擦学学报,2009,29(5):393-398.
    [36]戴振东,张亚锋,梁醒财,等.甲虫鞘翅间的锁合机构、联接力及其表面织构效应[J].中国科学C辑:生命科学,2008,38(6):542-549.
    [37]戴振东,于敏,吉爱红,等.动物驱动足摩擦学特性研究及仿生设计[J].中国机械工程,2005,16(16):1454-1457.
    [38]宋起飞,周宏,李跃,等.仿生非光滑表面铸铁材料的常温摩擦磨损性能[J].摩擦学学报,2006,26(1):24-27.
    [39]郝建峰.仿生通孔结构铝合金试件耐磨性研究及有限元模拟[D].长春:吉林大学,2007.
    [40]高峰,黄河,任露泉.新疆岩蜥三元耦合耐冲蚀磨损特性及其仿生试验[J].吉林大学学报(工学版),2008,38(3):586-590.
    [41]张建华,陶德华,付尚发,等.新型人工关节仿生润滑系统设计及滑液摩擦学特性研究[J].摩擦学学报,2003,23(6):500-503.
    [42]杨福愉主编.物理膜[M].北京:科学技术出版社,2005:1-2.
    [43]Popov V L, Psakhie S G. Numerical Simulation Methods in Tribology [J]. Tribology International,2007,40:916-923.
    [44]Thomas G. Multi-layer models of friction between solids [J]. Tribology International,2006, 39(5):437-440.
    [45]Wu Gang, Zhang Wenguang, Wang Chengtao. Anti-Wear Design and Bio-Mimetic Technologyof Artificial articular cartilage [C]. New Trends in Engineering Design, Proceedings of 15th International CIRP Design Seminar, Shanghai, China,2005:66-70.
    [46]吴刚.聚合物基仿生人工软骨材料的制备与摩擦学性能研究[D].上海:上海交通大学,2007.
    [47]潘建梅.木制陶瓷及其金属化的制备工艺和性能研究[D].镇江:江苏大学,2010.
    [48]李永奇.类细胞结构摩擦材料的研究[D].长春:吉林大学,2008.
    [49]孙喜龙.拟蜂巢结构摩擦材料研究[D].长春:吉林大学,2005.
    [50]刘培生.多孔材料引论[M].北京:清华大学出版社,2004:6-20.
    [51]Gibson L J, Ashby M F. Cellular solids:structure and properties [M]. Cambridge: Cambridge University Press,1997:35-46.
    [52]Gent A N, Thomas A G. The deformation of foamed elastic materials [J]. Appl polymer Sci, 1959,1:107-133.
    [53]Li K, Gao X L, Roy A K. Micromechanics model for three dimensional Open-cell foams using a tetrakaidecahedral unit cell and Castiglianos second theorem [J].Comp. Sci.Technol,2003,63:1796-1781.
    [54]Schmidt I. Deformation induced elasto-plastic anisotropy in metal foams-modelling and simulation [J]. International Journal of Solids and Structures.2004,41:6759-6782.
    [55]Roberts A P, Garboczi E J. elastic properties of model random three-dimensional open-cell solids [J]. Mech Phys Solids,2002,50:35-55.
    [56]Iwona Cielecka, Jaroslaw Jqdrysiak. A non-asymptotic model of dynamics of honeycomb lattice-type plates [J]. Journal of Sound and Vibration,2006,296:130-149.
    [57]张俊彦,张平,甘秋兰,等.多孔材料代表单元的性质[J].工程力学,2004,21(2):124-128.
    [58]卢子兴.低密度开孔泡沫材料力学模型的理论研究进展[J].力学与实践,2005,27(5):13-20.
    [59]卢子兴.各向异性随机泡沫模型的弹性性能分析[J].北京航空航天大学学报,2006,32(12):1468-1471.
    [60]卢子兴.三维四向编织复合材料结构模型的几何特性[J].北京航空航天大学学报,2006,32(1):92-96.
    [61]赵亚斌,卢子兴.对负泊松比泡沫材料杨氏模量预测模型的修正[C]//第14届全国结构工程学术会议论文集(第一册).北京:中国力学学会工程力学编辑部,2005.
    [62]刘培生.关于多孔材料的新模型[J].材料研究学报,2006,20(1):64-68.
    [63]Gent A N, Thomas A G. Mechanics of foamed elastic materials [J]. Rubber Chem. Techanol, 1963:597-610.
    [64]Thomton P H, Magee C L. The deformation of aluminum foam [J]. Metallur Trans,1975,6A (6):1253-1263.
    [65]Thomton P H, Magee C L. Deformation characteristics of Zinc foam [J]. Metallur Trans, 1975,6A(9):1801-1807.
    [66]Friis E A, Lake R S, Park J B. Negative Poisson's ratio polymeric and metallic foam [J]. International Journal of Mechanical Science,1988,23:4406-4414.
    [67]Yamada Y, Shimojima K, Mabuchi M, et al. Compressive deformation behavior of Al2O3 foam [J]. Material Science and Engineering,2000, A277 (1-2):213-217.
    [68]Motz C, Pippan R. Deformation behaviour of closed-cell aluminum foams in tension [J]. Acta Mater,2001,49(13):2463-2470.
    [69]左孝青,赵勇,张喜秋,等.泡沫铝制备与其压缩性能研究[J].粉末冶金技术.2006,24(3):204-208.
    [70]曹晓卿,杨桂通.泡沫铝的单向压缩行为及其吸能性[J].有色金属,2006,58(4):9-13.
    [71]Triantafillou T C, Zhaag J, Shercliff T L, et al. Failure surface for cellular materials under multiaxial loads-Ⅱ. Camparison of models with experiment [J]. International Journal of Mechanical Science,1989,31(9):665-678.
    [72]Zhou J, Soboyejo W O. Compression-compression fatigue of open cell aluminum foams: macro-micro-mechanisms and the effects of heat treatment [J]. Materials Science and Engineering A,2004,369:23-35.
    [73]Kesler O, Crews L K, Gibson L J. Creep of sandwich beams with metallic foam cores [J].Materials Science and Engineering A,2003,341:264-272.
    [74]Papka S, Kyriakides S. In-Plane compressive response and crushing of honeycombs. Journal of the Mechanics and Physics of Solids,1994,42:1499-1532.
    [75]Triantafyllidis N, Schraad M W. Onset of failure in aluminum honeycombs under general in-plane loading. Journal of the Mechanics and Physics of Solids,1998,46:1089-1124.
    [76]Zhu H X, Mills N J. The in-plane non-linear compression of regular honeycombs. International Journal of Solids and Structures,2000,37:1931-1949.
    [77]Zhu H X, Hobdell J R, Windle A H. Effects of cell irregularity on the elastic properties of open-cell foams [J]. Acta Materialia,2000,48:4893-4900.
    [78]Zhu H X, Windle A H. Effects of cell irregularity on the high strain compression of open-cell foams [J]. Acta Materialia,2002,50:1041-1052.
    [79]Fatima M V, Fortes M A. Simulation of cell collapse in the compression of non-uniform cellular solids [J]. Scripta Materialia,2001,45:375-382.
    [80]Schmidt I. Deformation induced elasto-plastic anisotropy in metal foams-modelling and simulation [J]. International Journal of Solids and Structures,2004,41:6759-6782.
    [81]Roberts A P, Garboczi E J. elastic properties of model random three-dimensional open-cell solids [J]. Journal of the Mechanics and Physics of Solids,2002,50:35-55.
    [82]Reyes A, Hopperstad O S. Constitutive modeling of aluminum foam including fracture and statistical variation of density [J]. European Journal of Mechanics-A/Solids.2003,22(6): 815-835.
    [83]Ryu K M, An J Y, Cho W S, et al. Mechanical modeling of Al-Mg alloy open-cell foams [J]. Materials Transactions,2005,46(3):622-625.
    [84]Wicklein M, Thoma K. Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam [J]. Materials Science and Engineering A,2005,397(12): 391-399.
    [85]Tantikon K. In-Plane Compression Response of Regularly Cell-Structured Materials [J]. Materials Transactions,2004,45:509-515.
    [86]Tantikon K, Aizawa T, Mukai T. Symmetric and asymmetric deformation transition in the regularly cell-structured materials. Part I:experimental study [J]. Solids and Structures, 2005,42:2199-2210.
    [87]Tantikon K, Aizawa T, Mukai T. Symmetric and asymmetric deformation transition in the regularly cell-structured materials. Part Ⅱ:Theoretical study [J]. Solids and Structures, 2005,42:2211-2224.
    [88]程和法,黄笑梅,许玲.泡沫铝的压缩与吸能性研究[J].冶金工程,2003,22(1):70-72.
    [89]卢子兴,石上路.低密度开孔泡沫材料力学模型的理论研究进展[J].力学与实践,2005,27(5):13-20.
    [90]石上路,卢子兴.基于十四面体模型的开孔泡沫材料弹性模量的有限元分析[J].机械强度,2006,28(1):108-112.
    [91]廖明顺.多孔材料力学性能数值模拟[D].昆明:昆明理工大学,2006.
    [92]王飞,李剑荣,虞吉林.铝蜂窝结构单向压缩、失稳和破坏机制研究[J].力学学报,2001,33(6):741-748.
    [93]余海东,林忠钦,张克实,等.基于多孔洞体胞模型的韧性材料损伤机制[J].上海交通大学学报,2007,41(6):978-987.
    [94]李华祥,刘应华,冯西桥,等.多孔材料塑性极限载荷及其破坏模式分析[J].计算力学学报,2003,20(3):267-273.
    [95]张后全,唐春安,宋力,等.布孔方式对孔洞材料宏观力学性能影响的研究[J].应用力学学报,2006,23(1):62-67.
    [96]段进超,唐春安,常旭,等.单轴压缩下含孔脆性材料的力学行为研究[J].岩土力学,2006,27(8):1416-1420.
    [97]卢子兴,张慧.聚碳酸酯微孔泡沫塑料的拉伸力学性能及失效机理分析[J].中国塑料,2003,17:39-43.
    [98]卢子兴.微孔泡沫塑料力学行为的研究综述[J].力学进展,2002,32(3):365-378.
    [99]张丽杰.高温高压条件下微孔材料的结构稳定性研究[D].长春:吉林大学,2007.
    [100]周丽.微孔发泡过程与微孔形态关系的研究及对材料韧性的影响[D].贵阳:贵州大学,2006.
    [101]白晓刚.增韧多孔高密聚乙烯微孔材料的研究[D].长春:吉林大学,2004.
    [102]Fortes M A, Colaco R, Fatima M V. The contact mechanics of cellular solids [J]. Wear,1999,230:1-10.
    [103]Brydon A D, Bardenhagen S G, Miller E A, et al. Simulation of the densification of real open-celled foam microstructures [J]. Journal of the Mechanics and Physics of Solids,2005, 53:2638-2660.
    [104]Dimitrie V. Simulation of surface topography with the method of movable cellular automata [J]. Tribology International,2006,39(5):444-449.
    [105]Miyamoto S, Sakai H. A flow modeling of lubricating greases under shear deformation by cellular automata [J]. Proceeding Lecture Notes in Computer Science,2006,4173: 383-391.
    [106]Popov V L. Quasi-fluid nano-layers at the interface between rubbing bodies:Simulations by movable cellular automata [J]. Wear,2003,254:901-906.
    [107]Mueller M, Ostermeyer G P. Cellular automata method for macroscopic surface and friction dynamics in brake systems [J]. Tribology International,2007,40:942-952.
    [108]Osterle W, KloB H, Urban I, et al. Towards a better understanding of brake friction materials [J]. Wear,2007,263:1189-1201.
    [109]Ostermeyer G P, Muller M. Dynamic interaction of friction and surface topography in brake systems [J]. Tribology International,2006,39:370-380.
    [110]Dmitriev A I, Yu A, Smolin, et al. Computer modeling of local tribological contacts by the example of the automotive brake friction pair [J]. Physical Mesomechanics,2008,11: 73-84.
    [111]Dmitriev A I, Osterle W, Kloβ H. Numerical simulation of typical contact situations of brake friction materials [J]. Tribology International,2008,41:1-8.
    [112]Golovin I S, Sinning H R. Internal friction in metallic foams and some related cellular structures [J]. Materials Science and Engineering A,2004,370:504-511.
    [113]Golovin I S, Sinning H R, Arhipov I K, et al. Damping in some cellular metalic materials due to microplasticity [J]. Materials Science and Engineering A,2004,370:531-536.
    [114]Golovin I S, Sinning H R, Goken J, et al. Fatigue-related damping in some cellular metallic materials [J]. Materials Science and Engineering A,2004,370:537-541.
    [115]Schargott M, Popov V L, He)β M. Macroscopic isotropy of two-and three-dimensional elastic lattice models [J]. Tribology International,2007,40:937-941.
    [116]Landwehr S E, Hilmas G E, White B, et al. Wear characteristics of functionally designed cellular cemented carbides produced by coextrusion [J]. International Journal of Refractory Metals and Hard Materials,2007,25:199-206.
    [117]张洪武.基于非线性接触本构的颗粒材料离散元数值模拟.岩土工程学报,2006,28(11):1964-1969.
    [118]薛群基,吕晋军.高温固体润滑研究的现状及发展趋势[J].摩擦学学报,1999,19(1):91-96.
    [119]Shitang Zhang, Jiansong Zhou, Baogang Guo, et al. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating [J]. Materials Science and Engineering A 2008,491:47-54.
    [120]Fateh N, Fontalvo G A, Gassner G, et al. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings [J]. Wear,2007,262:1152-1158.
    [121]Ma S L, Ma D Y, Guo Y, et al. Synthesis and characterization of super hard, self-lubricating Ti-Si-C-N nanocomposite coatings [J]. Acta Materialia,2007,55:6350-6355.
    [122]丁春华,王亚平,周敬恩.粉末冶金法制备NiCr基高温自润滑合金PM304涂层[J].金属学报,2006,42(11):1212-1226.
    [123]Polcar T, Evaristo M, Cavaleiro A. The tribological behavior of W-S-C films in pin-on-disk testing at elevated temperature [J]. Vacuum,2007,81:1439-1442.
    [124]Zabinski J S, Donley M S, Dyhouse V J, et al. Chemical and tribological characterization of PbO-MoS2 films grown by pulsed laser deposition [J]. Thin Solid films,1992,214: 156-163.
    [125]Ouyang J H, Sasaki S, Murakami T, et al. Spark-plasma-sintered ZrO2 (Y2O3)-BaCrO4 self-lubricating composites for high temperature tribological applications [J]. Ceramics International,2005,31:543-553.
    [126]牛淑琴,朱家佩,欧阳锦林.几种高温自润滑复合材料的研制与性能研究[J].摩擦学学报,1995,15(4):324-332.
    [127]杨慧敏.粉末冶金铝基固体自润滑材料的研究[D].长沙:中南大学,2002.
    [128]朱定一,关翔锋,兑卫真,等.镍-石墨高温自润滑材料的熔炼制备及其组织性能[J].中国有色金属学报,2004,14(5):707-711.
    [129]Liu Y B, Rohatg P K, Ray S. Tribological characteristics of aluminum-50%graphite composites [J]. Metal Trans,1993,24A:151-155.
    [130]Liu Z M, Childs T H C. The influence of TiC, CaF2 and MnS additives on frication and lubrication of sintered high speed atelevated temperature [J]. Wear,1996,193:31-37.
    [131]刘佐民,高万振,萧汉梁,等.摩擦学在湖北的研究与工业应用[J].材料保护,2004,37(2):174-178.
    [132]王砚军,刘佐民.扩散自润滑金属陶瓷耐磨烧结体的设计[J].机械工程材料,2005,29(9):12-15.
    [133]王砚军,刘佐民TiC/Fe-Cr-W-Mo-V系自润滑金属陶瓷轴承烧结体的研制[J].轴承,2005,5:20-23.
    [134]王砚军,刘佐民.腺汗式微孔结构金属陶瓷烧结体的制备及其性能[J].机械工程学报,2006,42(2):27-32.
    [135]杨丽颖,刘佐民.TiAl基合金成分对其高温摩擦学性能的影响[J].机械工程材料,2006,30(11):1-3.
    [136]杨丽颖.高温自润滑TiAl基合金的制备及其性能研究[D].武汉:武汉理工大学,2008.
    [137]Yang Liying, Liu Zuomin. Ti-48Al-2Nb-2Cr Matrix High Temperature Self-Lubricating Composites by Addition of 38%CaF2-62%BaF2 Eutectic Solid Lubricants [J]. Journal of Composite Materials,2007,41(26):3079-3089.
    [138]王砚军,刘佐民,杨丽颖,等.高温发汗自润滑复合材料真空熔渗过程的动力学分析[J].中国机械工程,2010,21(5):575-580.
    [139]张一兵,夏元峰,燕松山.高温自润滑材料电磁感应熔渗加热过程数值分析[J].润滑与密封,2010,35(4):19-23.
    [140]张一兵.高温发汗润滑的热驱动机理及其稳定性研究[D].武汉:武汉理工大学,2008.
    [141]张一兵,燕松山,刘佐民.高温自润滑包覆体胞热驱模型的研究[J].武汉理工大学学报.2006,28(6):20-23.
    [142]燕松山.高温自润滑发汗体胞热驱模型研究[D].武汉:武汉理工大学,2006.
    [143]张一兵,邢东征,刘佐民.高温自润滑材料孔隙结构及其润滑剂驱动研究[J].润滑与密封,2009,34(5):5-8.
    [144]张一兵,郑锐,刘佐民.高温自润滑材料孔隙弯曲角度对润滑剂输出的影响[J].润滑与密封,2010,35(5):10-13.
    [145]卢平,刘佐民.基于润滑体胞结构及胞核组分的润滑剂析出特性研究[J].润滑与密封,2010,35(5):37-41.
    [146]王砚军,刘佐民.微孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究[J].摩擦学学报,2006,26(4):348-352.
    [147]Wang Y J, Liu Z M. Tribological properties of high temperature self-lubrication metal ceramics with an interpenetrating network [J]. Wear,2008,265:1720-1726.
    [148]王砚军,刘佐民,杨丽颖.浸渗型TiC/FeCrWMoV金属陶瓷高温自润滑特性及其润滑机理[J].材料科学与工程学报,2009,27(6):850-854.
    [149]杨丽颖,刘佐民.钛铝自润滑材料微观结构及摩擦学性能[J].武汉理工大学学报,2008,30(4):118-120.
    [150]燕松山,刘佐民.高温发汗润滑膜覆盖率预测模型的研究[J].摩擦学学报,2009,29(4):341-345.
    [151]徐桂兰.高温用特殊复合材料[M].北京:冶金出版社,2002.
    [152]薛明俊,刘智恩,沈凯.钛酸铝多孔陶瓷的研制[J].中国陶瓷,1995,31(2):17-20.
    [153]罗虹,刘家浚.空心圆柱滚动体接触状况的分析研究[J].摩擦学学报,1997,3(17):253-259.
    [154]罗虹,刘家浚.空心圆柱滚子轴承及其磨损问题[J].摩擦学学报,1993,3(13):276-286.
    [155]陈家庆,毛红兵,张宝生.无预载荷空心圆柱滚子轴承的理论研究[J].轴承,2002,6:1-5.
    [156]Murthy C S C, Rao A R. Mechanics and behaviour of hollow cylindrical members in rolling contact [J].Wear,1983,87:287-296.
    [157]Bedford A, Drumheller D S. Theories of immiscible and structured mixtures [J]. International Journal of Engineering Science,1983,21:863-960.
    [158]周益春.材料固体力学[M].北京:科学出版社,2005.
    [159]小井土正六著.万国朝,胡荣静译.材料力学简介及例题[M].北京:国防工业出版社,1989.
    [160]Johnson K L. Contact Mechanics [M]. Cambridge:Cambridge University Press,1985.
    [161]李春胜,黄德彬.机械工程材料手册[M].北京:电子工业出版社,2007.
    [162]刘佐民编著.摩擦学理论与设计[M].武汉:武汉理工大学出版社,2009.
    [163]Rogalsks E, Kakoi W, Guerlement G, et al. Limit load analysis of perforated disks with quare penetration pattern [J]. International Journal of Pressure Vessels Technology,1997,1: 122-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700