用户名: 密码: 验证码:
Zr基块体非晶合金室温塑性变形与摩擦磨损行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新型材料的非晶合金由于独特的原子结构,被赋予了诸多不同于传统金属材料的优异性能。本文通过室温压缩和摩擦磨损两方面实验对Zr-Cu-Ni-Al-Ti块体非晶的力学行为展开了研究。总结分析文献中报道的不同体系块体非晶合金的弹性模量常数与室温压缩延展性数据,探索并建立两者之间的联系,并添加关键实验对其考证。对比去除表面软化层(铸造过程中冷却速率差异诱发)前后块体非晶的室温压缩性能,讨论表面软化层对块体非晶宏观力学行为的影响。从影响材料摩擦性能的内因(晶化度)和外因(载荷)出发,讨论在干摩擦条件下块体非晶合金的摩擦磨损行为及相关机理。借助聚焦离子束和透射电镜等先进材料微观结构表征技术,深入研究和分析摩擦气氛与摩擦对偶对块体非晶合金摩擦磨损行为的影响。主要结论如下:
     (1)块体非晶合金的力学性能与弹性模量之间存在本质联系。通过采用Pugh的一个理论参数,B/G,体积模量与剪切模量的比值,研究了其与室温压缩塑性的对应关系,发现其比泊松比具有更好的关联性。在Fe基和Zr基块体非晶中该参数均具有很好的预测性。此外,发现在该理论参数中,对非晶塑性起主要作用的还是剪切模量,因为该参数与原子的集群式运动相关。剪切模量越小,原子团越容易进行运动,因而变形能力增加。
     (2)室温压缩时,除去表面软化层的试样由于均匀的组织结构,表面萌生大量致密、均匀分布的剪切带,表现出较好塑性并呈现相对平滑的断面;而未除去软化层的试样仅萌生少量剪切带,剪切带快速扩展形成裂纹,导致灾难性断裂,表现出断面形貌的多样性。除去软化层的试样变形后自由体积数增加,压缩过程中发生应变软化。
     (3)块体非晶摩擦是结晶硬化与应变软化相互竞争的过程。随着载荷的增加,非晶的磨损量增大,摩擦系数减小,磨损机理由磨粒磨损向粘着磨损转变。块体非晶的硬度随晶化度增加而增大,其耐磨性同时取决于硬度和韧性。当晶化度为34%时,非晶试样具有最佳综合力学性能,耐磨性最好。随晶化度增加,主要磨损机理自粘着磨损向磨粒磨损转变。
     (4)块体非晶的磨损速率随环境中氧含量增加而显著增大。有氧环境中,非晶表层由于摩擦升温发生氧化,硬度与脆性均发生变化,表面微凸体(asperities)受剪切应力作用被剥落形成磨粒,摩损面呈现大量裂纹、蚀坑,属于磨粒磨损;氩气中,非晶摩擦表面塑性流变,与对偶表层机械混合作用,非晶纳米晶化,形成表面复合覆盖层。利用Archard模型计算磨损系数K说明主要磨损机理为轻微滑动磨损。
     (5)换钢作摩擦对偶时,块体非晶试样的摩擦系数与磨损速率均显著增大。由于钢的硬度远比氧化锆小(4H钢≈氧化锆),且小于非晶试样,摩擦时钢对偶受压迫表面变形,滑动受阻(高摩擦系数),摩擦副接触不完整,摩擦面局部剪切应力增大,应变集中(剪切带)、裂纹萌生与扩展,最终断裂。磨损机理为剧烈滑动磨损。
Bulk metallic glasses (BMGs) have been emerging as a type of novel materials, due to their excellent mechanical, physical and chemical properties compared to crystalline metals. In the present study, the mechanical behaviors of Zr-Cu-Ni-Al-Ti BMG were investigated not only in compression test, but also in tribotest. The elastic moduli and compressive ductility for various BMGs were compiled and analyzed, in order to identify key physical factor controlling the deformation and fracture behavior of BMGs. The soft surface of as-cast Zr-based BMG that induced by high cooling-rate during solidification was machined for the comparison of the compressive behavior with the cast one. The friction and wear behaviors of the Zr-based BMG were studied using a ball-on-flat measurement at different loads, and the effect of crystallinity on the wear performance was also examined in the same equipment. To understand the effect of the oxygen in test environment, other wear tests were conducted in three different atmospheres, i.e. air, oxygen and argon, using a home-built pin-on-disk friction system. Different counterface was employed in the study as well. The microstructures of worn specimens were characterized by focus ion beam and transmission electron microscopy. The following conclusions are drawn:
     (1) The ductility of metallic glasses has a good correlation with the ratio of bulk modulus to shear modulus, BIG. For individual BMGs, there seems to be a critical BIG ratio for the ductility, such as 2.6 for Fe-based BMGs,3.4 for Zr-based BMGs. Since the shear modulus is very sensitive to the atomic structural change, it may dominate the plastic flow behavior. The smaller shear modulus corresponds to a looser atomic packing, and thus higher plasticity.
     (2) The as-machined small specimens without the cast-softened surface exhibites highly dense and intersecting shear bands, and extensive plastic deformation, in contrast to the catastrophic failure and low deformability in the cast specimens with the softened surface. More free volume was detected in the small as-fractured specimens, indicating the occurrence of strain softening during the compressive process. Compared to the relatively smooth fracture surface of the small specimens, the large specimens showed more diverse features on the fracture surface due to the graded structures.
     (3) The friction coefficient of metallic glass with a steel counterpart is in the range of 0.24-0.32. Both surface softening and crystallization occur on the surface of metallic glass during wear, and wear curve is not as stable as the crystalline materials due to the interaction of the two processes. The wear mechanism of metallic glass may change with wear conditions and the crystalline phase content. Fully amorphous material shows an abrasive wear at a low load, then adhesive wear at a high load. Increasing the crystalline phase results in more abrasive wear. The wear behaviors of metallic glass and its crystalline composites do not follow the Archard's equation. Only a good combination of the hardness and the toughness can the metallic glass be wear resistant.
     (4) The wear rate of the specimens increased dramatically with increasing oxygen content in the testing environment. A number of cracks and pits were present on the worn surface of the pin tested in the oxygen-containing environments, whilst a relatively smooth worn surface and a mixed layer with a thickness of about 2-10μm were observed in the specimens tested in argon. For the tests in oxygen, abrasive particles induced by oxidation protruded and peeled off from the glassy matrix together with the debris come from the conterface, resulting in a combination of two-body and three-body abrasion, thus indicating an abrasive wear controlled process. In the oxygen-free environment, the plastic flow took place presumably accompanied by work-softening due to the frictional heat and the local stress concentrations. This led to the formation of the mixed layer on the pin and a material-transfer film on the disk. The wear coefficient K of the pin obtained via Archard's model implied that a mild sliding wear was dominated.
     (5) For wear tests against steel, both the pin and the disk showed more roughly worn surface, thus exhibiting a much higher wear rate than that of the pin tested against zirconia. The possible reason may be due to the significantly low hardness and relatively good plasticity of the steel, which leads to the severe adhesion between the disk and the pin. This may induce large shear stress on the wear surface of the pin, resulting in local deformation and fracture.
引文
[1]王一禾,杨膺善.非晶态合金.北京:冶金工业出版社,1989.
    [2]A. Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia,2000,48(1):279-306.
    [3]A. Brenner, D. E. Couch, E. K. Williams. Electrodeposition of alloys of phosphous with nickel or cobalt. J.Res.Natn.Bur.Stand.,1950,44(1):109-119.
    [4]W. Klement, R. H. Willens, P. Duwez. Non-crystalline structure in solidified gold-silicon alloys. Nature,1960,187:869-871.
    [5]R. Pond, R. Maddin. A method of producing rapidly solidified filamentary castings. Transactions of the Metallurgical Society of Aime,1969,245: 2475-2476.
    [6]H. S. Chen, C. E. Miller. A rapid quenching technique for the preparation of thin uniform films of amorphous solids. Review of Scientific Instruments,1970, 41(8):1237-1238.
    [7]H. S. Chen. Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica,1974,22(12):1505-1511.
    [8]A. Inoue, M. Kohinata, K. Ohtera. Mg-Ni-La amorphous alloys with a wide supercooled liquid region. Materials Transactions, JIM,1989,30:378-381.
    [9]S. G. Kim, A. Inoue. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region. Materials Transactions, JIM,1990,31:929-934.
    [10]A. Inoue, K. Kita, T. Zhang. An amorphous La55Al25Ni20 alloy prepared by water quenching. Materials Transactions, JIM,1989,30:722-725.
    [11]A. Inoue, T. Zhang, T. Mosumoto. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Materials Transactions, JIM,1989,30:965-972.
    [12]A. Inoue, T. Zhang, T. Masumoto. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM,1990,31:177-183.
    [13]A. Inoue, T. Zhang, N. Nishiyama. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Materials Transactions, JIM,1993,34(12): 1234-1237.
    [14]A. Inoue, J. S. Gook. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Materials Transactions, JIM,1995,36:1180-1183.
    [15]A. Inoue, H. Koshiba, T. Zhang, et al. Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb (or Ta)0-10B20 amorphous alloys. Journal of Applied Physics,1998,83:1967-1974.
    [16]A. Inoue, N. Nishiyama, T. Matsuda. Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Materials Transactions, JIM, 1996,37:181-184.
    [17]T. Zhang, A. Inoue. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Materials Transactions, JIM,1998,39:1001-1006.
    [18]T. Zhang, A. Inoue. Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region. Materials Transactions, JIM,1999,40:301-306.
    [19]R. Akarsuka, T. Zhang, M. Koshiba. Preparation of new Ni-based amorphous alloys with a large supercooled liquid region. Materials Transactions, JIM,1999, 40:258-261.
    [20]A. Peker, W. L. Johnson. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters,1993,63:2342-2344.
    [21]何世文.元素替代法制备Co基和Y基非晶合金及其性能研究.中南大学:长沙,2008.
    [22]D. Turnbull, M. H. Cohen. Free-volume model of the amorphous phase:glass transition. Journal of Chemical Physics,1961,34(1):120-125.
    [23]S. Mader, A. S. Nowick, H. Widmer. Metastable evaporated thin films of Cu---Ag and Co---Au alloys--I occurrence and morphology of phases. Acta Metallurgica, 1967,15(2):203-214.
    [24]S. Takayama. Amorphous structures and their formation and stability. Journal of Materials Science,1976,11(1):164-185.
    [25]A. Inoue. Bulk amorphous alloys with soft and hard magnetic properties. Materials Science and Engineering A,1997,226-228:357-363.
    [26]A. Inoue, A. Takeuchi. Recent progress in bulk glassy alloys. Materials Transactions, JIM,2002,43(8):1892-1906.
    [27]M. H. Cohen, D. Turnbull. Molecular transport in liquids and glasses. Journal of Chemical Physics,1959,31:1164-1169.
    [28]Z. P. Lu, Y. Li, S. C. Ng. Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids, 2000,270(1-3):103-114.
    [29]R. K. Wunderlich, H. J. Fecht. Thermophysical properties of bulk metallic glass forming alloys in the stable and undercooled liquid--a microgravity investigation. Materials Transactions,2001,42(4):565-578.
    [30]Z. P. Lu, C. T. Liu. A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics,2004,12(10-11): 1035-1043.
    [31]Z. P. Lu, C. T. Liu. A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia,2002,50(13):3501-3512.
    [32]Q. Chen, J. Shen, D. Zhang, et al. A new criterion for evaluating the glass-forming ability of bulk metallic glasses. Materials Science and Engineering:A,2006,433(1-2):155-160.
    [33]T. C. Hufnagel, P. El-Deiry, R. P. Vinci. Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scripta Materialia,2000,43(12):1071-1075.
    [34]T. Mukai, T. G. Nieh, Y. Kawamura, et al. Effect of strain rate on compressive behavior of a Pd4oNi4oP2o bulk metallic glass. Intermetallics,2002,10(11-12): 1071-1077.
    [35]A. L. Greer, A. Castellero, S. V. Madge, et al. Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Materials Science and Engineering A,2004,375-377:1182-1185.
    [36]F. Spaepen. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977,25(4):407-415.
    [37]F. Spaepen, D. Turnbull. A mechanism for the flow and fracture of metallic glasses. Scripta Metallurgica,1974,8(5):563-568.
    [38]P. S. Steif, F. Spaepen, J. W. Hutchinson. Strain localization in amorphous metals. Acta Metallurgica,1982,30(2):447-455.
    [39]D. E. Polk, D. Turnbull. Flow of melt and glass forms of metallic alloys. Acta Metallurgica,1972,20(4):493-498.
    [40]H. J. Leamy, H. S. Chen, T. T. Wang. Plastic flow and fracture of metallic glass. Metall. Trans.,1972,3:699-708.
    [41]R. Huang, Z. Suo, J. H. Prevost, et al. Inhomogeneous deformation in metallic glasses. Journal of the Mechanics and Physics of Solids,2002,50(5): 1011-1027.
    [42]B. P. Kanungo, S. C. Glade, P. Asoka-Kumar, et al. Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses. Intermetallics,2004,12(10-11):1073-1080.
    [43]H. A. Bruck, A. J. Rosakis, W. L. Johnson. The dynamic compressive behavior of beryllium bearing bulk metallic glasses. Journal of Materials Research,1996, 11(2):503-511.
    [44]W. J. Wright, R. B. Schwarz, W. D. Nix. Localized heating during serrated plastic flow in bulk metallic glasses. Materials Science and Engineering A,2001, 319-321:229-232.
    [45]W. H. Wang. Elastic moduli and behaviors of metallic glasses. Journal of Non-Crystalline Solids,2005,351(16-17):1481-1485.
    [46]W. H. Wang. Correlations between elastic moduli and properties in bulk metallic glasses. Journal of Applied Physics,2006,99(9):093506.
    [47]J. J. Lewandowski, M. Shazly, A. Shamimi Nouri. Intrinsic and extrinsic toughening of metallic glasses. Scripta Materialia,2006,54(3):337-341.
    [48]J. J. Lewandowski, W. H. Wang, A. L. Greer. Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters,2005,85(2):77-87.
    [49]J. J. Lewandowski, X. J. Gu, S. Nouri, et al. Tough Fe-based bulk metallic glasses. Applied Physics Letters,2008,92:091918/091911-091918/091913.
    [50]V. N. Novikov, A. P. Sokolov. Correlation of fragility and Poisson's ratio: Difference between metallic and nonmetallic glass formers. Physical Review B, 2006,74:064203/064201-064203/064207.
    [51]V. N. Novikov, A. P. Sokolov. Poisson's ratio and liquid fragility. Nature,2004, 431:961-963.
    [52]B. Yang, C. T. Liu, T. G. Nieh. Unified equation for the strength of bulk metallic glasses. Applied Physics Letters,2006,88:221911/221911-221911/221913.
    [53]G. Wang, P. Liaw, Y. Yokoyama, et al. Studying fatigue behavior and Poisson's ratio of bulk-metallic glasses. Intermetallics,2007,15(5-6):663-667.
    [54]Y. Liu, H. Bei, C. T. Liu, et al. Cooling-rate induced softening in a Zr50Cu50 bulk metallic glass. Applied Physics Letters,2007,90: 071909/071901-071909/071903.
    [55]Y. I. Golovin, V. I. Ivolgin, V. A. Khonik, et al. Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Materialia,2001,45(8): 947-952.
    [56]W. H. Jiang, F. X. Liu, Y. D. Wang, et al. Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses. Materials Science and Engineering:A,2006,430(1-2):350-354.
    [57]Y. J. Huang, J. Shen, J. F. Sun. Bulk metallic glasses:Smaller is softer. Applied Physics Letters,2007,90:081919/081911-081919/081913.
    [58]J. Chu. Plastic flow and tensile ductility of a bulk amorphous Zr55Al10Cu30Ni5 alloy at 700 K. Scripta Materialia,2003,49(5):435-440.
    [59]T. G. Nieh, T. Mukai, C. T. Liu, et al. Superplastic behavior of a Zr-10Al-5Ti--17.9Cu-14.6Ni metallic glass in the supercooled liquid region. Scripta Materialia,1999,40(9):1021-1027.
    [60]T. G. Nieh, J. Wadsworth, C. T. Liu, et al. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Materialia, 2001,49(15):2887-2896.
    [61]Q. Wang, J. M. Pelletier, J. J. Blandin, et al. Mechanical properties over the glass transition of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. Journal of Non-Crystalline Solids,2005,351(27-29):2224-2231.
    [62]Y. Kawamura, T. Nakamura, H. Kato, et al. Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses. Materials Science and Engineering:A,2001,304-306:674-678.
    [63]G. Wang, J. Shen, J. F. Sun, et al. Tensile fracture characteristics and deformation behavior of a Zr-based bulk metallic glass at high temperatures. Intermetallics,2005,13(6):642-648.
    [64]Y. Kawamura, T. Shibata, A. Inoue, et al. Superplastic deformation of Zr65Al10Ni10Cu15 metallic glass. Scripta Materialia,1997,37(4):431-436.
    [65]T. Zumkley, S. Suzuki, M. Seidel, et al. Superplastic forging of ZrTiNiCuBe bulk glass for shaping of microparts. Materials Science Forum,2002,386-388: 541-546.
    [66]T. Gloriant. Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials. Journal of Non-Crystalline Solids,2003, 316(1):96-103.
    [67]Z. Parlar, M. Bakkal, A. J. Shih. Sliding tribological characteristics of Zr-based bulk metallic glass. Intermetallics,2008,16(1):34-41.
    [68]H. W. Jin, R. Ayer, J. Y. Koo, et al. Reciprocating wear mechanisms in a Zr-based bulk metallic glass. Journal of Materials Research,2007,22(2): 264-273.
    [69]C. Tam, C. Shek. Abrasive wear of Cu60Zr30Ti10 bulk metallic glass. Materials Science and Engineering A,2004,384(1-2):138~142.
    [70]X. Fu, T. Kasai, M. L. Falk, et al. Sliding behavior of metallic glass:Part I. Experimental investigations. Wear,2001,250(1-12):409-419.
    [71]X. Fu. Sliding and deformation of metallic glass:experiments and MD simulations. Journal of Non-Crystalline Solids,2003,317(1-2):206-214.
    [72]A. W. J. De Gee. Comments on "Sliding friction and wear resistance of the metallic glass Fe4oNi4oB2o". Wear,1983,92(2):317-317.
    [73]H. G. Feller. Reply to comments on "Sliding friction and wear resistance of the metallic glass Fe40Ni40B20". Wear,1983,92(2):317-318.
    [74]R. Klinger, H. G. Feller. Sliding friction and wear resistance of the metallic glass Fe40Ni40B20. Wear,1983,86(2):287-297.
    [75]S. Li, Y. Wang. Wear resistance of amorphous cobalt-based alloys. Wear,1991, 147(2):275-284.
    [76]C. Joseph Wong, J. C. M. Li. Wear behavior of an amorphous alloy. Wear,1984, 98:45-61.
    [77]I. M. Hutchings. Tribology:friction and wear of engineering materials.1992, London:Edward Arnold.
    [78]A. L. Greer, K. L. Rutherford, I. M. Hutchings. Wear resistance of amorphous alloys and related materials. International Materials Reviews,2002,47(2): 87-112.
    [79]X. Fu, D. A. Rigney. Tribological characteristics of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass. Materials Research Society Symposium Proceedings,1998, 554:437-442.
    [80]K. Ozawa, H. Wakasugi, K. Tanaka. Friction and wear of magnetic heads and amorphous metal sliding against magnetic tapes. IEEE Transactions on Magnetics,1984,20(2):425-430.
    [81]P. J. Blau. Friction and wear of a Zr-based amorphous metal alloy under dry and lubricated conditions. Wear,2001,250(1-12):431-434.
    [82]M. Bakkal. Sliding tribological characteristics of Zr-based bulk metallic glass under lubricated conditions. Intermetallics,2010,18(6):1251-1253.
    [83]M. Ishida, H. Takeda, N. Nishiyama, et al. Wear resistivity of super-precision microgear made of Ni-based metallic glass. Materials Science and Engineering: A,2007,449-451:149-154.
    [84]E. Fleury, S. Lee, H. Ahn, et al. Tribological properties of bulk metallic glasses. Materials Science and Engineering A,2004,375-377:276-279.
    [85]J. F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 1953,24(981-988).
    [86]M. Siegrist, E. Amstad, J. Loffler. Tribological properties of graphite-and ZrC-reinforced bulk metallic glass composites. Intermetallics,2007,15(9): 1228-1236.
    [87]J. Wang, H. Danninger. Dry sliding wear behavior of molybdenum alloyed sintered steels. Wear,1998,222(1):49-56.
    [88]Y. Wang, T. Lei. Wear behavior of steel 1080 with different microstructures during dry sliding. Wear,1996,194(1-2):44-53.
    [89]肖华星,陈光,喇培清.铁基大块非晶合金的摩擦磨损性能研究.摩擦学学报,2006,26(2):140-144.
    [90]K. Amiya, N. Nishiyama, A. Inoue, et al. Mechanical strength and thermal stability of Ti-based amorphous alloys with large glass-forming ability. Materials Science and Engineering A,1994,179-180(Part 1):692-696.
    [91]A. Inoue, Y. Yokoyama, Y. Shinohara, et al. Preparation of bulky Zr-based amorphous alloys by a zone melting method. Materials Transactions, JIM,1994, 35(12):923-926.
    [92]X. F. Zhang, Y. M. Wang, J. B. Qiang, et al. Optimum Zr-Al-Co bulk metallic glass composition Zr53Al23.5Co23.5. Intermetallics,2004,12(10-11):1275-1278.
    [93]W. Chen, Y Wang, J. Qiang, et al. Bulk metallic glasses in the Zr-Al-Ni-Cu system. Acta Materialia,2003,51(7):1899-1907.
    [94]M. Bletry, P. Guyot, Y. Brechet, et al. Homogeneous deformation of Zr-Ti-Al-Cu-Ni bulk metallic glasses. Intermetallics,2004,12(10-11): 1051-1055.
    [95]Y. F. Sun, S. K. Guan, B. C. Wei, et al. Brittleness of Zr-based bulk metallic glass matrix composites containing ductile dendritic phase. Materials Science and Engineering:A,2005,406(1-2):57-62.
    [96]Y. Zhang, D. Q. Zhao, M. X. Pan, et al. Glass forming properties of Zr-based bulk metallic alloys. Journal of Non-Crystalline Solids,2003,315(1-2): 206-210.
    [97]边赞,何国,陈国良.Zr基大块非晶的研究.北京科技大学学报,2000,22(3): 219-222.
    [98]边赞.大体积非晶材料的研究.北京科技大学:北京,2000.
    [99]M. Telford. The case for bulk metallic glass. Materials Today,2004,7(3):36-43.
    [100]W. L. Johnson. Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Materials Science Forum,1996,225-227:35-49.
    [101]R. D. Conner, R. B. Dandliker, W. L. Johnson. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Materialia,1998,46(17):6089-6102.
    [102]C. T. Liu, L. Heatherly, J. A. Horton, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metallurgical and Materials Transaction A,1998,29(7):1811-1820.
    [103]Z. F. Zhang, J. Eckert, L. Schultz. Difference in compressive and tensile fracture mechanisms of Zr59Cu2oAl10Ni8Ti3 bulk metallic glass. Acta Materialia, 2003,51(4):1167-1179.
    [104]L. Q. Xing, C. Bertrand, J. P. Dallas, et al. Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties. Materials Science and Engineering A,1998,241(1-2):216-225.
    [105]L. Q. Xing, D. M. Herlach, M. Cornet, et al. Mechanical properties of Zr57Ti5Al10Cu20Ni8 amorphous and partially nanocrystallized alloys. Materials Science and Engineering A,1997,226-228:874-877.
    [106]H. Li, G. Subhash, L. J. Kecskes, et al. Mechanical behavior of tungsten preform reinforced bulk metallic glass composites. Materials Science and Engineering:A,2005,403(1-2):134-143.
    [107]H. Kato, T. Hirano, A. Matsuo, et al. High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles. Scripta Materialia,2000, 43(6):503-507.
    [108]A. Inoue, T. Zhang, A. Takeuchi. Ferrous and nonferrous bulk amorphous alloys. Materials Science Forum,1998,269-272(2):855-864.
    [109]R. D. Conner, R. B. Dandliker, V. Scruggs, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites. International Journal of Impact Engineering,2000,24(5):435-444.
    [110]黄劲松,刘咏,陈仕奇,等.锆基非晶合金的研究进展与应用.中国有色金属学报,2003,13(6):1321-1332.
    [111]X. H. Lin, W. L. Johnson, W. K. Rhim. Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Materials Transactions, JIM,1997,38(5):473-477.
    [112]W. H. Wang, C. Dong, C. H. Shek. Bulk metallic glasses. Materials science and Engineering R,2004,44:45-89.
    [113]K. F. Yao, F. Ruan, Y. Q. Yang, et al. Superductile bulk metallic glass. Applied Physics Letters,2006,88:122106/122101-122106/122103.
    [114]A. Inoue, Zhang. W., T. Tsurui, et al. Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philosophical Magazine Letters,2005,85(5):221-229.
    [115]H. S. Chen, J. T. Krause, E. Coleman. Elastic constants, hardness and their implications to flow properties of metallic glasses. Journal of Non-Crystalline Solids,1975,18(2):157-171.
    [116]J. Schroers, W. L. Johnson. Ductile bulk metallic glass. Physical Review Letters,2004,93:255506/255501-255506//255504.
    [117]S. F. Pugh. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine,1954,45(7):823-843.
    [118]X. K. Xi, R. J. Wang, D. Q. Zhao, et al. Glass-forming Mg-Cu-RE (RE=Gd, Pr, Nd, Tb, Y, and Dy) alloys with strong oxygen resistance in manufacturability. Journal of Non-Crystalline Solids,2004,344(3):105-109.
    [119]G. Yuan, A. Inoue. The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys. Journal of Alloys and Compounds,2005,387(1-2):134-138.
    [120]W. L. Johnson, K. Samwer. A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg) Temperature Dependence. Physical Review Letters,2005,95:195501/195501-195501/195504.
    [121]S. Li, R. J. Wang, M. X. Pan, et al. Bulk metallic glasses based on heavy rare earth dysprosium. Scripta Materialia,2005,53(12):1489-1492.
    [122]L. F. Liu, L. H. Dai, Y. L. Bai, et al. Strain rate-dependent compressive deformation behavior of Nd-based bulk metallic glass. Intermetallics,2005, 13(8):827-832.
    [123]Y. X. Wei, B. Zhang, R. J. Wang, et al. Erbium-and cerium-based bulk metallic glasses. Scripta Materialia,2006,54(4):599-602.
    [124]X. J. Gu, A. G. McDermott, S. J. Poon, et al. Critical Poisson's ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Applied Physics Letters, 2006,88(211905).
    [125]X. J. Gu, S. Joseph Poon, Gary J. Shiflet, et al. Ductility improvement of amorphous steels:Roles of shear modulus and electronic structure. Acta Materialia,2008,56(1):88-94.
    [126]D. Xu, G. Duan, W. L. Johnson, et al. Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Materialia,2004,52(12):3493-3497.
    [127]D. Xu, B. Lohwongwatana, G. Duan, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34,36,38.2,40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Materialia,2004,52(9): 2621-2624.
    [128]P. Yu, H. Y. Bai. Poisson's ratio and plasticity in CuZrAl bulk metallic glasses. Materials Science and Engineering:A,2008,485(1-2):1-4.
    [129]J. Eckert, J. Das, K. B. Kim, et al. High strength ductile Cu-base metallic glass. Intermetallics,2006,14(8-9):876-881.
    [130]H. Men, X. K. Wang, J. Y. Fu, et al. Formation and Mechanical Properties of Cu--Zr--Al--Sn Bulk Metallic Glasses. Materials Transactions,2006,47(1): 194-197.
    [131]L. Q. Xing, Y. Li, K. Ramesh, et al. Enhanced plastic strain in Zr-based bulk amorphous alloys. Physical Review B,2001,64(18):180201.
    [132]F. Szuecs, C. P. Kim, W. L. Johnson. Mechanical properties of Zr56.2Ti13.8Nb5.oCu6.9Ni5.6Bei2.5 ductile phase reinforced bulk metallic glass composite. Acta Materialia,2001,49(9):1507-1513.
    [133]Y. H. Liu, G. Wang, R. J. Wang, et al. Super Plastic Bulk Metallic Glasses at Room Temperature. Science,2007,315:1385-1388.
    [134]Z. P. Lu, H. Bei, Y. Wu, et al. Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Applied Physics Letters,2008,92(1):011915.
    [135]J. J. Lewandowski, P. Lowhaphandu. Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal Philosophical Magazine A,2002, 82(17-18):3427-3441.
    [136]G. Sunny, J. J. Lewandowski, V. Prakash. Effects of annealing and specimen geometry on dynamic compression of a Zr-based bulk metallic glass. Journal of Materials Research,2007,22(2):389-401.
    [137]W. F. Wu, Y. Li, C. A. Schuh. Strength, plasticity and brittleness of bulk metallic glasses under compression:statistical and geometric effects. Philosophical Magazine,2008,88(1):71-89.
    [138]L. A. Davis, Y. T. Yeow, P. M. Anderson. Bulk stiffnesses of metallic glasses. Journal of Applied Physics,1982,53:4834-4836.
    [139]K. Maeda, S. Takeuchi. Computer simulation of deformation in two-dimensional amorphous structures. Physica Status Solidi (a),1978,49(2): 685-696.
    [140]A. S. Argon. Plastic deformation in metallic glasses. Acta Metallurgica,1979, 27(1):47-58.
    [141]A. L. Greer. Metallic Glasses. Science,1995,267(5206):1947-1953.
    [142]H. Chen, Y. He, G. J. Shiflet, et al. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature,1994,367:541-543.
    [143]M. L. Lee, Y. Li, C. A. Schuh. Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Materialia,2004,52(14):4121-4131.
    [144]K. B. Kim, J. Das, S. Venkataraman, et al. Work hardening ability of ductile Ti45Cu4oNi7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Applied Physics Letters,2006,89:071908/071901-071908/071903.
    [145]L. Y. Chen, Z. D. Fu, G. Q. Zhang, et al. New class of plastic bulk metallic glass. Physical Review Letters,2008,100:075501/075501-075501/075504.
    [146]Y Zhang, W. H. Wang, A. L. Greer. Making metallic glasses plastic by control of residual stress. Nature Materials,2006,5(11):857-860.
    [147]P. Yu, Y H. Liu, G. Wang, et al. Enhance plasticity of bulk metallic glasses by geometric confinement. Journal of Materials Research,2007,22:2384-2388.
    [148]J. W. Tian, L. L. Shaw, Y D. Wang, et al. A study on the surface severe plastic deformation behavior of a Zr-based bulk metallic glass (BMG). Intermetallics, 2009,17(11):951-957.
    [149]Y Huang, Y. Sun, J. Shen. Tuning the mechanical performance of a Ti-based bulk metallic glass by pre-deformation. Intermetallics,2010,18(11): 2044-2050.
    [150]S. Shanmugam, N. K. Ramisetti, R. D. K. Misra, et al. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels. Materials Science and Engineering:A,2007,460-461:335-343.
    [151]M. Elmajdoubi, T. Vu-Khanh. Effect of cooling rate on fracture behavior of polypropylene. Theoretical and Applied Fracture Mechanics,2003,39(2): 117-126.
    [152]Y. Motemani, M. Nili-Ahmadabadi, M. J. Tan, et al. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. Journal of Alloys and Compounds,2009,469(1-2): 164-168.
    [153]Y. Liu, H. Wu, S. W. He, et al. Casting effect on softening of metallic glasses. Journal of Alloys and Compounds,2009,483(1-2):82-85.
    [154]Y. Liu, C. T. Liu, E. P. George, et al. Thermal diffusion and compositional inhomogeneity in cast Zr50Cu50 bulk metallic glass. Applied Physics Letters, 2006,89:051919/051911-051919/051913.
    [155]H. Bei, Xie. S, E. P. George. Softening caused by profuse shear banding in a bulk metallic glass. Physical Review Letters,2006,96: 105501/105501-105501/105504.
    [156]S. Xie, E. P. George. Size-dependent plasticity and fracture of a metallic glass in compression, Intermetallics,2008,16(3):485-489.
    [157]J. J. Kim, Y. Choi, S. Suresh, et al. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science,2002, 295(5555):654-657.
    [158]W. L. Johnson, J. Lu, M. D. Demetriou. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids--a self consistent dynamic free volume model. Intermetallics,2002,10(11-12):1039-1046.
    [159]D. Turnbull, M. H. Cohen. On the free-volume model of the liquid-glass transition. Journal of Chemical Physics,1970,52:3038-3041.
    [160]A. van den Beukel. On the kinetics of structural relaxation in metallic glasses. Key Engineering Materials,1993,81-83:3-16.
    [161]R. Bhowmick, R. Raghavan, K. Chattopadhyay, et al. Plastic flow softening in a bulk metallic glass. Acta Materialia,2006,54(16):4221-4228.
    [162]A. Slipenyuk. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Materialia,2004,50(1):39-44.
    [163]A. van den Beukel, J. Sietsma. The glass transition as a free volume related kinetic phenomenon. Acta Metallurgica et Materialia,1990,38(3):383-389.
    [164]H. Guo, P. F. Yan, Y. B. Wang, et al. Tensile ductility and necking of metallic glass. Nature Materials,2007,6(10):735-739.
    [165]C. J. Lee, J. C. Huang, T. G. Nieh. Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass. Applied Physics Letters,2007,91(16):161913.
    [166]B. E. Schuster, Q. Wei, T. C. Hufnagel, et al. Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Materialia, 2008,56(18):5091-5100.
    [167]F. F. Wu, Z. F. Zhang, S. X. Mao. Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Materialia,2009,57(1):257-266.
    [168]F. F. Wu, Z. F. Zhang, S. X. Mao, et al. Effect of sample size on ductility of metallic glass. Philosophical Magazine Letters,2009,89(3):178-184.
    [169]Y. Wu, H. X. Li, Z. Y. Liu, et al. Interpreting size effects of bulk metallic glasses based on a size-independent critical energy density. Intermetallics,2010, 18(1):157-160.
    [170]S. G. Mayr. Impact of ion irradiation on the thermal, structural, and mechanical properties of metallic glasses. Physical Review B,2005,71:144109.
    [171]F. Spaepen. Homogeneous flow of metallic glasses:A free volume perspective. Scripta Materialia,2006,54(3):363-367.
    [172]A. Concustell, G. Alcala, S. Mato, et al. Effect of relaxation and primary nanocrystallization on the mechanical properties of Cu60Zr22Ti18 bulk metallic glass. Intermetallics,2005,13(11):1214-1219.
    [173]C. Qin, W. Zhang, K. Amiya, et al. Mechanical properties and corrosion behavior of (Cu0.6Hf0.25Ti0.15)90Nb10 bulk metallic glass composites. Materials Science and Engineering:A,2007,449-451:230-234.
    [174]M. Bakkal, C. T. Liu, T. R. Watkins, et al. Oxidation and crystallization of Zr-based bulk metallic glass due to machining. Intermetallics,2004,12(2): 195-204.
    [175]T. C. Hufnagel, T. Jiao, Y. Li, et al. Deformation and Failure of Zr57Ti5Cu20NigAl10 Bulk Metallic Glass Under Quasi-static and Dynamic Compression. Journal of Materials Research,2002,17(6):1441-1445.
    [176]T. Masumoto, R. Maddin. Structural stability and mechanical properties of amorphous metals. Materials Science and Engineering,1975,19(1):1-24.
    [177]E. Pekarskaya, C. P. Kim, W. L. Johnson. In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. Journal of Materials Research,2001,16(9):2513-2518.
    [178]B. Yang, C. T. Liu, T. G. Nieh, et al. Localized heating and fracture criterion for bulk metallic glasses. Journal of Materials Research,2006,21(4):915-922.
    [179]Z. Bian, G. L. Chen, G. He, et al. Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing. Materials Science and Engineering A,2001,316(1-2):135-144.
    [180]W. H. Jiang, F. E. Pinkerton, M. Atzmon. Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Materialia,2005,53(12):3469-3477.
    [181]D. J. Safarik, C. M. Cady, R. B. Schwarz. Shear processes in bulk metallic glasses. Acta Materialia,2005,53(8):2193-2202.
    [182]Alain Reza Yavari, Alain Le Moulec, Akihisa Inoue, et al. Excess free volume in metallic glasses measured by X-ray diffraction. Acta Materialia,2005,53(6): 1611-1619.
    [183]M. Z. Ma, R. P. Liu, Y. Xiao, et al. Wear resistance of Zr-based bulk metallic glass applied in bearing rollers. Materials Science and Engineering A,2004, 386(1-2):326-330.
    [184]R. Tam, C. Shek. Abrasion resistance of Cu based bulk metallic glasses. Journal of Non-Crystalline Solids,2004,347(1-3):268-272.
    [185]T. Imura, K. Hasegawa, M. Moori, et al. Cyclicdeformation and tribological behavior of an amorphous iron-based alloy film. Materials Science and Engineering:A,1991,133:332-336.
    [186]刘惠文,薛群基.氧化锆陶瓷的摩擦磨损行为与机理.摩擦学学报,1996,16(1):6-13.
    [187]G. Zhang, X. Li, M. Shao, et al. Wear behavior of a series of Zr-based bulk metallic glasses. Materials Science and Engineering:A,2008,475(1-2): 124-127.
    [188]J. Kong, D. Xiong, J. Li, et al. Effect of flash temperature on tribological properties of bulk metallic glasses. Tribology Letters,2009,35(3):151-158.
    [189]J. M. Pelletier, J. Perez, J. L. Soubeyroux. Physical properties of bulk amorphous glasses:influence of physical aging and onset of crystallisation. Journal of Non-Crystalline Solids,2000,274(1-3):301-306.
    [190]童幸生.陶瓷摩擦副磨损机理的研究.华南理工大学学报,2001,29(4):94-97.
    [191]A. T. Alpas, J. D. Embury. The role of subsurface deformation and strain localization on the sliding wear behaviour of laminated composites. Wear,1991, 146(2):285-300.
    [192]G. Li, Y. Q. Wang, L. M. Wang, et al. Wear behavior of bulk Zr41Ti14Cu12.5Ni10Be22.5 metallic glasses. Journal of Materials Research,2002, 17(8):1877-1880.
    [193]J. Fornell, E. Rossinyol, S. Surinach, et al. Enhanced mechanical properties in a Zr-based metallic glass caused by deformation-induced nanocrystallization. Scripta Materialia,2010,62(1):13-16.
    [194]M. Heilmaier. Deformation behavior of Zr-based metallic glasses. Journal of Materials Processing Technology,2001,117(3):374-380.
    [195]Z. Bian, G. He, G. L. Chen. Microstructure and mechanical properties of as-cast Zr52.5Cu17.9Ni14.6 Al10Ti5 bulky glass alloy. Scripta Materialia,2000,43(11): 1003-1008.
    [196]Z. Bian, G. He, G. L. Chen. Investigation of shear bands under compressive testing for Zr-base bulk metallic glasses containing nanocrystals. Scripta Materialia,2002,46(6):407-412.
    [197]Y. Kong, J. N. Hay. The measurement of the crystallinity of polymers by DSC. Polymer,2002,43(14):3873-3878.
    [198]H. Chen, Y. He, G. J. Shiflet, et al. Mechanical properties of partially crystallized aluminum based metallic glasses. Scripta Metallurgica et Materialia,1991,25(6):1421-1424.
    [199]Y. H. Kim, A. Inoue, T. Masumoto. Increase in mechanical strength of Al-Y-Ni amorphous alloys by dispersion of nanoscale fcc-Al particles. Materials Transactions, JIM,1991,32(4):331-338.
    [200]A. Hodge. Evaluating abrasive wear of amorphous alloys using nanoscratch technique. Intermetallics,2004,12(7-9):741-748.
    [201]K. Miyoshi, D. H. Buckley. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior. Wear,1986, 110(3-4):295-313.
    [202]A. Gebert, J. Eckert, L. Schultz. Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65A17.5Cu17.5Ni10 metallic glass. Acta Materialia,1998,46(15):5475-5482.
    [203]C. T. Liu, M. F. Chisholm, M. K. Miller. Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics,2002,10(11-12): 1105-1112.
    [204]G. He, Z. Bian, G. L. Chen. Investigation of phases on a Zr-based bulk glass alloy. Materials Science and Engineering A,2000,279(1-2):237-243.
    [205]Z. F. Zhang, J. Eckert, L. Schultz. Fatigue and fracture behavior of bulk metallic glass. Metallurgical and Materials Transaction A,2004,35(11): 3489-3498.
    [206]D. A. Rigney. Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear,2000,245(1-2):1-9.
    [207]J. Li, M. Elmadagli, V. Y. Gertsman, et al. FIB and TEM characterization of subsurfaces of an Al-Si alloy (A390) subjected to sliding wear. Materials Science and Engineering:A,2006,421(1-2):317-327.
    [208]I. Baker, Y. Sun, F. E. Kennedy, et al. Dry sliding wear of eutectic Al-Si. Journal of Materials Science,2009,45(4):969-978.
    [209]P. J. Tao, Y. Z. Yang, Q. Ru. Effect of rotational sliding velocity on surface friction and wear behavior in Zr-based bulk metallic glass. Journal of Alloys and Compounds,2010,492(1-2):L36-L39.
    [210]Triwikantoro, D. Toma, M. Meuris, et al. Oxidation of Zr-based metallic glasses in air. Journal of Non-Crystalline Solids,1999,250-252(2):719-723.
    [211]U. Koster, L. Jastrow. Oxidation of Zr-based metallic glasses and nanocrystalline alloys. Materials Science and Engineering:A,2007,449-451: 57-62.
    [212]W. Kai, H. H. Hsieh, Y. R. Chen, et al. Oxidation behavior of an Zr53Ni23.5Al23.5 bulk metallic glass at 400-600℃. Intermetallics,2007,15(11):1459-1465.
    [213]J. Shen, G. Wang, J. F. Sun, et al. Superplastic deformation behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass in the supercooled liquid region. Intermetallics,2005,13(1):79-85.
    [214]K. C. Chan, L. Liu, J. F. Wang. Superplastic deformation of Zr55Cu30Al10Ni5 bulk metallic glass in the supercooled liquid region. Journal of Non-Crystalline Solids,2007,353(32-40):3758-3763.
    [215]G. He, Z. Bian, G. L. Chen. Structures and properties of a Zr-based bulk glass alloy after annealing. Materials Science and Engineering A,1999,270(2): 291-298.
    [216]B. K. Yen, T. Ishihara. Effect of humidity on friction and wear of Al-Si eutectic alloy and Al-Si alloy-graphite composites. Wear,1996,198(1-2):169-175.
    [217]M Gwaze, I. Baker, F. E. Kennedy, et al. Effect of sliding environment on dry sliding wear of as-cast eutectic Al-Si. Journal of Materials Science,2010, 45(24):6849-6852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700