用户名: 密码: 验证码:
AZ31B镁合金塑性变形行为的相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁是地球上储量最丰富的元素之一,而镁合金是其最主要的利用方式,它具有较高的强度、比刚度、减震性、电磁屏蔽性、易切削性和易回收性等一系列优点,被誉为“21世纪绿色工程结构材料”。但由于镁及镁合金具有HCP晶体结构,加工成型性不佳,这严重阻碍了在高速交通运输领域、航空航天领域和电子信息领域有广泛应用前景的变形镁合金的开发。
     针对镁合金难以加工成形这一难题,本文以工业上广泛应用的AZ31B商业镁合金为原料,对镁合金塑性变形的相关基础问题进行了研究。全文先后进行了等温恒速压缩热模拟和轧制实验,对不同变形条件的组织结构进行了观察,并分别构建了AZ31B镁合金低温、高温下的变形方程,同时对该合金轧制过程的组织织构演变、孪生、动态回复及动态再结晶行为进行了详细的研究,得出以下主要结果:
     1 AZ31B合金的等温压缩试验结果表明,样品取向对流变曲线的影响在低温条件下较为明显,这种影响来源于镁合金板材所具有的基面织构,是由压缩过程中不同类型的孪生行为所造成的,同时,取向造成的差异在临界应变εc后可以忽略,并且随着温度升高时,样品取向对压缩行为的影响逐渐减小。
     2 AZ31B合金不同变形条件的组织观察结果显示,合金低温变形时以基面滑移和机械孪生为主,部分孪晶交截处产生了动态再结晶;而高温下的变形组织则表现出连续动态再结晶和不连续动态再结晶的特征,其流变曲线可用加工硬化、过渡、软化和稳态流变四个阶段加以描述。同时,流变曲线的峰值应力随变形温度降低和应变速率增加而增大。
     3 AZ31B合金等温压缩塑性变形的流变行为可分别用双曲正弦函数修正的Arrhenius关系描述,所求得的本构方程分别为:
     低温ε=5.6[sinh(0.0296676)]4.5exp(-94300/RT)
     高温ε=5.7×107[sinh(0.0296676)]2.7exp(-127500/Rt)
     4 AZ31B合金铸轧板单道次热轧过程中,变形量较小的阶段,孪生起主导作用,分别产生了透镜状的{1012}孪晶和细长的{1011}窄孪晶,其中{1012}孪晶的产生使得基面织构突然增大,但此类孪晶内部不易发生塑性变形,因而不会发生再结晶;而细长的{1011}窄孪晶形核后,其内部的位错滑移能够被大量激活激活,因而容易成为动态再结晶的优先形核点。热轧中等应变阶段,回复和不连续动态再结晶起着重要的作用,晶粒内部形成了各种形貌的亚晶组织和锯齿状特征的晶界,基面滑移和基面位错在此过程中起着十分重要的作用。随着变形的继续增大,非基面滑移能够更为广泛的发生,晶粒内部形成了位错胞状缠结组织,为连续动态再结晶提供了结构基础。
     5剪切带是镁合金板材轧制过程中必经阶段,这是由外应力状态所决定的;但是不同的组织、织构状态会对剪切带的形成方式起到重要影响。织构和晶粒尺寸对剪切带形成机制的影响可以归结为:
     基面织构越强,孪生在剪切带中所起的作用就越大;反之,动态再结晶所起的作用就越大。
     晶粒尺寸越大,孪生在剪切带形成中期的作用越显著;反之,动态再结晶在剪切带形成中起的作用越明显。
     6本文利用离散极图对10%和20%热轧样品中孪晶类型及主要孪生要素进行分析,并对所有等价孪生系的Schmid因子进行了计算,结果表明,AZ31B合金热轧过程中起主导作用的{1012}、{1011)孪生行为均取决于宏观外应力,并遵从Schmid定律;同时少量的{1012}孪晶会起着协调局部应变、使晶粒变形均匀的作用。
     7本文采用了一种新的Euler空间分析方法对10%和20%热轧过程中的孪生行为进行了分析,此方法将孪生过程考虑为沿晶体学坐标轴的连续旋转过程,通过比对孪晶系Euler指数计算值和测量值来确定孪晶类型,并根据晶粒的Euler坐标计算各孪生系的Schmid因子大小。此方法与极图分析方法得出的结论基本吻合,其优势在于可以严格的确定孪生系的各个要素,并精确的进行取向相关的计算,如孪生Schmid因子大小等。
Magnesium is one of the most abundant elements on the earth. Mg alloy, which is the mostly application mode of mg resources, has high strength and specific-strength, good damping property, electromagnetic shielding and free cutting property etc. It has a good prospect for application in the field of modern transportation, aeronautics-astronautics and information technology. And it is regarded as'the green engineering structure materials'in the 21th century. However, Mg alloy exhibits limited ductility due to its hcp structure, which slows the development of mg alloy.
     Aiming to improve the poor formability of Mg alloy, the thesis concentrated on deformation mechanism of Mg alloys. AZ31B commercial alloy was chosen as experiment material in the present work. Uniaxial compression and hot-rolling experiments were conducted, and the deformed microstructure in different working condition was observed in the present work. In addition, constitutive equations for low and high temperatures deformation was constructed, and twinning, dynamic recovery and dynamic recrystallization were analyzed as well. The main results are as follows:
     1. Isothermal compression experiment shows that the differences between different oriented samples were more distinctive at low temperature. The differences came from the different types of twinning, which was influenced by the basal texture. Furthermore, the differences were imperceptible afterεc, and with the increase of working temperature, the differences became less.
     2. Microstructure observation indicated that basal slip and twinning dominated at low temperature, meanwhile DRX and CDRX play an important role at higher temperatures. The flow curve displayed four different stages, which could be described as strain-hardening, transition, softening and steady flow respectively. The peak stress usually decreases with the increase of temperature and with the decrease of strain-rate.
     3. The plastic flow behavior could be expressed in Arrhenius relationship, and the constitutive equation could be given as
     Low temperatureε=5.6[sinh(0.029667σ)]4.5 exp(-94300/RT)
     High temperatureε=5.7×107[sinh(0.029667σ)]2.7exp(-127500/RT)
     4. Twinning played the most important role in the initial strain stage of rolling process, producing thick lenticular{1012} twins and thin {1011} twins. Extensive initiation of{1012} twins increase the basal texture significantly, however dislocation slip could not easily proceed in the twinned region, thus arresting DRX in these twinned region. Dislocation slip could be easily activated in{1011} twinned region, providing preferred sites for DRX. In the moderate strain stage, some subgrain and serrated grain boundaries were produced, which indicated the process of DRV and DDRX. With the increase of rolling reduction, non-basal slip was activated more widely, forming dislocation cellular structures, which may build a structure foundation for CDRX.
     5. Shearing band formation was an essential stage in rolling process, which was decided by external stress state. However, elements such as grain size, texture condition would easily exert an influence on shearing bands forming mechanism. Their influences could be summarized as follows,
     Sharper basal texture could promote mechanic twinning, while weaker texture and small grain size may facilitate DRX, making them the most important element respectively in the shearing bands formation.
     6. Twinning types and their elements were analyzed based on Discrete Pole Figure (DPF) for the 10% and 20% rolled samples. It indicated that the dominating twinning system usually followed Schmid law, meanwhile some minor twins was able to activated accomdating the complicated strain concentration and making strain more homogeneous through the whole microstructure.
     7. A new twinning analysing method based on Euler space was adopted for for 10% and 20% rolled samples, in which twinning processes were considered consecutive rotation along crystal axes. Twinning types could be decided comparing the detected Euler index with calculated ones, and the Schmid factor could be rigorous defined. This method is successful in rigorous twinning identification and Schmid factor calculation. The results were similar with those drawn from DPF method.
引文
[1]Kojima Y. Platform Science and Technology for Advanced Magnesium Alloy. Material Science Forum,350-351(2000)3~18
    [2]Aghion E, Bronfin B. Magnesium alloys development towards the 21'st century. Material Science Forum,350-351(2000)19~28
    [3]曹富荣,崔建忠,雷方.超轻镁合金的研究历史与发展现状.材料工程,1996,09:3-5
    [4]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.211-213
    [5]陈振华,严红革,陈吉华,镁合金[M].北京:化学工业出版社,2004.23-44
    [6]Magnesium and Magnesium alloys[M], ASM specialty handbook,
    [7]Kainer K U. Magnesium-Alloys and Technologies Tec[M]. Germany:Wiley,2003. 33~90
    [8]Pekguleryuz M O, Avedesian M M. In:Mordike B L, Helunan F, eds. Magnesium Alloys and Their Applications, DGM Informations,Verlag,1992. 213~222
    [9]Pekguleryuz M O, Avedesian M M. Magnesium alloying, and some potentials for alloy development. Japan Light Metals Inst,42(1992)679~685
    [10]波尔米尔I J著,陈昌麒,邹愉,译,轻合金[M],北京:国防工业出版社,1985,1-54
    [11]Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications. Mater. Sci.,29(1994)5259~5271
    [12]彭成章,毛大恒,黄明辉.快速铸轧铝薄板的组织和性能.矿冶工程,2002,22(1):101-103
    [13]Kainer K U. Magnesium alloys and their applications[M]. Online:Wiley,2006. 1~23
    [14]Zhou T, Chen D, Chen Z H. Microstructures and properties of rapidly solidified Mg-Zn-Ca alloys. Transactions of Nonferrous Metals Society of China,18(2008) 312~324
    [15]Ji H b, Yao G C, Li H B. Microstructure, cold rolling, heat treatment, and mechanical properties of Mg-Li alloys. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,15(2008)440~443
    [16]Wu L B, Cui C L, Wu R Z, et al. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg-Li-Al-Zn-based alloy. Materials Science and Engineering:A,528(2011)2174~2179
    [17]Chen Z Y, Li Z Q, Yu C. Hot deformation behavior of an extruded Mg-Li-Zn-RE alloy. Materials Science and Engineering:A,528(2011): 961~966
    [18]Housh S, Mikucki B. Selection and Application of Magnesium and Magnesium Alloys[M], Metals Handbook, 10th ed.vol.9, ASM,1990,455-479
    [19]Mabuchi M, Kubota K, Higashi K, Tensile strength, ductility and fracture of magnesium silicon alloys. Mater. Sci.,31 (1996)1529~1535
    [20]Lu Y Z, Wang Q D, Zeng X Q. Effects of Si on the Microstructure, Fluidity, Mechanical Properties and Fracture Behavior of Mg-6A1 Alloy. Mater. Sci. Technol.,17(2001)207~214
    [21]Nair K S, Mittal M C. Mater. Sci. Forum,30 (1998)89~104
    [22]Lu Y Z, Wang Q D, Zeng X Q. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys. Mater. Sci. Eng. A, 278(2000)66~76
    [23]Lu Y Z, Wang Q D, Ding WJ. Fluidity of Mg-Al Alloys and the Effect of Alloying Elements, Z.Metallkd,91 (2000)477~482
    [24]Lee S, Kim D H. Effect of Y, Sr and Nb additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metall. Mater. Trans. A,29(1998)1221~1235
    [25]Li Y, Jones H. Effect of rare earth and silicon additions on structure and properties of melt spun Mg-9Al-1Zn alloy. Mater. Sci. Technol.,12(1996):651~ 661
    [26]Wei L Y, Dunlop G L, Westengen H. Development of microstructure in cast Mg-Al-rare earth alloys [J]. Mater. Sci. Technol.,12 (1996)741~750
    [27]Petersen G, Westengen H, Hoier R. Microstructure of a pressure die cast magnesium-4% aluminium alloy modified with rare earth additions. Mater. Sci. Eng. A,207(1996)115~120
    [28]Mabuchi M, Kubota K, Higashi K. Elevated temperature mechanical properties of magnesium alloys containing Mg2Si [J].Mater. Sci. Technol.,12(1996)35~39
    [29]Lu Y Z, Wang Q D, Ding W J. Behavior of Mg-6Al-xSi Alloys During Solution Heat Treatment at 42℃, Mater.Sci.Eng. A,301 (2001)257~260
    [30]Carbonneau Y, Couture A, Van Neste A. On the observation of a new ternary MgSiCa phase in Mg-Si alloys. Metall. Mater. Trans. A,29 (1998)1759~1762
    [31]Kim J J, Kim D H, Shin K S. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition. Scr. Mater.,41(1999)333-340
    [32]Ferro R, Saccone A, Borzone G. Rare earth metal in light alloy,15(1997) 262~274
    [33]陈晓,傅高升,钱匡武.铸造镁合金的研究与发展现状.铸造技术,2004,25(11):855-858
    [34]程素玲,杨根仓,樊建锋,等.铸造镁合金的发展及其展望.材料导报,2005,19(2):11-12
    [35]余琨,黎文献,李松珊.变形镁合金材料的研究进展.轻合金加工技术,2001,29(7):6-11
    [36]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.56-78
    [37]刘静安,徐河.镁合金材料的应用及其加工技术的发展(1).轻合金加工技术,2007,35(8):1-3
    [38]Manoj G, Sharon N M L. Magnesium, magnesium alloys, and magnesium composites. Online:Wiley,2001
    [39]Koike J, Kobayashi T, Mulai T. The activity of non-basal slip system and dynamic recovering at room temperature in fine-grained AZ31B magnesium alloys, Acta material,2003(51)2055~2065
    [40]Serra A, Bacon D J, Pond R C. The crystallography and core structure of twinning dislocations in HCP metals. Acta Metall,36(1988)3183~3203
    [41]陈振华,夏伟军,严红革,等.镁合金材料的塑性变形理论及其技术.化工进展,2004,23(2):127-135
    [42]陈振华.变形镁合金[M].北京:化学工业出版社,2005.33-34
    [43]Yoo M H. Twining and fracture in hexagongal close-packed metals. Metallurgy Transaction A,12(1981)409~418
    [44]Obara T, Yoshinga H, Morozumi S.{112-2}<-1-123>slip system in magnesium. Acta Metall,21(1973):845~853
    [45]Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgy,30(1982)1909~1919
    [46]Hosford W F. Mechanical behavior of materials, Cambridge:Cambridge University Press,2009.123~125
    [47]Honeycombe R W K. The plastic deformation of metals, London:Edward Arnold, 1968.56~67
    [48]Schmid E, Boas W. Plasticity of crystals:with special reference to metals, London:Chapman & Hall Ltd.,1968.34~44
    [49]Bouaziz O, Guelton N. Modelling of TWIP effect on workhardening, Materials Science and Engineering A,2001,319-321:246~249
    [50]Christian J W, Mahajan S. Deformation twinning. Progress in Materials Science, 39(1995)1~157
    [51]Cottrell A H, Bilby B A. A mechanism for the growth of deformation twins in crystals. Philosophical Magazine,42(1951)573~587
    [52]Sleeswyk A W. 1/2<111> screw dislocations and the nucleation of{112}<11l> twins in the b.c.c. lattice, Philosophical Magazine,93 (1963) 1467~1486
    [53]Lagerlof K D, Castaing J, Pirouz P, et al. Nucleation and growth of deformation twins:a perspective based on the double-cross-slip mechanism of deformation twinning, Philosophical Magazine,82(2002)2841~2854
    [54]Mahajan S, Chen G Y. Formation of deformation twins in f.c.c. crystals, Acta Metallurgica, 21(1973)1353~1363
    [55]Venables J A. Deformation twinning in face-centered cubic metals, Philosophical Magazine,1961,6:379~396
    [56]Mahajan S. The evolution of intrinsic-extrinsic faulting in f.c.c. crystals, Metallurgical & Materials Transactions A,6(1975)1877~1886
    [57]Thompson N, Millard D J. Twin formation, in cadmium, Philosophical Magazine, 43(1952)422~440
    [58]Braisaz T, Ruterana P, Nouet G. Twin tip defects related to the nucleation and growth mechanisms of the twin (1012) in zinc characterized by high-resolution electron microscopy", Philosophical Magazine,76(1997) 63~84
    [59]Barnett M R. Twinning and the ductility of magnesium alloys Part I:"Tension" twins. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,464(2007)1~7
    [60]Barnett M R. Twinning and the ductility of magnesium alloys Part II: "Contraction" twins. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,464(2007):8~16
    [61]Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scripta Materialia,51(2004)881~885
    [62]Jiang L, Jonas J J, Mishra R K, et al. Twinning and texture development in two Mg alIOyS subjected to loading along three different strain paths. Acta Materialia,b55(2007) 3899~3910
    [63]陈振华,杨春花,黄长清,等.镁合金塑性变形中孪生的研究.材料导报,,20(2006)107-113
    [64]Jager A, Lukac P, Gartnerove V, et al. Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures. Journal of Alloys and Compounds,,378(2004) 184~187
    [65]Keshavarz Z, Barnett M R. EBSD analysis of deformation modes in Mg-3A1-1Zn. Scripta Materialia,55(2006)915~918
    [66]Staroselsky A, Anand L. A constitutive model for hcp materials deforming by slip and twinning:application to magnesium alloy AZ31B. International Journal of Plasticity,19(2003)1843~1864
    [67]Barnett M R, Davies C H J, Ma X. An analytical constitutive law for twinning dominated flow in magnesium. Scripta Materialia,52(2005):627~632
    [68]Barnett M R, Keshavarz Z, Beer A G, et al. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Materialia, 56(2008)5~15
    [69]Cizek P, Barnett M R. Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension. Scripta Materialia, 59(2008)959~962
    [70]Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing, 399(2005)1~12
    [71]Chino Y, Kimura K, Mabuchi M. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy. Materials Science and Engineering:A, 486(2008)481~488
    [72]Wang Y N. Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta Materialia,55(2007)897~905
    [73]Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Materialia,52 (2004) 5093~5103
    [74]Bohlen J, Dobron P, Swlostek J, et al. On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression. MaterialS Science and EngineeringA,462(2007)302~306
    [75]吕宜振Mg-Al-Zn合金组织、性能、变形和断裂行为研究[D].上海交通大学,博士学位论文,2001
    [76]William D, Materials Science and engineering-An introduction[M]. USA, Wiley, 2009.33~90
    [77]Burrows S E, Humphreys F J, White S H. Dynamic recrystallization and textual development in compression at elevated temperatures. In strength of Metals and Alloys. Achen, Germany:Pergamon Press,1979.123~156
    [78]Kaibyshev R, Sitdikov O. On the "Bulging" mechanism of dynamic recrystallization. In Third International Conference on Recrystallization and Related Phenomena.1996.74~79
    [79]Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31. Journal of Light Metals,1 (2001): 167~177
    [80]Frost H J, Ashby M F. Deformation mechanisum maps[M]. Oxford:Pergamon Press,1982.22~223
    [81]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Materials Transactions,44 (2003)426-435
    [82]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia,49 (2001)1199~1207
    [83]Sellars C M, Mctegart W J. On the mechanism of hot deformation. Acta Metallurgica, 4 (1966) 1136~1138
    [84]Kun Y, Wenxian L, Jun Z, et al. Plastic deformation behaviours of a Mg-Ce-Zn-Zr alloy. Scripta Materialia,48(2003) 1319-1323
    [85]Mcqueen H J, Myshlaev M, Sauerborn M, et al. Flow stress microstructures and modeling in hot extrusion of magnesium alloys. In:TMS Annual Meeting. Nashville, TN, United states:Minerals, Metals and Materials Society,2000. 355~362
    [86]Ravi Kumar N V, Blandin J J, Desrayaud C, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing. Materials Science and Engineering A,359 (2003):150~157
    [87]Yang W G, Koo C H. Capacity for deformation and the evaluation of flow stress of hot extruded Mg-8Al-xRE alloys at elevated temperatures. Materials Transactions,44 (2003)1198~1203
    [88]夏长青,武文花,吴安如,等.Mg-Nd-Zn-Zr稀土镁合金的热变形行为.中国有色金属学报,2004,14(11):1810-1816
    [89]Brown D W, Agnew S R, Abeln S P, Blumenthal W R, et al. The role of texture, temperature, and strain rate in the activity of deformation twinning, Materials Science Forum,495~497(2005)1037~1042
    [90]Remy L. Kinetics of F.C.C. deformation twinning and its relationship to stress-strain behaviour. Acta Metallurgica,26(1978)443~451
    [91]Reed-Hill R E. Role of deformation twinning in the plastic deformation of a polycristalline anisotropic metal, in Conference of Deformation twinning, Gainesville, Florida, Edited by R.E. Reed-Hill, J.P. Hirth, and H.C. Rogers,Gordon And Breach Science,1964,295~320
    [92]Song S G. Influence of temperature and strain rate on slip and twinning behavior of Zr. Metallurgical and Materials Transactions A,26(1995)2665~2675
    [93]Garde A M, Reed-Hill R E. The importance of mechanical twinning in the stress-strain behaviour of swaged high purity fine-grained titanium below 424 K. Metallurgical Transactions,2(1971)2885~2888
    [94]Glavicic M G, Salem A A, Semiatin S L. X-ray line-broadening analysis of deformation mechanisms during rolling of commercial-purity titanium, Acta Materialia,52(2004)647~655
    [95]Moskalenko V A, Startsev V I, Kovaleva V N. Low temperature peculiarities of plastic deformation in titanium and its alloys. Cryogenics,20 (1980) 503~508
    [96]Zarandi F, Verma R, Essadiqi E, Yue S. Effect of hot torsion deformation on microstructure in AZ31 magnesium alloy, in Magnesium Technology A. A. Luo, N.R. Neelameggham, and R.S. Beals, Editors.2006, TMS:San Antonio, TX, USA.367~372
    [97]Chichili D R, Ramesh K T, Hemker K J. The high-strain-rate response of alpha-titanium:Experiments, deformation mechanisms and modeling. Acta Materialia,46(1998) 1025~1043
    [98]Nemat-nasser S, Guo W G, Cheng J Y. Mechanical properties and deformation mechanisms of a commercial pure titanium. Acta Materialia,47(1999)3705-3720
    [99]Meyers M A, Andrade U R, Chokshi A H. The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metallurgical and Materials Transactions A,26(1995)2881~2893
    [100]Harding J. The yield and fracture behaviour of high-purity iron single crystals at high rates crystals at high rates of strain. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,299(1967):464~490
    [101]Yu Q, Shan Z W, Li J, et al. Evan Ma. Strong crystal size effect on deformation twinning. Nature,463(2010)335~338
    [102]Hsiang S H, Kuo J L. An investigation on the hot extrusion process of magnesium alloy sheet. Journal of Materials Processing Technology,140(2003) 6~12
    [103]Hsiang S H, Lin Y W. Application of fuzzy theory to predict deformation behaviors of magnesium alloy sheets under hot extrusion. Journal of Materials Processing Technology,201(2008)138~144
    [104]Lapovok R Y, Barnett M R, Davies C H J. Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation. Journal of Materials Processing Technology,146(2004)408~414
    [105]Valle J A, P'erez-Prado M T, Ruano O A. Accumulative roll bonding of a Mg-based AZ61 alloy. Materials Science and Engineering A,410-411 (2005) 353-357
    [106]Perez-Prado M T, Valle J A, Ruano O A. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scripta Materialia,50(2004) 667-671
    [107]Chino Y, Sassa K, Kamiya A, Mabuchi M. Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet. Materials Science and Engineering A,441(2006)349-356
    [108]徐祖耀,黄本立,鄢国强.中国材料工程大典-材料表征与检测技术[M].北京,2006
    [109]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002
    [110]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999
    [111]E.W.Kelley,W.F.Hosford, Internal deformayion and fracture of second-order {1011}-{1012} twins in magnesium Transaction of the metallurgical society of Transaction of the metallurgical society of AIME,1968(242):5-13
    [112]M.R.Barnett. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31. Journal of light metals.1 (2001) 167~177
    [113]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994,47-52
    [114]张先宏,崔振山,阮雪榆.镁合金塑性成形技术-AZ31B成形性能及流变应力.上海交通大学学报,2003,37(12):1874-1877
    [115]胡庚祥,蔡殉,戎咏华.材料科学基础.上海:上海交通大学出版社,2006.
    [116]杜建锋.ZM6合金组织及高温性能研究:[硕士学位论文],哈尔滨:哈尔滨工业大学,2006
    [117]Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures. Journal of Materials Processing Technology, 80~81(1998)513~516
    [118]Zener C, Hollomon J H. Effect of Strain-Rate upon the Plastic Flow of Steel. Journal of Applied Physics,15(1944):22~28.
    [119]Myshlyaev M M, Mcqueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Mater. Sci. Eng A,337(2002)121~133
    [120]刘楚明,刘子娟,朱秀荣.镁及镁合金动态再结晶研究进展.中国有色金属学报,2006,16:1-12
    [121]Samman T A, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium. Materials Science and Engineering A, 490(2008)411~420
    [122]唐宁.连续铸轧AZ31B镁合金板坯的组织结构及退火行为:[硕士学位论文],长沙:中南大学,2008
    [123]Chino Y, Sassa K, Kamiya A. Mamoru Mabuchi, Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes. Materials Science and EngineeringA,473 (2008) 195~200
    [124]Reedhill R E. A study of the{1011} and{1013} twinninng modes in magnesium. Transaction of the Metallurgical Society of AIME,218(1960) 554-558
    [125]Hartt W H, Reedhill R E. Internal deformation and fracture of second-order {1011}-{1012} twins in magnesium. Transaction of the Metallurgical Society of AIME,242(1968) 1127~1133
    [126]Hong S G, Park S H, Lee C S. Role of{1012} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Materialia,58 (2010)5873-5885
    [127]Hartt W H, Reedhill R E.The irrational habit of second-order 1011-1012 twins in magnesium,Transaction of the metallurgical society of AIME 239 (1967) 1511~1517,
    [128]Wonsiewcz B C, Backon W A. Plasticity of magnesium crystals.Transaction of the metallurgical society of AIME,239 (1967):1422~1431
    [129]王凌云,范永革,黄光杰,等.AZ31B镁合金板材的织构[J].材料研究学报,2004,15(5):466-470
    [130]Walde T, Riedel H. Modeling texture evolution during hot rolling of magnesium alloy AZ31. Materials Science and Engineering:A,443 (2007)277-284
    [131]Chun Y B, Geng J, Stanford N, Davies C H J, Nie J F, Barnett M R. Processing and properties of Mg-6Gd-1Zn-0.6Zr:Part 1 Recrystallisation and texture development. Materials Science and Engineering:A,528(2011) 3653~3658
    [132]Masoumi M, Zarandi F, Pekguleryuz M. Microstructure and texture studies on twin-roll cast AZ31 (Mg-3 wt.%Al-1 wt.%Zn) alloy and the effect of thermomechanical processing. Materials Science and Engineering:A,528(2011) 1268~1279
    [133]Yan H, Chen R S, Han E H. A comparative study of texture and ductility of Mg-1.2Zn-0.8Gd alloy fabricated by rolling and equal channel angular extrusion. Materials Characterization,62(2011) 321~326
    [134]Styczynski A, Hartig Ch, Bohlen J, Letzig D. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Materialia,50 (2004) 943-947
    [135]Huang X S, Suzuki K, Watazu A, Shigematsu I, Saito Na. Improvement of formability of Mg-Al-Zn alloy sheet at low temperatures using differential speed rolling. Journal of Alloys and Compounds,470 (2009) 263~268
    [136]Kim W J, Lee J B, Kim W Y, Jeong H T,et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling. Scripta Materialia,56 (2007) 309~312
    [137]Chang L L, Shang E F, Wang Y N, Zhao X, Qi M. Texture and microstructure evolution in cold rolled AZ31 magnesium alloy. Material characterization,60(2009)487~491
    [138]Jeong H T, Ha T K. Texture development in a warm rolled AZ31 magnesium alloy. Journal of Materials Processing Technology 187~188 (2007)559~561
    [139]Roberts C S. Magnesium and its alloy[M]. U.S.A:John Wiley & Sons, Inc. 1960:81-107
    [140]Couling S L. magnesium-base alloys transaction of the ASM,51 (1958) 94~107
    [141]Hong S G, Park S H, Lee C S. Strain path dependence of{1012} twinning activity in a polycrystalline magnesium alloy, Scripta Materialia,64(2011) 145~148
    [142]Christian J W, Mahajant S. Prog. Mater. Sci.39 (1995) 1~157
    [143]Yu Q, Shan Z W, Li J, Huang X X, Xiao L, Sun J, Ma E. Strong crystal size effect on deformation twinning.463(2010) 335~338
    [144]Lee C D. Effect of grain size on the tensile properties of magnesium alloy, Materials Science and Engineering:A,459(2007) 355~360
    [145]Jain A, Duygulu O, Brown D W, TomeC N, Agnew S R. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B, sheet, Materials Science and Engineering:A, Volume 486(2008) 545~555
    [146]Kubota K, Mabuchi M, Higashi K. J. Mater. Sci.34 (1999):2255
    [147]Mabuchi M, Asahina T, Iwasaki H, Higashi K. Mater. Sci. Tech.13 (1997)825
    [148]Teng H, Zhang X L, Zhang Z T. Research on micro structures of sub-rapidly solidified AZ61 Magnesium Alloy, Materials Characterization,60(2009)482~ 486
    [149]Mabuchi M, Iwasaki H, Yanase K, Higashi K. Scr. Mater.1997,36(6)681
    [150]Yoshida Y, Yamada H, Kamado S, Kojima Y. J. Jpn. Inst. Light Metals, 2001(51)551
    [151]Agnew S R. Scripta materilia,50(3)2004,377~381
    [152]Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog. Mater. Sci.2000,45(2)103
    [153]潘金生,仝健民,田民波.材料科学基础,北京:清华大学出版社
    [154]Gottstein G. Institut fur Metallkunde und Metallphysik, RWTH Aachen, Germany. Physical Foundations of Materials Science. Springer.Berlin Heidelberg New York Hong Kong London.Milan Paris Tokyo
    [155]Humphreys F J. Recrystallization and Related Annealing Phenomena, second ed., Elsevier Ltd., Amsterdam,2004.recrystallization and related annealing phenomena second edition
    [156]William D, Callister Jr. Fundamentals of Materials Science and Engineering Department of Metallurgical Engineering, The University of Utah, John Wiley & Sons, Inc. New York Chichester Weinheim Brisbane Singapore Toronto
    [157]Valiev R Z, Kaibyshev O A, Khannanov S K, Phys. Status Solidi A.52 (1979) 447~453.
    [158]Nieh T G, Hsiung L M, Wadsworth J, Kaibyshev R. Acta Mater.46 (1998): 2789-2800.
    [159]McNelly T R, Lee E W, Mills M E. Metall. Trans. A17 (1986) 1035-1041.
    [160]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Materials Science and Engineering A,2003, A 339:124~132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700