用户名: 密码: 验证码:
蔗渣及其纤维素在离子液体中的溶解、改性及分离的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油危机和石油化工原料价格的持续上涨,以及人类对环境和健康等问题的日益重视,可再生资源的开发越来越引起了人们的重视。蔗渣是一种典型的农林废弃物,是由甘蔗经制糖压榨后产生的纤维性残渣。通常蔗渣中含有40-50%的纤维素、20-25%的半纤维素和18-24%的木质素。蔗渣及其纤维素具有很多优点,如可再生、易生物降解、对环境友好等特点。然而由于蔗渣等木质纤维难溶于水和常见的有机溶剂,对其开发应用有一定的限制。离子液体具有良好的溶解性能,可以有效的溶解纤维素,这为纤维素的开发和应用提供了一个崭新的平台。本论文以蔗渣及其纤维素为原料,以离子液体为溶剂,针对蔗渣在新型溶剂中转化利用的一系列关键问题,研究了蔗渣及其纤维素在离子液体中的溶解和改性以及蔗渣主要组分在离子液体中的分离。此外,还对离子液体中由蔗渣直接制备机械性能强的纤维进行了探讨。通过研究,得到的主要结论如下:
     1.探讨了蔗渣纤维素在离子液体1-丁基-3-甲基咪唑氯盐([C4mim]Cl)中溶解前后物化性能的变化。经研究发现,由于纤维素的聚合度高,在普通加热条件下蔗渣纤维素在离子液体中溶解需要较长的时间(100℃,10h)。在溶解的过程中,蔗渣纤维素没有发生衍生化反应,但是纤维素的结晶区被破坏。再生后,纤维素的聚合度由1278降低到916,初始热解温度由240℃降低到215℃。
     2.提出一种快速溶解蔗渣全组分的方法。在普通加热情况下,蔗渣全组分在离子液体[C4mim]Cl中完全溶解需要24h。当溶解温度超过木质素的玻璃转化温度时,蔗渣完全溶解时间可以缩短至2.5h。红外光谱(FT-IR)和固体核磁共振(CP/MAS13C-NMR)分析表明,离子液体[C4mim]Cl只起到溶解作用,蔗渣在离子液体中没有发生衍生化反应。此外还发现,蔗渣在溶解过程中纤维素晶型由纤维素I型转变为纤维素II型,且蔗渣经离子液体溶解再生后乙酰基含量降低。热分析结果表明再生后蔗渣的热稳定性能略有提高,初始热解温度由205℃提高到217℃。
     3.以蔗渣纤维素为原料,以4-二甲氨基吡啶(DMAP)为催化剂,在离子液体[C4mim]Cl中制备了一系列高取代度的丁二酰化纤维素和邻苯二甲酰化纤维素。研究发现,当DMAP用量为5%、反应温度为100℃、反应时间为60min时,丁二酰化纤维素取代度最高,为2.34。当DMAP用量为5%、反应温度为80℃、反应时间为60min,邻苯二甲酰化纤维素取代度最高,为1.31。研究还发现,纤维素C2、C3和C6位上的游离羟基均发生了化学反应,其中C6位羟基的反应活性最强。热分析结果表明纤维素衍生物的热稳定性能略有降低。
     4.提出了一种在离子液体[C4mim]Cl中制备乙酰化蔗渣的方法。以纯化的N-甲基咪唑和正氯丁烷为原料合成了离子液体[C4mim]Cl,并以合成的离子液体为反应介质,系统地研究了乙酸酐用量、反应温度和反应时间对蔗渣乙酰化产率的影响。结果发现蔗渣均相乙酰化产率随着乙酸酐用量的增加而提高;当反应时间从30min延长到60min时,蔗渣的乙酰化产率也相应的提高;在80-100℃,温度对蔗渣的乙酰化反应影响不大;但是当温度高于110℃时,产物的产率急剧下降。热分析结果表明改性后的蔗渣热稳定性能良好(198℃),吸湿性下降,从蔗渣的5%降低到2%。
     5.对蔗渣在离子液体1-乙基-3-甲基咪唑醋酸盐([C2mim]OAc)中的均相溶解及组分分离进行了研究。研究发现,不同的加热方法包括高温快速溶解、低温长时间溶解和微波溶解均可使蔗渣溶解在离子液体[C2mim]OAc中,并可以通过水/丙酮实现纤维物质和木质素的分离。随着溶解温度和溶解时间的延长,回收木质素的产率提高,纤维物质的产率下降,但是纤维物质中木质素的含量也下降。与低温长时间溶解相比,高温快速溶解可以显著提高木质素的去除率,得到低木质素含量的蔗渣纤维物质。微波溶解分离后纤维物质的得率低、木质素含量高,直接导致碳水化合物产率低。此外,可以用液体核磁对蔗渣和纤维物质进行表征。同时发现在离子液体[C2mim]OAc中,蔗渣经高温快速溶解和微波溶解分离后的纤维物质发生了微量的乙酰化反应。
     6.对在离子液体中分离蔗渣纤维素和半纤维素进行了研究。以离子液体和氢氧化钠为试剂,可以将离子液体中溶解的蔗渣组分纤维素和半纤维素进行分离。采用离子色谱、FT-IR和核磁共振表征了蔗渣纤维素和半纤维素的结构。结果表明,离子液体[C2mim]OAc和[C4mim]Cl分离的蔗渣纤维素中葡萄糖的含量分别为76.61%和63.05%,还含少量的木糖等半纤维素组成成分;基本不含有木质素。用离子液体[C2mim]OAc和[C4mim]Cl分离的蔗渣半纤维素主要成分为木糖(74.99%和72.79%)、阿拉伯糖(13.54%和13.34%)、葡萄糖(8.82%和11.28%),还含有少量的半乳糖和葡萄糖醛酸;两种半纤维素的结构主要为L-阿拉伯糖-(4-O-甲基-D-葡萄糖醛酸)-D-木聚糖。TGA分析表明,分离得到的纤维素热稳定性略有降低,半纤维素热稳定性与碱溶性半纤维素相当。
     7.探讨了以蔗渣、橡木粉和松木粉为原料,直接在离子液体[C2mim]OAc中制备生物质纤维的新方法。研究发现,在离子液体[C2mim]OAc中采用低温长时间溶解制备的纺丝液,只有蔗渣可以得到连续均匀的纤维;而在离子液体[C2mim]OAc中采用高温快速溶解制备的纺丝液,蔗渣、橡木粉和松木粉均可得到纤维。纤维机械性能研究表明,高温快速法制备的蔗渣纤维机械强度要好于低温长时间制备的蔗渣纤维。在三种原料中,蔗渣纤维的机械强度性能最好,应力为125MPa;橡木纤维次之,为102MPa,机械强度也较高;而松木纤维的强度较差,仅为49MPa。此外,两种升温方法制备的蔗渣纤维的结晶形态均发生了变化,由纤维素I型变为纤维素II型结构。
With the impact of fossil fuels depletion and environmental concerns, the developmentof renewable resources has attracted more and more attention. Bagasse is a typicalagricultural and forestry waste, which derives from sugar cane and is the fibrous residue aftercrushing to remove sugar from sugar cane stalks. Generally, bagasse is composed of 40-50%cellulose, 20-25% hemicelluloses and 18-24% lignin. Bagasse and bagasse cellulose havemany advantageous properties, such as sustainable, renewable, biodegradable andenvironmentally friendly. However, bagasse or bagasse cellulose is insoluble in water orcommon organic solvent. This limits the application and exploitation of the biomass. Ionicliquids have been providing a new platform for utilization of cellulose due to their excellentdissolution capacity for cellulose. In this study, the dissolution and modification of bagasseand bagasse cellulose were investigated, and the isolation of cellulose and hemicellulosesfrom bagasse was also explored using ionic liquids as solvents. Moreover, the preparation ofbagasse fibers was discussed in ionic liquid without removal of hemicelluloses and lignin.The primary results are described as follows:
     1. The physicochemical properties of native bagasse cellulose and the regenerated oneafter dissolution in ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) werecomparatively studied. The results indicated that it took a long time (over 10 h at 100 oC) tocompletely dissolve cellulose in ionic liquid due to the high degree of polymerization (DP) ofbagasse cellulose. Ionic liquid was the direct solvent of cellulose, and there were noderivatization of cellulose occurred with ionic liquid. However, the crystallinity of cellulosewas destroyed. The DP of the regenerated cellulose decreased from 1278 to 916, and thedecomposition temperature of the regenerated cellulose decreased from 240 oC to 215 oC ascompared to the native bagasse cellulose.
     2. Rapid dissolution of bagasse in ionic liquid was proposed at higher temperature. Atthe dissolution temperature above the glass transition temperature of lignin, bagasse could becompletely dissolved in ionic liquid within 2.5 h. However, it took over 24 h to be completelydissolved in the same ionic liquid at lower temperature (100 oC). The results of fourier transform infrared (FT-IR) and solid-state cross-polarization magic angle spinning carbon-13unclear magnetic resonance (CP/MAS 13C-NMR) spectroscopies indicated that [C4mim]Clwas a direct solvent for bagasse. However, the crystallite alignment of cellulose in theregenerated bagasse was converted from cellulose I to cellulose II, and the content of acetylgroup in regenerated bagasse decreased. The regenerated bagasse was more thermally stablethan original bagasse and the decomposition temperature of the regenerated bagasse increasedfrom 205 oC to 217 oC.
     3. Succinylation and phthalylation of bagasse cellulose were investigated in ionic liquid[C4mim]Cl using 4-dimethylaminopyridine (DMAP) as a catalyst to produce cellulosederivatives with high degree of substitution (DS). The effects of the dose of catalyst (DMAP),reaction time and reaction temperature on DS of the cellulose derivatives were investigated.The results indicated that the highest DS of succinylated cellulose, 2.34, was obtained at 100oC for 60 min with 5% DMAP, and that of phthalylated cellulose, 1.31, was reached at 80 oCfor 60 min with 5% DMAP. The acylation of three hydroxyl groups at the C6, C2 and C3 incellulose does occur, primarily at C6. The cellulose derivatives showed a lowerdecomposition temperature.
     4. Homogeneous acetylation of bagasse was accomplished in ionic liquid [C4mim]Cl.[C4mim]Cl was successfully synthesized using N-methylimidazole and chlorobutane asstarting materials. Using the synthesized [C4mim]Cl as solvent, the effects of the parametersincluding the concentration of the acetic anhydride, reaction time and reaction temperature onweight percent gain (WPG) value of acetylated bagasse were studied. The results indicatedthat the WPG value increased with the increase of DMAP. 60 min was the preferred reactiontime due to the highest WPG of the product. Reaction temperature has few effect on the WPGvalue of the product in the range of 80-100 oC. However, the WPG value significantlydecreased above 110 oC due to the degradation of cellulose and hemicelluloses. All thehydroxyl groups in cellulose, hemicelluloses and lignin could be reacted with aceticanhydride. The TGA analysis indicated that acetylated bagasse was stable up to 198 oC andthe hygroscopicity of the product decreased from 5% to 2%.
     5. The dissolution of bagasse and isolation of bagasse components were carried out inionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc). It was found that bagasse could be completely dissolved in ionic liquid using different heating methods, includinghigher temperature/shorter time, lower temperature/longer time and microwave irradiation.After the dissolution, the cellulosic materials and lignin could be isolated from bagasse byreconstitution in water/acetone. Increasing dissolution temperature and dissolution time led toan increase in the recovered lignin yield, however, the lower cellulosic material yield withlower lignin content was also obtained. Compared to dissolution at lower temperature/longertime, dissolution of bagasse in [C2mim]OAc at higher temperature/shorter time resulted inhigher delignification and lower lignin content in cellulosic material. The lower yield ofcellulosic material with higher lignin content was obtained by microwave assisted dissolution,which directly resulted in lower yield of carbohydrates. More importantly, the cellulosicmaterials and bagasse could be characterized by liquid 13C-NMR using the ionic liquid assolvent. Moreover, the side reaction (acetylation) occurred using the microwave irradiationmethod or higher temperature/shorter time method.
     6. A new method for the isolation of cellulose and hemicelluloses from bagasse usingionic liquid/NaOH was proposed. Ion chromatography, FT-IR, TGA and NMR were used tocharacterize the physicochemical properties of the isolated cellulose and hemicelluloses. Theresults indicated that cellulose samples isolated from [C2mim]OAc/NaOH or[C4mim]Cl/NaOH system mainly contained glucose (76.61% and 63.05%, respectively) witha small amount of xylose, which represents hemicelluloses. The isolated cellulose samplescontained very few lignin. The major monosaccharide in hemicelluloses samples isolatedfrom [C2mim]OAc/NaOH or [C4mim]Cl/NaOH system were xylose (74.99% and 72.79%,respectively), arabinose (13.54% and 13.34%, respectively) and glucose (8.82% and 11.28%,respectively). Galactose and glucuronic acid were observed as minor constituents. Thethermal stability of the hemicelluloses samples was similar to the alkaline hemicelluloses.NMR results implied that the isolated hemicelluloses samples can be structurally defined asL-arabino-(4-O-methyl-D-glucurono)-D-xylan.
     7. A new method to prepare biomass fibers directly from bagasse, oak or pine withoutthe removal of hemicelluloses and lignin was presented using ionic liquid as a solvent. Thebagasse fibers could be prepared using either the lower temperature/longer time or higher temperature/shorter time method, while oak and pine fibers can only be prepared using thehigher temperature/shorter time method. The bagasse fibers made with the highertemperature/shorter time method have higher tensile strength compared to those made withlower temperature/longer time method. Fibers with higher tensile strength were obtainedfrom biomass with higher cellulose content, and the fibers made from bagasse (125 MPa) andoak (102 MPa) exhibited higher tensile strength than those from pine (49 MPa). The XRDresults indicated that the crystalline structure of bagasse fiber was transformed from celluloseI in native bagasse to cellulose II.
引文
[1] Mohanty, A. K., Misra, M., Drzal, L. T. Sustainable bio-composites from renewableresources: opportunities and challenges in the green materials world [J]. Journal ofPolymers and the Environment, 2002, 10 (1), 19-26.
    [2]朱圣东,吴元欣,池汝安,等.离子液体在林产化学工业中的应用[J].林产化学与工业, 2008, 28 (3), 117-121.
    [3] Sun, J. X., Sun, X. F., Sun, R. C., et al. Fractional extraction and structuralcharacterization of sugarcane bagasse hemicelluloses [J]. Carbohydrate Polymers, 2004,56 (2), 195-204.
    [4] Rowell, R. M., Keany, F. M. Fiberboards made from acetylated bagasse fiber [J]. Woodand Fiber Science, 1991, 23 (1), 15-22.
    [5] Sun, J. X., Sun, R. C., Sun, X. F., et al. Fractional and physico-chemical characterizationof hemicelluloses from ultrasonic irradiated sugarcane bagasse [J]. CarbohydrateResearch, 2004, 339 (2), 291-300.
    [6] Finkenstadt, V. L., Millane, R. P. Crystal structure of valonia cellulose Iβ[J].Macromolecules, 1998, 31 (22), 7776-7783.
    [7] Pandey, A., Soccol, C. R., Nigam, P., et al. Biotechnological potential of agro-industrialresidues. I: sugarcane bagasse [J]. Bioresource Technology, 2000, 74 (1), 69-80.
    [8]向仕龙,李远幸.干法蔗渣中密度纤维素热亚工业的研究[J].林产工业, 1996, 23(2), 5-7.
    [9]刘传富,张爱萍,李维英,等.纤维素在新型绿色溶剂离子液体中的溶解及其应用[J].化学进展, 2009, 21 (9), 1800-1806.
    [10] Zhang, H., Wu, J., Zhang, J., et al. 1-Allyl-3-methylimidazolium chloride roomtemperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose [J].Macromolecules, 2005, 38 (20), 8272-8277.
    [11]卢芸,孙庆丰,于海鹏,等.离子液体中的纤维素溶解、再生及材料制备研究进展[J].有机化学, 2010, 30 (10), 1593-1602.
    [12] Rogers, R. D., Seddon, K. R. CHEMISTRY: ionic liquids--solvents of the future? [J].Science, 2003, 302 (5646), 792.
    [13] El Seoud, O. A., Koschella, A., Fidale, L. C., et al. Applications of ionic liquids incarbohydrate chemistry: a window of opportunities [J]. Biomacromolecules, 2007, 8 (9),2629-2647.
    [14] Moellmann, E., Heinze, T., Liebert, T., et al. Homogeneous synthesis of cellulose ethersin ionic liquids [P]. 2009/0221813 A1, 2009.
    [15]刘传富,孙润仓,任俊莉,等.离子液体在纤维素材料中的应用进展[J].精细化工,2006, 23 (4), 318-321.
    [16]邵丽,谢文磊.离子液体在纤维素材料及纤维素衍生物生产中的应用[J].河南工业大学学报, 2007, 28 (6), 84-88.
    [17] Handy, S. T. Room temperature ionic liquids: different classes and physical properties [J].Current Organic Chemistry, 2005, 9 (10), 959-988.
    [18] Edgar, K. J., Buchanan, C. M., Debenham, J. S., et al. Advances in cellulose esterperformance and application [J]. Progress in Polymer Science, 2001, 26 (9), 1605-1688.
    [19] Heinze, T., Liebert, T. Unconventional methods in cellulose functionalization [J].Progress in Polymer Science, 2001, 26 (9), 1689-1762.
    [20] Vigo, T. L. Interaction of cellulose with other polymers: retrospective and prospective [J].Polymers for Advanced Technologies, 1998, 9 (9), 539-548.
    [21] Zugenmaier, P. Conformation and packing of various crystalline cellulose fibers [J].Progress in Polymer Science, 2001, 26 (9), 1341-1417.
    [22] Salmon, S., Hudson, S. M. Crystal morphology, biosynthesis, and physical assembly ofcellulose, chitin, and chitosan [J]. Polymer Reviews, 1997, 37 (2), 199-276.
    [23] Philipp, B. Organic solvents for cellulose as a biodegradable polymer and theirapplicability for cellulose spinning and derivatization [J]. Journal of MacromolecularScience. Pure and Applied Chemistry, 1993, 30 (9-10), 703-714.
    [24] Nevell, T. P., Zeronian, S. H., Cellulose chemistry and its applications [M]. E. Horwood:1985.
    [25] Nishio, Y., Manley, R. S. J. Cellulose-poly (vinyl alcohol) blends prepared fromsolutions in N, N-dimethylacetamide-lithium chloride [J]. Macromolecules, 1988, 21 (5),1270-1277.
    [26] Terbojevich, M., Cosani, A., Conio, G., et al. Mesophase formation and chain rigidity incellulose and derivatives. 3. Aggregation of cellulose in N, N-dimethylacetamide-lithiumchloride [J]. Macromolecules, 1985, 18 (4), 640-646.
    [27] McCormick, C. L., Dawsey, T. R. Preparation of cellulose derivatives via ring-openingreactions with cyclic reagents in lithium chloride/N, N-dimethylacetamide [J].Macromolecules, 1990, 23 (15), 3606-3610.
    [28] Williamson, S. L., Armentrout, R. S., Porter, R. S., et al. Microstructural examination ofsemi-interpenetrating networks of poly (N, N-dimethylacrylamide) with cellulose orchitin synthesized in lithium chloride/N, N-dimethylacetamide [J]. Macromolecules,1998, 31 (23), 8134-8141.
    [29] Tamai, N., Tatsumi, D., Matsumoto, T. Rheological properties and molecular structure oftunicate cellulose in LiCl/1, 3-dimethyl-2-imidazolidinone [J]. Biomacromolecules,2004, 5 (2), 422-432.
    [30] Masson, J. F., Manley, R. S. J. Miscible blends of cellulose and poly (vinylpyrrolidone)[J]. Macromolecules, 1991, 24 (25), 6670-6679.
    [31] Shiraishi, N., Matsunaga, T., Yokota, T., et al. Preparation of higher aliphatic acid estersof wood in an N2O4¨CDMF cellulose solvent medium [J]. Journal of Applied PolymerScience, 1979, 24 (12), 2347-2359.
    [32] Hattori, K., Cuculo, J. A., Hudson, S. M. New solvents for cellulose: Hydrazine/thiocyanate salt system [J]. Journal of Polymer Science Part A: Polymer Chemistry,2002, 40 (4), 601-611.
    [33] Saalwachter, K., Burchard, W., Klufers, P., et al. Cellulose solutions in water containingmetal complexes [J]. Macromolecules, 2000, 33 (11), 4094-4107.
    [34] Zhu, S. D., Wu, Y. X., Chen, Q. M., et al. Dissolution of cellulose with ionic liquids andits application: a mini-review [J]. Green Chemistry, 2006, 8 (4), 325-327.
    [35] Graenacher, C. Cellulose dissolution [P]. US 1943176, 1934.
    [36] Swatloski, R. P., Rogers, R. D., Holbrey, J. D. Dissolution and processing of celluloseusing ionic liquids [P]. US 2003/0157351, 2003.
    [37] Swatloski, R. P., Spear, S. K., Holbrey, J. D., et al. Dissolution of cellose with ionicliquids [J]. Journal of the American Chemical Society, 2002, 124 (18), 4974-4975.
    [38] Laus, G., Bentivoglio, G., Schottenberger, H., et al. Ionic liquids: current developments,potential and drawbacks for industrial applications [J]. Lenzinger Berichte, 2005, 8471-85.
    [39]王美玲,臧洪俊,蔡白雪,等.纤维素在离子液体AMMorCl/AMIMCl混合溶剂中的溶解性能[J].高等学校化学学报, 2009, 30 (7), 1469-1472.
    [40] Luo, M., Neogi, A. N., Weat, H. Disslution of cellulose in mixed solvent systems [P].US 2009/0088564, 2009.
    [41] Wu, J., Zhang, J., Zhang, H.,等. Homogeneous acetylation of cellulose in a new ionicliquid [J]. Biomacromolecules, 2004, 5 (2), 266-268.
    [42]任强,武进,张军,等. 1-烯丙基,3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报, 2003, 3, 448-451.
    [43]王犇,曹妍,黄科林,等.蔗渣纤维素在离子液体中的溶解与再生[J].化工学报,2010, (6), 1592-1598.
    [44] Singh, S., Simmons, B. A., Vogel, K. P. Visualization of biomass solubilization andcellulose regeneration during ionic liquid pretreatment of switchgrass [J]. Biotechnologyand Bioengineering, 2009, 104 (1), 68-75.
    [45]杨海静,李坤兰,马英冲,等.松木屑在[ bmim]Cl离子液体中的溶解性能[J].大连工业大学学报, 2010, 29 (4), 292-294.
    [46] Pu, Y., Jiang, N., Ragauskas, A. Ionic liquid as a green solvent for lignin [J]. Journal ofWood Chemistry and Technology, 2007, 27 (1), 23-33.
    [47] Sun, N., Rahman, M., Qin, Y., et al. Complete dissolution and partial delignification ofwood in the ionic liquid 1-ethyl-3-methylimidazolium acetate [J]. Green Chemistry,2009, 11 (5), 646-655.
    [48] Brandt, A., Hallett, J. P., Leak, D. J., et al. The effect of the ionic liquid anion in thepretreatment of pine wood chips [J]. Green Chemistry, 2010, 12 (4), 672-679.
    [49] Fidale, L. C., Possidonio, S., El Seoud, O. Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid,and comparison with other solvents [J]. Macromolecular Bioscience, 2009, 9 (8),813-821.
    [50]王犇,曹妍,黄科林,等.蔗渣纤维素在离子液体中的溶解与再生[J].化工学报,2010, 61 (6), 1592-1598.
    [51]蔡涛,张慧慧,邵惠丽,等.纤维素在离子液体水溶液中的溶胀与溶解行为的研究[J].合成纤维, 2010, 39 (1), 32-36.
    [52] Mazza, M., Catana, D., Vaca-Garcia, C., et al. Influence of water on the dissolution ofcellulose in selected ionic liquids [J]. Cellulose, 2009, 16 (2), 207-215.
    [53] Zhu, Y. J., Wang, W. W., Qi, R. J., et al. Microwave-assisted synthesis ofsingle-crystalline tellurium nanorods and nanowires in ionic liquids [J]. AngewandteChemie, 2004, 116 (11), 1434-1438.
    [54] Adewuyi, Y. G. Sonochemistry: environmental science and engineering applications [J].Industrial & engineering chemistry research, 2001, 40 (22), 4681-4715.
    [55]唐爱民,张宏伟,陈港,等.超声波处理对纤维素纤维形态结构的影响[J].纤维素科学与技术, 2005, 25 (1), 26-33.
    [56] Tang, A. M., Zhang, H., Chen, G., et al. Influence of ultrasound treatment onaccessibility and regioselective oxidation reactivity of cellulose [J]. UltrasonicsSonochemistry, 2005, 12 (6), 467-472.
    [57] Kardos, N., Luche, J. L. Sonochemistry of carbohydrate compounds [J]. CarbohydrateResearch, 2001, 332 (2), 115-131.
    [58]蓝武,刘传富,孙润仓.超声波辅助条件下纤维素在离子液体中的溶解研究[J].中国科技论文在线, 2010, 1-8.
    [59] Mao, Y., Zhou, J., Cai, J., et al. Effects of coagulants on porous structure of membranesprepared from cellulose in NaOH/urea aqueous solution [J]. Journal of MembraneScience, 2006, 279 (1-2), 246-255.
    [60] Jin, H., Zha, C., Gu, L. Direct dissolution of cellulose in NaOH/thiourea/urea aqueoussolution [J]. Carbohydrate Research, 2007, 342 (6), 851-858.
    [61]郭明,虞哲良,李铭慧,等.咪唑类离子液体对微晶纤维素溶解性能的初步研究[J].生物质化学工程, 2006, 40 (6), 9-12.
    [62]丰丽霞,李秀艳.纤维素的活化方法对纤维素在离子液体中溶解性能的影响[J].现代化工, 2009, 29 (S2), 153-155.
    [63]石锦志,李状,廖兵,等.离子液体[bmim]Cl对甘蔗渣中纤维素的溶解与再生[J].化工进展, 2010, 29 (11), 2183-2186.
    [64]郭立颖,史铁钧,李忠,等.两种咪唑类离子液体对杉木粉的溶解性能[J].化工学报, 2008, 59 (5), 1299-1304.
    [65]翟蔚,陈洪章,马润宇.离子液体中纤维素的溶解及再生特性[J].北京化工大学学报, 2007, 34 (2), 138-141.
    [66] Fort, D. A., Remsing, R. C., Swatloski, R. P., et al. Can ionic liquids dissolve wood?Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride [J]. Green Chemistry, 2007, 9 (1), 63-69.
    [67] Fukaya, Y., Sugimoto, A., Ohno, H. Superior solubility of polysaccharides in lowviscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates [J].Biomacromolecules, 2006, 7 (12), 3295-3297.
    [68] Kilpel?inen, I., Xie, H., King, A., et al. Dissolution of wood in ionic liquids [J]. Journalof Agricultural and Food Chemistry, 2007, 55 (22), 9142-9148.
    [69] Bykova, T., Eremeeva, T., Klevinska, V., et al. The effect of kraft delignification of woodon hemicelluloses and lignin DMSO-accessibility [J]. Holzforschung, 1998, 52 (5),475-480.
    [70] Cai, J., Zhang, L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueoussolutions [J]. Macromolecular Bioscience, 2005, 5 (6), 539-548.
    [71]罗慧谋,李毅群,周长忍.功能化离子液体对纤维素的溶解性能研究[J].高分子材料科学与工程, 2005, 21 (2), 233-235.
    [72]程凌燕,朱天祥,刘崴崴,等.纤维素在离子液体中的溶解特性研究[J].合成纤维,2008, 37 (4), 9-13.
    [73] K?hler, S., Liebert, T., Sch?bitz, M., et al. Interactions of ionic liquids withpolysaccharides 1. unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate [J]. Macromolecular Rapid Communications, 2007, 28 (24),2311-2317.
    [74] Ebner, G., Schiehser, S., Potthast, A., et al. Side reaction of cellulose with common1-alkyl-3-methylimidazolium-based ionic liquids [J]. Tetrahedron Letters, 2008, 49 (51),7322-7324.
    [75]张景强,林鹿,何北海,等.两种离子液体处理纤维素的XPS分析[J].华南理工大学学报(自然科学版), 2009, 37 (6), 17-21.
    [76]刘瑞刚,胡学超,章潭莉.棉纤维素在NMMO中溶解前后结晶结构的变化[J].东华大学学报(自然科学版), 1998, 24 (4), 7-10.
    [77] Remsing, R. C., Wildin, J. L., Rapp, A. L., et al. Hydrogen bonds in ionic liquidsrevisited: 35/37Cl NMR studies of deuterium isotope effects in1-n-butyl-3-methylimidazolium chloride [J]. The Journal of Physical Chemistry B, 2007,111 (40), 11619-11621.
    [78] Remsing, R. C., Liu, Z., Sergeyev, I., et al. Solvation and aggregation of N,N'-Dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy and moleculardynamics simulation study [J]. The Journal of Physical Chemistry B, 2008, 112 (25),7363-7369.
    [79] Zhang, J., Zhang, H., Wu, J., et al. NMR spectroscopic studies of cellobiose solvation inEmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids [J].Physical Chemistry Chemical Physics, 2010, 12 (8), 1941-1947.
    [80]张恒,赵娜娜,刘丽丽.纤维素在离子液体中的溶解性能及机理研究进展[J].化学研究, 2010, 21 (6), 96-99.
    [81] Hermanutz, F., G?hr, F., Uerdingen, E., et al. New developments in dissolving andprocessing of cellulose in ionic liquids [A], In Macromol Symp [C], 2008; 23-27.
    [82] Gutowski, K. E., Grant, A., Willauer, H. D., et al. Controlling the aqueous miscibility ofionic liquids: Aqueous biphasic systems of water-miscible ionic liquids andwater-structuring salts for recycle, metathesis, and separations [J]. Journal of theAmerican Chemical Society, 2003, 125 (22), 6632-6633.
    [83].Wong, H., Pink, C. J., Ferreira, F. C., et al. Recovery and reuse of ionic liquids andpalladium catalyst for Suzuki reactions using organic solvent nanofiltration [J]. GreenChemistry, 2006, 8 (4), 373-379.
    [84] Heinze, T., Dicke, R., Koschella, A., et al. Effective preparation of cellulose derivativesin a new simple cellulose solvent [J]. Macromolecular Chemistry and Physics, 2000, 201(6), 627-631.
    [85] El Seoud, O. A., Marson, G. A., Ciacco, G. T., et al. An efficient, one-pot acylation ofcellulose under homogeneous reaction conditions [J]. Macromolecular Chemistry andPhysics, 2000, 201 (8), 882-889.
    [86] Takaragi, A., Minoda, M., Miyamoto, T., et al. Reaction characteristics of cellulose inthe LiCl/1, 3-dimethyl-2-imidazolidinone solvent system [J]. Cellulose, 1999, 6 (2),93-102.
    [87] Cao, Y., Zhang, J., He, J. S., et al. Homogeneous acetylation of cellulose at relativelyhigh concentrations in an Ionic Liquid [J]. Chinese Journal Chemistry Engineering, 2010,18 (3), 515-522.
    [88] Barthel, S., Heinze, T. Acylation and carbanilation of cellulose in ionic liquids [J]. GreenChemistry, 2006, 8 (3), 301-306.
    [89]黄科林,王犇,曹妍,等.蔗渣纤维素在离子液体中的均相混合酰化研究[J].现代化工, 2009, 29, 105-108.
    [90]曹妍,李会泉,张军,等.醋酸丁酸纤维素在离子液体中的均相合成[J].化工学报,2009, 60 (7), 1855-1858.
    [91] Gericke, M., Liebert, T., Heinze, T. Interaction of ionic liquids with polysaccharides,8-synthesis of cellulose sulfates suitable for polyelectrolyte complex formation [J].Macromolecular Bioscience, 2009, 9 (4), 343-353.
    [92] Gericke, M., Liebert, T., Heinze, T. Polyelectrolyte synthesis and in situ complexformation in ionic liquids [J]. Journal of the American Chemical Society, 2009, 131 (37),13220-13221.
    [93] Zhang, J., Wu, J., Cao, Y., et al. Synthesis of cellulose benzoates under homogeneousconditions in an ionic liquid [J]. Cellulose, 2009, 16 (2), 299-308.
    [94] Liu, C. F., Sun, R. C., Ye, J. Structural and thermal characterization of sugarcane bagassephthalates prepared with ultrasound irradiation [J]. Polymer Degradation and Stability,2006, 91 (2), 280-288.
    [95] Liu, C. F., Sun, R. C., Zhang, A. P., et al. Homogeneous modification of sugarcanebagasse cellulose with succinic anhydride using a ionic liquid as reaction medium [J].Carbohydrate Research, 2007, 342 (7), 919-926.
    [96] Liu, C. F., Zhang, A. P., Li, W. Y., et al. Homogeneous modification of cellulose in ionicliquid with succinic anhydride using N-bromosuccinimide as a catalyst [J]. Journal ofAgricultural and Food Chemistry, 2009, 57 (5), 1814-1820.
    [97] Li, W. Y., Jin, A. X., Liu, C. F., et al. Homogeneous modification of cellulose withsuccinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst [J].Carbohydrate Polymers, 2009, 78 (3), 389-395.
    [98] Mormann, W., Wezstein, M. Trimethylsilylation of cellulose in ionic liquids [J].Macromolecular Bioscience, 2009, 9 (4), 369-375.
    [99] Lin, C., Zhan, H., Liu, M., et al. Novel Preparation and characterization of cellulosemicroparticles functionalized in ionic liquids [J]. Langmuir, 2009, 25 (17), 10116-10120.
    [100]林春香,詹怀宇,刘明华,等.纤维素在离子液体中的均相接枝共聚[J].中国造纸, 2009, 28 (2), 32-35.
    [101]张佳珺,林春香,詹怀宇,等.离子液体中微波辐射合成纤维素丙烯酰胺接枝共聚物[J].中国造纸学报, 2010, 25 (4), 19-22.
    [102] Peng, X. W., Ren, J. L., Sun, R. C. Homogeneous esterification of xylan-richhemicelluloses with maleic anhydride in ionic liquid [J]. Biomacromolecules, 2010, 11(12), 3519-3524.
    [103] Ren, J. L., Sun, R. C., Liu, C. F., et al. Acetylation of wheat straw hemicelluloses inionic liquid using iodine as a catalyst [J]. Carbohydrate Polymers, 2007, 70 (4), 406-414.
    [104]程合丽,林春香,朱平安,等.半纤维素在离子液体中的均相改性研究[J].中国造纸学报, 2010, 25 (1), 44-46.
    [105] Xie, H., King, A., Kilpelainen, I., et al. Thorough chemical modification of wood-basedlignocellulosic materials in ionic liquids [J]. Biomacromolecules, 2007, 8 (12),3740-3748.
    [106] Yuan, T. Q., Sun, S. N., Xu, F., et al. Homogeneous esterification of poplar wood in anionic liquid under mild conditions: characterization and properties [J]. Journal ofAgricultural and Food Chemistry, 2010, 58 (21), 11302-11310.
    [107] Yuan, T., Sun, S., Xu, F., et al. Homogeneous butyrylation and lauroylation of poplarwood in the ionic liquid 1-butyl-3-methylimidazolium chloride [J]. BioresourceTechnology, 2011, 102, 4590-4593.
    [108] Guo, L., Shi, T., Li, Z. Dissolution of fir powder and its graft copolymer in ionic liquid[J]. European Journal of Wood and Wood Products, 2010, 1-7.
    [109]张金明,张军.基于纤维素的先进功能材料[J].高分子学报, 2010, (12),1376-1398.
    [110] Feng, L., Chen, Z. Research progress on dissolution and functional modification ofcellulose in ionic liquids [J]. Journal of Molecular Liquids, 2008, 142 (1-3), 1-5.
    [111] Michels, C., Kosan, B. Contribution to the dissolution state of cellulose and cellulosederivatives [J]. Lenzinger Berichte, 2005, 84, 62-70.
    [112] Wendler, F., Kosan, B., Krieg, M., et al. Possibilities for the physical modification ofcellulose shapes using ionic liquids [A], In Macromol Symp [C], 2009; 112-122.
    [113] Cai, T., Zhang, H., Guo, Q., et al. Structure and properties of cellulose fibers from ionicliquids [J]. Journal of Applied Polymer Science, 2010, 115 (2), 1047-1053.
    [114] Sun, N., Li, W., Stoner, B., et al. Composite fibers spun directly from solutions of rawlignocellulosic biomass dissolved in ionic liquids [J]. Green Chemistry, 2011, 13 (5),1158-1161.
    [115] Kosan, B., Michels, C., Meister, F. Dissolution and forming of cellulose with ionicliquids [J]. Cellulose, 2008, 15 (1), 59-66.
    [116] Viswanathan, G., Murugesan, S., Pushparaj, V., et al. Preparation of biopolymer fibersby electrospinning from room temperature ionic liquids [J]. Biomacromolecules, 2006, 7(2), 415-418.
    [117] Xu, S., Zhang, J., He, A., et al. Electrospinning of native cellulose from nonvolatilesolvent system [J]. Polymer, 2008, 49 (12), 2911-2917.
    [118] Quan, S. L., Kang, S. G., Chin, I. J. Characterization of cellulose fibers electrospunusing ionic liquid [J]. Cellulose, 2010, 17 (2), 223-230.
    [119]马博谋,张猛,王丹丹,等.离子液体法制备再生竹纤维素膜及其性能[J].东华大学学报(自然科学版), 2010, 36 (6), 604-607.
    [120] Cao, Y., Li, H., Zhang, Y., et al. Structure and properties of novel regenerated cellulosefilms prepared from cornhusk cellulose in room temperature ionic liquids [J]. Journal ofApplied Polymer Science, 2010, 116 (1), 547-554.
    [121] Nyfors, L., Suchy, M., Laine, J., et al. Ultrathin cellulose films of tunablenanostructured morphology with a hydrophobic component [J]. Biomacromolecules,2009, 10 (5), 1276-1281.
    [122]李露,林章碧,杨潇,等.一种由其离子液体制备的新型纤维素水凝胶[J].科学通报, 2009, 54 (9), 1315.
    [123] Friedrich, A., Taubert, A. Gold microcrystal synthesis via reduction of HAuCl4 bycellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride [J]. Journal ofMaterials Chemistry, 2008, 18 (9), 1008-1014.
    [124] Zhang, H., Wang, Z., Zhang, Z., et al. Regenerated-cellulose/multiwalled–carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionicliquid 1-allyl-3-methylimidazolium chloride [J]. Advanced Materials, 2007, 19 (5),698-704.
    [125] Wu, X., Zhao, F., Varcoe, J. R., et al. Direct electron transfer of glucose oxidaseimmobilized in an ionic liquid reconstituted cellulose-carbon nanotube matrix [J].Bioelectrochemistry, 2009, 77 (1), 64-68.
    [126] Wan, J., Yan, X., Ding, J., et al. A simple method for preparing biocompatiblecomposite of cellulose and carbon nanotubes for the cell sensor [J]. Sensors andActuators B: Chemical, 2010, 146 (1), 221-225.
    [127] Pushparaj, V. L., Shaijumon, M. M., Kumar, A., et al. Flexible energy storage devicesbased on nanocomposite paper [J]. Proceedings of the National Academy of Sciences,2007, 104 (34), 13574-13577.
    [128] Li, L., Meng, L., Zhang, X., et al. The ionic liquid-associated synthesis of acellulose/SWCNT complex and its remarkable biocompatibility [J]. Journal MaterialChemistry, 2009, 19 (22), 3612-3617.
    [129] Turner, M. B., Spear, S. K., Holbrey, J. D., et al. Production of bioactive cellulose filmsreconstituted from ionic liquids [J]. Biomacromolecules, 2004, 5 (4), 1379-1384.
    [130] Turner, M. B., Spear, S. K., Holbrey, J. D., et al. Ionic liquid-reconstituted cellulosecomposites as solid support matrices for biocatalyst immobilization [J].Biomacromolecules, 2005, 6 (5), 2497-2502.
    [131] Wu, R. L., Wang, X. L., Wang, Y. Z., et al. Cellulose/soy proteinisolate blend filmsprepared via room-temperature ionic liquid [J]. Industrial and Engineering ChemistryResearch, 2009, 48 (15), 7132-7136.
    [132] Wu, R. L., Wang, X. L., Li, F., et al. Green composite films prepared from cellulose,starch and lignin in room-temperature ionic liquid [J]. Bioresource Technology, 2009,100 (9), 2569-2574.
    [133] Ma, H., Yoon, K., Rong, L., et al. High-flux thin-film nanofibrous compositeultrafiltration membranes containing cellulose barrier layer [J]. Journal MaterialChemisty, 2010, 20 (22), 4692-4704.
    [134] Kadokawa, J., Murakami, M., Kaneko, Y. A facile preparation of gel materials from asolution of cellulose in ionic liquid [J]. Carbohydrate Research, 2008, 343 (4), 769-772.
    [135] Kadokawa, J., Murakami, M., Takegawa, A., et al. Preparation of cellulose-starchcomposite gel and fibrous material from a mixture of the polysaccharides in ionic liquid[J]. Carbohydrate Polymers, 2009, 75 (1), 180-183.
    [136] Takegawa, A., Murakami, M., Kaneko, Y., et al. Preparation of chitin/cellulosecomposite gels and films with ionic liquids [J]. Carbohydrate Polymers, 2010, 79 (1),85-90.
    [137] Prasad, K., Kaneko, Y., Kadokawa, J. Novel gelling systems ofκ-,ι- andλ-carrageenans and their composite gels with cellulose using ionic liquid [J].Macromolecular Bioscience, 2009, 9 (4), 376-382.
    [138]田素峰,刘建华,李琳,等.用溶剂法制备中药纤维素纤维的方法[P].200910256463, 2010.
    [139]李晓俊,孙玉山,骆强,等.一种甲壳胺与纤维素的皮芯型复合纤维及其制备方法[P]. CN 101768790, 2010.
    [140] Sun, N., Swatloski, R. P., Maxim, M. L., et al. Magnetite-embedded cellulose fibersprepared from ionic liquid [J]. Journal of Materials Chemistry, 2008, 18 (3), 283-290.
    [141]李坤兰,杨海静,马英冲,等.离子液体溶剂中纤维素/纳米二氧化钛共混材料制备方法[P]. CN101724929A, 2010.
    [142] Fernandez-Bolanos, J., Felizon, B., Heredia, A., et al. Characterization of the ligninobtained by alkaline delignification and of the cellulose residue from steam-explodedolive stones [J]. Bioresource Technology, 1999, 68 (2), 121-132.
    [143] Shamsuri, A. A., Abdullah, D. K. Isolation and characterization of lignin from rubberwood in ionic liquid medium [J]. Modern Applied Science, 2010, 4 (11), 19.
    [144]马英冲,李铁南,魏立纲,等.基于离子液体的双液相体系提取木质素的方法[P].101712698, 2010.
    [145] Myllym?ki, V., Aksela, R. Dissolution and delignification of lignocellulosic. materialswith ionic liquid solvent under microwave irradiation [P]. WO Pat, 17001, 2005.
    [146] Tan, S. S. Y., MacFarlane, D. R., Upfal, J., et al. Extraction of lignin fromlignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid [J].Green Chemistry, 2009, 11 (3), 339-345.
    [147] Upfal, J., Macfarlane, D., Forsyth, S., Solvents for use in the treatment oflignin-containing materials [P]. wo/2005/017252, 2005.
    [148] Edye, L. A., Doherty, W. O. S. Fractionation of a lignocellulosic material [P].2010/0196967 A1, 2010.
    [149]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006—2020年) [J].中华人民共和国国务院公报, 2006, (9), 7-37.
    [150] Carlin, R. T., Osteryoung, R. A., Wilkes, J. S., et al. Studies of titanium (IV) chloride ina strongly Lewis acidic molten salt: electrochemistry and titanium NMR and electronicspectroscopy [J]. Inorganic Chemistry, 1990, 29 (16), 3003-3009.
    [151] Chiappe, C., Pieraccini, D. Ionic liquids: solvent properties and organic reactivity [J].Journal of Physical Organic Chemistry, 2005, 18 (4), 275-297.
    [152] Kubisa, P. Application of ionic liquids as solvents for polymerization processes [J].Progress in Polymer Science, 2004, 29 (1), 3-12.
    [153] Sun, X. F., Sun, R. C., Sun, J. X. Acetylation of rice straw with or without catalysts andits characterization as a natural sorbent in oil spill cleanup [J]. Journal Agriculture ofFood and Chemistry, 2002, 50 (22), 6428-6433.
    [154] Rana, A. K., Basak, R. K., Mitra, B. C., et al. Studies of acetylation of jute usingsimplified procedure and its characterization [J]. Journal of Applied Polymer Science,1997, 64 (8), 1517-1523.
    [155] Gupta, S., Madan, R. N., Bansal, M. C. Chemical composition of Pinus caribaeahemicellulose [J]. Tappi Journal (USA), 1987.
    [156] Mansikkam?ki, P., Lahtinen, M., Rissanen, K. Structural changes of cellulosecrystallites induced by mercerisation in different solvent systems; determined by powderX-ray diffraction method [J]. Cellulose, 2005, 12 (3), 233-242.
    [157] Sourty, E., Ryan, D. H., Marchessault, R. H. Ferrite-loaded membranes of microfibrillarbacterial cellulose prepared by in situ precipitation [J]. Chemistry Material, 1998, 10 (7),1755-1757.
    [158] Fringant, C., Desbrieres, J., Rinaudo, M. Physical properties of acetylated starch-basedmaterials: relation with their molecular characteristics [J]. Polymer, 1996, 37 (13),2663-2673.
    [159] Bardet, M., Foray, M. F., Tran, Q. K. High-resolution solid-state CP/MAS NMR studyof archaeological woods [J]. Analytical Chemistry, 2002, 74 (17), 4386-4390.
    [160] Chang, S. T., Chang, H. T. Comparisons of the photostability of esterified wood [J].Polymer Degradation and Stability, 2001, 71 (2), 261-266.
    [161]朱跃钊,卢定强,万红贵,等.木质纤维素预处理技术研究进展[J].生物加工过程, 2004, 2 (4), 11-16.
    [162] Kiran, E., Balkan, H. High-pressure extraction and delignification of red spruce withbinary and ternary mixtures of acetic acid, water, and supercritical carbon dioxide [J].The Journal of Supercritical Fluids, 1994, 7 (2), 75-86.
    [163] Nagle, N. J., Elander, R. T., Newman, M. M., et al. Efficacy of a hot washing processfor pretreated yellow poplar to enhance bioethanol production [J]. BiotechnologyProgress, 2002, 18 (4), 734-738.
    [164] Sun, R. C., Tomkinson, J., Mao, F. C., et al. Physicochemical characterization of ligninsfrom rice straw by hydrogen peroxide treatment [J]. Journal of Applied Polymer Science,2001, 79 (4), 719-732.
    [165] Sun, R. C., Lawther, J. M., Banks, W. B. Fractional and structural characterization ofwheat straw hemicelluloses [J]. Carbohydrate Polymers, 1996, 29 (4), 325-331.
    [166] Gilardi, G., Abis, L., Cass, A. E. G. Carbon-13 CP/MAS solid-state NMR and FT-IRspectroscopy of wood cell wall biodegradation [J]. Enzyme and Microbial Technology,1995, 17 (3), 268-275.
    [167] Love, G. D., Snape, C. E., Jarvis, M. C. Comparison of leaf and stem cell-wallcomponents in Barley straw by solid-state 13C NMR [J]. Phytochemistry, 1998, 49 (5),1191-1194.
    [168] Xu, F., Sun, R. C., Sun, X. F., et al. Analysis and characterization of acetylatedsugarcane bagasse hemicelluloses [J]. International Journal of Polymer Analysis andCharacterization, 2004, 9 (4), 229-244.
    [169] Liu, C., Sun, R., Zhang, A., et al. Preparation of sugarcane bagasse cellulosic phthalateusing an ionic liquid as reaction medium [J]. Carbohydrate Polymers, 2007, 68 (1),17-25.
    [170] Grondal, C. 4-Dimethylamino-pyridine (DMAP) [J]. Synlett, 2003, (10), 1568-1569.
    [171] Connors, K. A., Albert, K. S. Determination of hydroxy compounds by4-dimethylaminopyridine-catalyzed acetylation [J]. Journal of Pharmaceutical Sciences,1973, 62 (5), 845-846.
    [172] Stojanovi?, ?., Jeremi? , K., Jovanovi?, S., et al. A comparison of some methods for thedetermination of the degree of substitution of carboxymethyl starch [J]. Starch/St?rke,2005, 57 (2), 79-83.
    [173] Bhandari, P. N., Singhal, R. S. Studies on the optimisation of preparation of succinatederivatives from corn and amaranth starches [J]. Carbohydrate Polymers, 2002, 47 (3),277-283.
    [174] Hill, C. A. S., Jones, D., Strickland, G., et al. Kinetic and mechanistic aspects of theacetylation of wood with acetic anhydride [J]. Holzforschung, 1998, 52 (6), 623-629.
    [175] Jayakumar, R., Balaji, R., Nanjundan, S. Studies on copolymers of 2-(N-phthalimido)ethyl methacrylate with methyl methacrylate [J]. European Polymer Journal, 2000, 36(8), 1659-1666.
    [176] Sun, R. C., Sun, X. F., Tomkinson, J. Hemicelluloses and their derivatives [A], In [C],2004; 2-23.
    [177] Yoshimura, T., Matsuo, K., Fujioka, R. Novel biodegradable superabsorbent hydrogelsderived from cotton cellulose and succinic anhydride: Synthesis and characterization [J].Journal of Applied Polymer Science, 2006, 99 (6), 3251-3256.
    [178] Gu, X., Yang, C. Q. FT-IR and FT-Raman spectroscopy study of the cyclic anhydrideintermediates for esterification of cellulose: I. Formation of anhydrides without acatalyst [J]. Research on Chemical Intermediates, 1998, 24 (9), 979-996.
    [179] Boonstra, M. G., Pizzi, A., Tekely, P., et al. Chemical modification of norway spruceand scots pine: A 13C NMR CP-MAS study of the reactivity and reactions of polymericwood components with acetic anhydride [J]. Holzforschung, 1996, 50 (3), 215-220.
    [180] Jeon, Y. S., Lowell, A. V., Gross, R. A. Studies of starch esterification: reactions withalkenylsuccinates in aqueous slurry systems [J]. Starch-St?rke, 1999, 51 (2-3), 90-93.
    [181] Rowell, R. M., Esenther, G. R., Nicholas, D. D., et al. Biological resistance of southernpine and aspen flakeboards made from acetylated flakes [J]. Journal of Wood Chemistryand Technology, 1987, 7 (3), 427-440.
    [182] Basso, M. C., Cerrella, E. G., Cukierman, A. L. Lignocellulosic materials as potentialbiosorbents of trace toxic metals from wastewater [J]. Industrial Engineering ChemistryResearch, 2002, 41 (15), 3580-3585.
    [183] Homagai, P. L., Ghimire, K. N., Inoue, K. Adsorption behavior of heavy metals ontochemically modified sugarcane bagasse [J]. Bioresource Technology, 2010, 101 (6),2067-2069.
    [184] Karnitz, O. J., Gurgel, L. V. A., de Melo, J. C. P., et al. Adsorption of heavy metal ionfrom aqueous single metal solution by chemically modified sugarcane bagasse [J].Bioresource Technology, 2007, 98 (6), 1291-1297.
    [185] Rasul, M. G., Rudolph, V., Carsky, M. Physical properties of bagasse [J]. Fuel, 1999,78 (8), 905-910.
    [186] Sun, X. F., Sun, R. C., Sun, J. X. Acetylation of sugarcane bagasse using NBS as acatalyst under mild reaction conditions for the production of oil sorption-active materials[J]. Bioresource Technology, 2004, 95 (3), 343-350.
    [187] Mitsui, K. Acetylation of wood causes photobleaching [J]. Journal of Photochemistryand Photobiology B: Biology, 2010, 101, 210-214.
    [188]万东北,罗序中,黄桂萍,等.甘蔗渣苯甲基化改性研究[J].林业科技, 2005, 30(3), 57-59.
    [189] Liu, C. F., Sun, R. C., Qin, M. H., et al. Chemical modification of ultrasound-pretreatedsugarcane bagasse with maleic anhydride [J]. Industrial Crops and Products, 2007, 26(2), 212-219.
    [190] Abdelwahab, N. A., Helaly, F. M. Chemically modified sugarcane bagasse as animproving agent for the properties of styrene¨Cbutadiene rubber [J]. Journal of AppliedPolymer Science, 2009, 113 (6), 3470-3476.
    [191] Dupont, J., Consorti, C. S., Suarez, P. A. Z., et al. Preparation of 1-butyl-3-methylimidazolium-based room temperature ionic liquids [J]. Organic Syntheses, 2002, 79236-243.
    [192] Boonstra, M. G., Pizzi, A., Tekely, P., et al. Chemical modification of Norway spruceand Scots pine [J]. Holzforschung, 1996, 50 (3), 204-211.
    [193]任俊莉,孙润仓,刘传富.半纤维素及其衍生物作为造纸助剂的应用研究进展[J].生物质化学工程, 2006, 40 (1), 35-39.
    [194] Doner, L. W., Hicks, K. B. Isolation of hemicellulose from corn fiber by alkalinehydrogen peroxide extraction [J]. Cereal Chemistry, 1997, 74 (2), 176-181.
    [195] Guo, Z., Li, M., Willauer, H. D., et al. Evaluation of polymer-based aqueous biphasicsystems as improvement for the hardwood alkaline pulping process [J]. IndustrialEngineering Chemistry Research, 2002, 41 (10), 2535-2542.
    [196] Bengtsson, S., ?man, P. Isolation and chemical characterization of water-solublearabinoxylans in rye grain [J]. Carbohydrate Polymers, 1990, 12 (3), 267-277.
    [197] Sun, X. F., Sun, R. C., Tomkinson, J., et al. Preparation of sugarcane bagassehemicellulosic succinates using NBS as a catalyst [J]. Carbohydrate Polymers, 2003, 53(4), 483-495.
    [198] Aburto, J., Thiebaud, S., Alric, I., et al. Properties of octanoated starch and its blendswith polyethylene [J]. Carbohydrate Polymers, 1997, 34 (1-2), 101-112.
    [199] Imamura, T., Watanabe, T., Kuwahara, M., et al. Ester linkages between lignin andglucuronic acid in lignin-carbohydrate complexes from Fagus crenata [J].Phytochemistry, 1994, 37 (4), 1165-1173.
    [200] Gabrielii, I., Gatenholm, P., Glasser, W. G., et al. Separation, characterization andhydrogel-formation of hemicellulose from aspen wood [J]. Carbohydrate Polymers,2000, 43 (4), 367-374.
    [201] Kato, A., Azuma, J., Koshijima, T. Isolation and identification of a new ferulatedtetrasaccharide from bagasse lignin-carbohydrate complex containing phenolic acid [J].Agricultural Biology and Chemistry, 1987, 51, 1691-1693.
    [202] Sun, J. X., Sun, X. F., Zhao, H., et al. Isolation and characterization of cellulose fromsugarcane bagasse [J]. Polymer Degradation and Stability, 2004, 84 (2), 331-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700