用户名: 密码: 验证码:
量子自旋系统与磁性氧化物的量子磁性理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着凝聚态物理学的迅速发展,对磁性物理学的研究也不断的深化。这主要是因为新近发现的磁性材料系统所具有的许多奇异的性质,如巨磁阻效应、磁光活动和磁致伸缩等。特别是研究发现第一代高温铜氧化物超导体和第二代铁基超导体的磁性质可以用海森堡模型给予理论分析和预测。对磁性材料的研究已成为理论和实验技术应用中的热门课题。这方面国际上近来的研究取得了一些引人注目的突破性成果,所取得的发现和成就不但对磁性物理学本身的发展有重要意义,还将对物理学的其它领域和相关学科产生巨大的影响。因此,从研究物质的磁性及其形成机理出发,探讨提高磁性材料性能的新途径,开拓磁性材料的新应用领域已成为当代磁学的主要研究方向和内容。本文从微观交换相互作用和耦合作用哈密顿模型出发,采用格林函数理论方法,在无规相退耦近似和Callen退耦近似下,研究反铁磁系统、铁磁系统和一些磁性化合物的相变温度、磁化强度、磁化率和色散关系等磁性质。
     本文包括六章。在第一章中,我们对磁性系统和一些磁性氧化物的研究背景、基本概念及研究进展进行了简单的介绍,同时也简单的介绍本文的研究方法-双时格林函数方法。
     在第二章中,研究了自旋量子数为1的三维易轴单粒子各向异性反铁磁体的磁性质。在无规相退耦近似和Callen退耦近似下,我们研究了系统的相变温度、磁化强度和磁化率。在全温度范围内,我们的研究表明:在低温时,其结果与自旋波理论处理的结果一致;对于λ= 1和D = 0,其结果在温度的中间范围和相变温度附近非常接近团簇展开法、比率法和高温展开得到的结果;对于λ= 1和D = 0.5,其结果在温度1.2≤T≤2.75时(对于简单立方晶格)和1.5≤T≤4(对于体心立方晶格)与团簇展开法和比率法得到的结果一致,但是对于伊辛反铁磁模型,其结果与团簇展开法和比率法的结果有较大的偏离。
     在第三章中,研究了任意量子数的二维易轴各向异性的反铁磁体磁性质。在无规相退耦近似和Callen退耦近似下,详细地讨论了五种不同自旋磁性材料K_2NiF_4、Rb_2MnF_4、K_2MnF_4、Rb_2MnCl_4和(CH_3NH_3)_2MnCl_4的相变温度、交挫磁化强度和能隙。与实验和其它理论方法的结果比较,我们计算得到的相变温度、能隙和零温磁化强度等磁性物理量的结果非常好。我们的研究还表明:尽管Callen退耦近似的近似程度要高,但在全温度范围内,无规相退耦近似的结果却能更好的描述这些化合物的磁性质,而且也验证了我们对这些二层结构的磁性材料所选取的各向异性的合理性。
     在第四章中,我们采用格林函数方法,在无规相近似下,从三维各向同性的混合自旋铁磁海森堡模型出发,研究了稀土锰氧化物La_(1-x)Sr_xMnO_3的磁性质。给出了磁化强度、相变温度、小k自旋波色散波普和自旋波硬度的解析表达式,详细地讨论了相图、磁化强度、小k自旋波色散波普和自旋波硬度与温度和掺杂浓度之间的关系。我们的结果与实验和其它理论结果符合的很好,同时表明我们的微观模型和理论方法得到的结果能够很好的描述镧锶锰氧化合物的铁磁性质。
     第五章中研究了横场下的二维混合自旋各向异性海森堡铁磁体的磁性质。通过坐标旋转方法,我们给出了系统相变温度、高温零场磁化率、自旋波速率、自旋波硬度和能隙的解析表达式。且对于hx=0,在低温时,计算得到的[g(0)?g(T)]∝Tα值接近布洛赫定理的3/2幂次规律;对于hx→0的情况,在高温极限下,磁化率χ_s≈Js(s+1)/(3κBT)和χS≈JS(S+1)/(3κBT),其结果满足居里-外斯定理。对于各向同性情况,结果严格遵守Mermin-Wagner定理。通过数值计算,详细的研究了相变温度、再定位温度和再定位磁场与各向异性参数之间的变化系。
     第六章中,基于我们对量子磁性系统研究的现有结果和对准备进行的下阶段工作所做的探索性研究,对今后的工作做一个简要的展望。
In recent years, with the rapid development in condensed matter physics, investigations for magnetic physics are also deepening continually. This is because that magnetic system is of many intriguing physical properties such as colossal magnetoresistance effect, magneto-optical effect and magnetostrictive effect etc. Especially, investigations show that the first generation Cu-oxygen high-temperature superconductor and the second generation Fe-base superconductor of magnetic properties can be theoretical analysis and forecasting by means of Heisenberg model. So investigated of magnetic materials has become the theorists and experimentalists technical application of the popular topics. In recent years, the investigations of development about these aspects are very rapid, and these achievements and findings will definitely stimulate the progress of physics other areas and related scientific. So from studying the origin of the magnetic properties,researching a new way to increase magnetism and finding a new application region for magnetic materials become the main investigated contents of the contemporary magnetism. Following this direction,we try to attack some corresponding theoretical problems.
     In this thesis, starting from the exchange interaction of microscopic model and coupled interaction of Hamiltonian model, double time Green’s function is used to investigate the antiferromagnets and some magnetic oxide compounds of magnetic properties within the random phase decoupling approximation.
     The whole thesis consists of six chapters. The Chapter one aims at a brief overview of the history, basic concept and progress of magnetic system and some magnetic oxide compounds. In addition, the investigation technique (double time Green’s function) of this thesis will also be described.
     In Chapter Two, the ordered and disordered phases of spin-1 Heisenberg and Ising antiferromagnets with easy-axis single-ion anisotropy on a three-dimensional lattice are investigated. By using of the double-time Green's function method within the Tyablikov decoupling for the exchange anisotropy and Callen's approximation for the single-ion anisotropy, the Néel temperature, magnetization and susceptibility are investigated. It shows that our results agree well with ones from spin wave theory at low temperature, and compare reasonably well with those obtained by the linked-cluster series expansion method, by the ratio method and using the high temperature series expansion approach at intermediate temperature and in the vicinity of the critical temperature atλ= 1and D=0. Forλ= 1 and D=0.5, our results agree with the linked-cluster series expansion method ones and ratio method ones in the ranges1.2≤T≤2.75(sc) and1.5≤T≤4 (bcc), respectively. But for D=0 and D=0.5, our results deviate from those obtained by the linked-cluster series expansion method and the ratio method.
     In Chapter Three, the magnetic properties of two-dimensional quantum Heisenberg antiferromagnet on the square lattice with easy axis exchange anisotropy are investigated by means of Green’s function approach within random phase and Callen’s approximations. The Néel temperature TN , energy gapω0and staggered magnetization m of magnetic materials (CH_ 3 NH_3 )_2 MnCl_4, Rb_2 MnCl_4, Rb_2 MnF_4 , K_ 2 MnF_4 and K_ 2 NiF_4 are discussed in detailed. Comparing our results with other theoretical and experimental works, our investigations exhibit good results for the Néel temperature, energy gap and staggered magnetization. Meanwhile, our investigations show that result being in good agreement with experiment is obtained within RPA over the entire range of temperature, and it is stated that CA, although more complex, gives no further improvement to the RPA results. We conclude that the physical properties of the magnetic compounds are mainly determined by easy-axis anisotropy in the intralay exchange interaction and can be well modeled and described by the two-dimensional quantum Heisenberg antiferromagnet with this anisotropy.
     In Chapter Four, it applies the Heisenberg mixed-spin model to investigate the magnetic properties of the manganese oxide compound La_(1-x)Sr_xMnO_3by using the technique of double-time Green’s function. Within the RPA decoupling for higher order Green’s functions, the analytic expressions of the magnetization, the transition temperature, the spin-wave dispersion relation and spin-wave stiffness are obtained. The phase diagram, magnetization, spin-wave dispersion and spin-wave stiffness of La_(1-x)Sr_xMnO_3as a function of the temperature, magnetic field and doping concentration are discussed in detailed. Comparing our results with other theoretical and experimental works, our results are in agreement with other theoretical and experimental results. Meanwhile, it shows that our microscopic model and method can well describe the magnetic properties of the manganese oxide compound La_(1-x)Sr_xMnO_3.
     In Chapter Five, the properties of two-dimensional square lattice mixed-spin anisotropic Heisenberg ferromagnet with a transverse magnetic field are studied by means of the double-time Green’s function. The analytic expressions of the critical temperature, the high-temperature zero-field susceptibilities, the spin-wave velocity, spin-wave stiffness and spin-wave gap are obtained. For zero field, the relation[ g (0) ? g (T )]∝Tαis obtained for various mixed-spin. Ourαvalue is close to the well-known Bloch exponent at low temperature. For h x→0, in the high temperature limit,χs≈Js ( s + 1) /(3κBT) andχS≈JS ( S + 1) /(3κBT)are in accordance with the Curie-Weiss law. For hx /J and D = 0, our results obey the Mermin-Wagner theorem. The phase diagrams in which the critical temperature, the reorientation temperature and the reorientation magnetic field are shown as a function of single-ion anisotropic parameter are discussed in detailed.
     In Chapter Six, based on our existing studies and further explore research in quantum magnetic system, the prospect of our future works is given in brief.
引文
[1.1]姜寿亭,李卫,凝聚态磁性物理(科学出版社,北京, 2003).
    [1.2] Den Broeder F. J. A., Kuiper D., Van de Mosselaer A. A. and Hoving W., "Perpendicular Magnetic Anisotropy of Co-Au Multilayers Induced by Interface Sharpening", Phys. Rev. Lett. 60, 2769 (1988).
    [1.3] Baibieh M. N., Broto J. M., Fert A., Nguyen Van Dau F., Petroff E., Creuzet G., Friederi- -ch A. and Chazelas J., " Giant Magnetoresistance of (001) Fe/(001) Cr Magnetic Superl- -attices", Phys. Rev. Lett. 61, 2472 (1988).
    [1.4] Dieny B., Spedous V. S., Parkin S. S. P., Gumey B. A., Wilhoit D. R. and Mauri D., "Giant magnetoresistive in soft ferromagnetic multilayers", Phys. Rev. B, 43, 1297 (1991).
    [1.5] Chaiken A., Tritt T. M., Gillespie D. J., Krebs J. J., Lubitz P., Harford M. Z. and Prinz G. A.,"Temperature dependence of magnetoresistance in Fe‐Cr‐Fe sandwiches", J. Appl. Phys. 69, 4798 (1991).
    [1.6] Parkin S. S. P., Moore N. and Roche K. P., "Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr", Phys. Rev. Lett. 64, 2304 (1990).
    [1.7] Pratt W. P., Lee Jr. S. F., Slaughter J. M., Loloee R., Schroeder P. A. and Bass J., "Perpendicular giant magnetoresistances of Ag/Co multilayer", Phys. Rev. Lett. 66, 3060 (1991).
    [1.8] Heisenberg W., "Zur Theorie des Ferromagnetismus", Z. Phys. 49, 619 (1928).
    [1.9] Kramers H. A., "L'interaction Entre les Atomes Magnétogènes dans un Cristal Paramag- -nétique", Physica 1, 182 (1934).
    [1.10] Anderson P. W., "Localized Magnetic States in Metals", Phys. Rev. 124, 41-53 (1961).
    [1.11] Ruderman M. A. and Kittel C., "Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons", Phys. Rev. 96, 99 (1954).
    [1.12] Kasuya T., "A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model", Prog. Theor. Phys. Jpn. 16, 45 (1956).
    [1.13] Yosida K., "Anomalous Electrical Resistivity and Magnetoresistance Due to an s-d Interaction in Cu-Mn Alloys", Phys. Rev. 107, 396 (1957).
    [1.14] Bloch F., "Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika", Z. Physik. 57, 545 (1929).
    [1.15] Wigner E., "On the Interaction of Electrons in Metals", Phys. Rev. 46, 1002 (1934); Wigner E. P., "Effects of the Electron Interaction on the Energy Levels of Electrons in Metals", Trans. Faraday. Soc. 34, 678 (1938).
    [1.16] Stoner E. C., "Collective Electron Specific Heat and Spin Paramagnetism in Metals", Proc. Roy. Soc. A154, 656-678 (1936); "Collective Electron Ferromagnetism", Proc. Roy. Soc. A165, 372-414 (1938); "Collective Electron Ferromagnetism II: Energy and Specific Heat", Proc. Roy. Soc. A 169, 339-371 (1939)
    [1.17] Slater J. C., "The Ferromagnetism of Nickel", Phys. Rev. 49, 537 (1936).
    [1.18] Mott N. F., "A discussion of the transition metals on the basis of quantum mechanics", Proc. Phys. Soc. 47, 571 (1935).
    [1.19] Conyers H. and Charles K., "On the Theory of Spin Waves in Ferromagnetic Media", Phys. Rev. 81, 869 (1951).
    [1.20] Conyers H., "Energy of a Bloch Wall on the Band Picture. II. Perturbation Approach", Phys. Rev. 87, 60 (1952).
    [1.21] Toru Moriya and Arisato Kawabata, "Effect of Spin Fluctuations on Itinerant Electron Ferromagnetism", J. Phys. Soc. Jpn. 34, 639 (1973); "Effect of Spin Fluctuations on Itinerant Electron Ferromagnetism. II", J. Phys. Soc. Jpn. 35, 669 (1973).
    [1.22] Toru Moriya and Yoshinori Takahashi, "Spin Fluctuation Theory of Itinerant Electron Ferromagnetism -A Unified Picture", J. Phys. Sco. Jpn. 45, 397 (1978).
    [1.23] de Jongh L. J., Miedema A. R., "experiments on simple magnetic model systems",dvan. Phys. 23, 1 (1974).
    [1.24]戴道生,熊光成,吴思诚," RE1 -x Tx MnO 3氧化物的结构,电磁特性和巨磁电阻", 物理学进展, 17, 201(1997).
    [1.25]刘俊明,王克锋,"稀土掺杂锰氧化物庞磁电阻效应",物理学进展, 25, 82(2005).
    [1.26] Jahn H. A., teller E., "Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy", Proc. Roy. Soc. A161, 220-224 (1937).
    [1.27] Janker G. H., Van Santen J. H., "Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure", Physica 16, 337 (1950).
    [1.28] Zener C., "Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure", Phys. Rev. 82, 403 (1951).
    [1.29] Anderson P. W. and Hasegawa H., "Considerations on Double Exchange", Phys. Rev. 100, 675 (1955).
    [1.30] de Gennes P. G., "Effects of Double Exchange in Magnetic Crystals", Phys. Rev. 118, 141 (1960)
    [1.31]冯端等著,超导电性和磁性,金属物理学,第四卷(科学出版社,北京, 2000).
    [1.32] von Helmolt R., Wecker J., Holzapfel B., Schultz L. and Samwer K., "Giant negative magnetoresistance in perovskitelike La 2/3 Ba 1/3 MnO xferromagnetic films", Phys. Rev. Lett. 71, 2331 (1993).
    [1.33] Jin S., Tiefel T. H., Mc Cormack M., Fastnacht R. A., Ramesh R., Chen L. H., "Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films", Science, 264, 413 (1994).
    [1.34] Wollan E. O. and Koehler W. C., "Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1 ? x )La, xCa]MnO3", Phys. Rev. 100, 545 (1955).
    [1.35] Xiong G. C., Li Q., Ju H. L., Greene R. L. and Venkatesanb T., "Influence ofpreparation on resistivity behavior of epitaxial Nb 0.7S r0 .3 MnO 3-δand La 0.67 Ba 0.33 MnO 3-δthin films", Appl. Phys. Lett. 44, 4467 (1991).
    [1.36] Guo J. Q., Takeda H. and Kazama N. S., "Deposition conditions of magnetoresistance in La 0.67 Ca 0.33 MnO 3-δthin film", J. Phys. Appl. 81, 7445 (1997).
    [1.37] Radaelli P. G., Cox D. E., Marezio M. and Cheong S. W., "Charge, orbital, and magnetic ordering in La 0.5 Ca 0.5 MnO 3", Phys. Rev. B, 55, 3015 (1997).
    [1.38] Uehara M., Mori S., Chen C. H., Cheong S. W., "Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites", Nature, 399, 560 (1999).
    [1.39] F?th M., Freisem S., Menovsky A. A., Tomioka Y., Aarts J. and Mydosh J. A., "Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites", Science, 285, 1540 (1999).
    [1.40] Renner C., Aeppli G., Kim B. G., Yeong A. S., Cheong S. W., "Atomic Scale images of charge ordering in a mixed-valence manganites", Nature, 416, 518 (2002).
    [1.41] Raveau B., Maignan A., Martin C., "Insulator-Metal Transition Induced by Cr and Co Doping in Pr0 .5 Ca 0.5 MnO 3", Solid State Commum. 101, 277 (1997).
    [1.42] Zhao Y. G., Li J. J., Shreekala R., Drew H. D., Chen C. L., Cao W. L., Lee C. H., Rajeswari M., Ogale S. B., Ramesh R., Baskaran G. and Venkatesan T., "Ultrafast Laser Induced Conductive and Resistive Transients in La0.7Ca0.3MnO3: Charge Transfer and Relaxation Dynamics", Phys. Rev. Lett. 81, 1310 (1998).
    [1.43] Booth C. H., Bridges F., Kwei G. H., Lawrence J. M., Cornelius A. L. and Neumeier J. J., "Direct Relationship between Magnetism and MnO6 Distortions in La 1-x Ca x MnO 3", Phys. Rev. Lett. 80, 853 (1998).
    [1.44] Dessau D. S., Saitoh T., Park C. H., Shen Z. X., Villella P., Hamada N., Moritomo Y.and Tokura Y., " k-Dependent Electronic Structure, a Large“Ghost”Fermi Surface, and a Pseudogap in a Layered Magnetoresistive Oxide", Phys. Rev. Lett. 81, 192 (1998).
    [1.45] Millis A. J., Littlewood P. B. and Shraiman B. I., "Double Exchange Alone Does Not Explain the Resistivity of La 1-x Srx MnO 3", Phys. Rev. Lett. 74, 5144 (1995).
    [1.46] Millis A. J., Shraiman B. I. and Mueller R., "Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La 1-x Srx MnO 3", Phys. Rev. Lett. 77, 175 (1996).
    [1.47] Hotta T., Malvezzi A., Dagotto E., "Charge-orbital ordering and phase separation in the two-orbital model for manganites: Roles of Jahn-Teller phononic and Coulombic interactions", Phys. Rev. B, 62, 9432 (2000).
    [1.48] Calderón M. J., Vergés J. A. and Brey L., "Conductance as a function of temperature in the double-exchange model ", Phys. Rev. B, 59, 4170 (1999).
    [1.49] Dagotto E., Hotta T. and Moreo A., "Colossal magnetoresistant materials: the key role of phase separation", Phys. Rep. 1, 344 (2001).
    [1.50] Roder H., Jun Zang and Bishop A. R., "Lattice Effects in the Colossal Magnetoresistance Manganites", Phys. Rev. Lett. 72, 1356 (1996).
    [1.51] Millis A. J., Mueller R. and Shraiman B. I., "Fermi-liquid-to-polaron crossover: I. General results", Phys. Rev. B, 54, 5389 (1996).
    [1.52] Millis A. J., Mueller R. and Shraiman B. I., "Fermi-liquid-to-polaron crossover. II. Double exchange and the physics of colossal magnetoresistance", Phys. Rev. B, 54, 5405 (1996).
    [1.53] Millis A. J., Comment on "Antiferromagnetic Short Range Order in a Two Dimensional Manganite Exhibiting Giant Magnetoresistance", Phys. Rev. Lett. 80, 4358 (1998).
    [1.54] Millis A. J., "Lattice effects in magnetoresistive manganese perovskites", Nature, 392, 147 (1998).
    [1.55] Yunoki S., Hu J., Malvezzi A., Moreo A., Furukawa N. and Dagotto E., "Phase Separation in Electronic Models for Manganites", Phys. Rev. Lett. 80, 845 (1998).
    [1.56] Nunez Regueiro J. E. and Kadin A. M., "Phenomenological model for giant magnetoresistance in lanthanum manganite", Appl. Phys. Lett. 68, 2747 (1996).
    [1.57] Coey J. M. D., Viret M. and Ranno L., Ounadjela K., "Electron Localization in Mixed-Valence Manganites", Phys. Rev. Lett. 75, 3910 (1995).
    [1.58] Viret M., Ranno L. and Coey J. M. D., "Magnetic localization in mixed valence manganites", Phys. Rev. B, 55, 8067 (1997).
    [1.59] Shu fang Zhang, "Electrical Conductivity in Ferromagnetic Perovskite Structures", J. Appl. Phys. 79, 4542 (1996).
    [1.60]Mott N. F., "Conduction in non-crystalline materials", Oxford University Press. New York, (1993).
    [1.61] Sheng L., Xing D. Y., Sheng D. N. and Ting C. S., "Theory of Colossal Magneto- -resistance in R 1-x A x MnO 3", Phys. Rev. Lett. 79, 1710 (1997).
    [1.62] Slater J. C. and Koster G. F., "Theory of Colossal Magnetoresistance in R 1-x A x MnO 3", Phys. Rev. Lett. 79, 1710 (1997).
    [1.63] Kanamori J., "Crystal Distortion in Magnetic Compounds", J. Appl. Phys. 31, 14S (1960).
    [1.64] Wang Y. L., Yang D. and Khajehpour M. R. H., "Phase Transition of an Anisotropic Ferromagnet", J. Appl. Phys. 42, 1418 (1971).
    [1.65] Junger I. J., Ihle D. and Richter J., "Thermodynamics of S=1 ferromagnetic Heisenberg chains with uniaxial single-ion anisotropy", Phys. Rev. B, 72, 064454 (2005).
    [1.66] Takahashi M., "Excitation spectra of S=1 antiferromagnetic chains", Phys. Rev. B, 50, 3045 (1994).
    [1.67] Devlin J. F., "Effect of Crystal-Field Anisotropy on Magnetically Ordered Systems", Phys. Rev. B, 4, 136 (1971).
    [1.68] Oitmaa J. and Hamer C. J., "Ground-state properties and one-particle spectra for a spin-1 Heisenberg antiferromagnet from series expansions", Phys. Rev. B, 77, 224435(2008), and references therein.
    [1.69] Rojas O., de Souza S. M., Silva E. V. and Thomaz M. T., "High temperature series expansion of the Helmholtz free energy of the quantum spin-S XYZ chain", Phys. Rev. B, 72, 172414 (2005), and references therein.
    [1.70] Mahan G. D., Many Particle Physics (Plenum Press, New York, 1981).
    [1.71]王怀玉,凝聚态物理的格林函数理论(科学出版社,北京, 2008).
    [1.72] Tyablikov S. V., Method in Quantum Theory of Magnetism (Plenum Press, New York, 1967).
    [1.73] Callen H. B., "Green Function Theory of Ferromagnetism", Phys. Rev. 130, 890 (1963).
    [1.74] Nagata K. and Tomono Y., "Green's-Function Formalism of the One Dimensional Heisenberg Spin System", Prog. Theor. Phys. 47, 807(1972).
    [1.75]戴道生,钱昆明,铁磁学上册(科学出版社,北京, 1998).
    [1.76] Ai Yuan Hu, Qin Wang, "The magnetic properties of three-dimensional spin-1 easy-axis single-ion anisotropic antiferromagnets", Solid State Commum. 150, 568-571 (2010).
    [1.77] Ai Yuan Hu, Qin Wang, "The magnetic order of two-dimensional anisotropic antiferromagnets", Solid State Commum. 151, 102-106 (2011).
    [1.78] Ai Yuan Hu, Yuan Chen and Qin Wang, "The three-dimensional mixed-spin Heisenberg model applied to the magnetic properties of La 1-x Srx MnO 3 in the random phase approximation", J. Appl. Phys. 108, 093926 (2010).
    [1.79] Ai Yuan Hu, Yuan Chen and Qin Wang, "The magnetic properties of the two dimensional square lattice mixed-spin anisotropic Heisenberg ferromagnet with a transverse magnetic field", Phys. Lett. A, 375, 927 (2011).
    [2.1] Ury? N., "Phase transition in antiferromagnets with anisotropic exchange interactions and uniaxial anisotropy", Phase Transition, 28, 133 (1990).
    [2.2] Steiner M., Kakurai K., Kiems J. K. and Petitgrand D., "Inelastic neutron scattering studies on 1D near Heisenberg antiferromagnets: A test of the Haldane conjecture", J. Appl. Phys. 61, 3953 (1987).
    [2.3] Renard J. P., Verdaguer M., Regnnault L. P., Erkelens W. A. C. and Rossat Mignod J., "Quantum energy gap in two quasi-one-dimensional S=1 Heisenberg antiferromagnets", J. Appl. Phys. 63, 3538 (1987).
    [2.4] Dorner B., Visser D., Steigenberger U., Kakurai K. and M Steiner. M., "Magnetic excitations in the quasi one-dimensional antiferromagnetic singlet groundstate system", Z. Phys. B: Condens. Matter, 72, 487 (1988).
    [2.5] Orendac M., Orendacova A., Cernak J., Feher A., Signore P. J. C., Meisel M. W., Merah S. and Verdaguer M., "Thermodynamic and magnetic properties of the S=1 Heisenberg chain Ni(C 2 H 8 N 2 ) 2 Ni(CN) 4: Experiments and theory", Phys. Rev. B, 52, 3435 (1995).
    [2.6] Wang Y. L., Yang D. and Khajehpour M. R. H., "Phase Transition of an Anisotropic Ferromagnet", J. Appl. Phys. 42, 1418 (1971).
    [2.7] Junger I. J., Ihle D. and Richter J., "Thermodynamics of S=1 ferromagnetic Heisenberg chains with uniaxial single-ion anisotropy", Phys. Rev. B, 72, 064454 (2005).
    [2.8] Takahashi M., "Excitation spectra of S=1 antiferromagnetic chains", Phys. Rev. B, 50, 3045 (1994).
    [2.9] Devlin J. F., "Effect of Crystal-Field Anisotropy on Magnetically Ordered Systems", Phys. Rev. B, 4, 136 (1971).
    [2.10] Oitmaa J. and Hamer C. J., "Ground-state properties and one-particle spectra for a spin-1 Heisenberg antiferromagnet from series expansions", Phys. Rev. B, 77, 224435(2008), and references therein.
    [2.11] Rojas O., de Souza S. M., Silva E. V. and Thomaz M. T., "High temperature series expansion of the Helmholtz free energy of the quantum spin-S XYZ chain", Phys. Rev. B, 72, 172414 (2005), and references therein.
    [2.12] de Jongh L. J., Magnetic Properties of Layered Transition Metal Compounds (Kluwer Academic Press, Dordrecht, 1990).
    [2.13] KoK Kwei Pan, "Magnetic properties of spin-1 Heisenberg antiferromagnet with easy-axis single-ion anisotropy in three dimensions: Linked-cluster series expansion approach", Phys. Rev. B, 79, 134414 (2009).
    [2.14] Gaunt D. S. and Guttman A. J., In Phase Transitions and Critical Phenomena (Academic Press, New York, 1974).
    [2.15] Han Ting Wang and Yu Peng Wang, "Long-range order in gapped magnetic systems induced by Bose-Einstein condensation", Phys. Rev. B, 71, 104429 (2005).
    [2.16] Wong W. H., Lo C. F. and Wang Y. L., "Coupled-cluster approximation for a spin-1 Heisenberg antiferromagnet with anisotropic exchange interaction and easy-plane single-ion anisotropy", Phys. Rev. B, 50, 6126 (1994).
    [2.17] Anderson P. W., "An Approximate Quantum Theory of the Antiferromagnetic Ground State", Phys. Rev. 86, 694 (1952).
    [2.18] Kubo R., "The Spin-Wave Theory of Antiferromagnetics", Phys. Rev. 87 568 (1952); Oguchi T., "Theory of Spin-Wave Interactions in Ferro- and Antiferromagnetism", Phys. Rev. B, 117, 117 (1960).
    [2.19] Oitmaa J., Hamer C. J. and Wei Hong Zheng, "Ground-state properties and one-particle spectra for a spin-1 Heisenberg antiferromagnet from series expansions", Phys. Rev. B, 77, 224435 (2008).
    [2.20] KoK Kwei Pan, "Magnetic phase transitions in Heisenberg antiferromagnetic films with cubic lattices", Phys. Rev. B, 71, 134524 (2005).
    [2.21] Huai Yu Wang, Zhen Hong Dai, Fr?brich P., Jensen P. J. and Kuntz P. J., "Many body Green's function theory of ferromagnetic Heisenberg systems with single-ion anisotropies in more than one direction", Phys. Rev. B, 70, 134424 (2004).
    [2.22] Huai Yu Wang and Kun Xun, "Magnetization of ferromagnetic polycrystals subject to an external magnetic field", Phys. Rev. B, 74, 214425 (2006).
    [2.23] Huai Yu Wang, Ke Qiu Chen and En Ge Wang, "Abnormal magnetism and phase transformation of a Heisenberg-like model with internal spin fluctuation", Phys. Rev. B, 66, 092405 (2002); Huai Yu Wang, Shan Ying Wang, Chong Yu Wang, Wen Hui Duan and Ke-Qiu Chen, "A comprehensive study of Heisenberg-like systems with internal spin fluctuation", J. Phys.: Condens. Matter, 15, 2783 (2003).
    [2.24] Yuan Chen, Zhao Ming Wang and Ai Yuan Hu, "Green's function method applied to the crossover of the one-dimensional quantum anisotropic Heisenberg ferromagnet", Phys. Rev. B, 72, 172406 (2005).
    [2.25] Anderson F. B. and Callen H. B., "Statistical Mechanics and Field-Induced Phase Transitions of the Heisenberg Antiferromagnet", Phys. Rev. 136, A1068 (1964).
    [2.26] Tyablikov S. V., Method in Quantum Theory of Magnetism (Plenum Press, New York, 1967).
    [2.27] Lines M. E., "Sensitivity of Curie Temperature to Crystal-Field Anisotropy. I. Theory", Phys. Rev. 156, 534 (1967).
    [2.28] Fr?brich P. and Kuntz P. J., "Many-body Green's function theory of Heisenberg films", Phys. Rep. 432, 223 (2006).
    [2.29] Callen H. B., "Green Function Theory of Ferromagnetism", Phys. Rev. 130, 890 (1964).
    [2.30] Fr?brich P., Jensen P. J. and Kuntz P. J., "Field-induced magnetic reorientation and effective anisotropy of a ferromagnetic monolayer within spin wave theory", Eur. Phys. J. B, 13, 477 (2000); Fr?brich P., Jensen P. J., Kuntz P. J. and Ecker A., "Many-bodyGreen's function theory for the magnetic reorientation of thin ferromagnetic films", Eur. Phys. J. B, 18, 579 (2000).
    [2.31] Yablonskiy D. A., "Tyablikov approximation in the theory of low-dimensional quantum Heisenberg ferromagnets and antiferromagnets", Phys. Rev. B, 44, 4467 (1991).
    [2.32] Smart J. S., Effective Field Theories of Magnetism (Saunders Press, Philadelphia, 1966).
    [2.33] Rado?evi? S., Pavkov Hrvojevi? M., Panti? M., Rutonjski M., Kapor D. and ?krinjar M., "Magnetic properties of quasi two-dimensional antiferromagnet Rb2MnCl4 with XXZ interaction anisotropy", Eur. Phys. J. B, 68, 511 (2009).
    [3.1] Birgeneau R. J., Guggenheim H. J. and Shirane G., "Neutron Scattering Investigation of Phase Transitions and Magnetic Correlations in the Two-Dimensional Antiferromagnets K 2 NiF4 , Rb 2 MnF4 , Rb 2 FeF4 ", Phys. Rev. B, 1, 2211 (1970).
    [3.2] Alessandro Cuccoli, Tommaso Roscilde, Valerio T. and Paola V., "Finite-temperature ordering in two-dimensional magnets", Phys. Rev. B, 62, 3771 (2000).
    [3.3] van Luijk J. A., Arts A. F. M. and de Wijn H. W., "Local magnetizations in impure two-dimensional antiferromagnets", Phys. Rev. B, 21, 1963 (1980).
    [3.4] Rado?evi? S., Pavkov-Hrvojevi? M., Panti? M., Rutonjski M., Kapor D. and ?krinjar M., "Magnetic properties of quasi two-dimensional antiferromagnet Rb2MnCl4 with XXZ interaction anisotropy", Eur. Phys. J. B, 68, 511 (2009).
    [3.5] Strobel K., Frank J., Posshirt K. and Geick R., "MAGNETIC RESONANCES IN (CH 3 NH 3 ) 2 MnCl 4", International Journal of Infrared and Millimeter Waves, 1, 295 (1980).
    [3.6] van Luijk J. A. and de Wijn H. W., "Temperature dependence of the nuclear spin-magnon relaxation time in the two-dimensional antiferromagnets K 2 MnF4 and K 2 NiF4 ", Phys. Rev. B, 20, 3712 (1979).
    [3.7] de Wijn H. W., Walker L. R., Geschwind S. and Guggenheim H. J., "Antiferromagnetic Resonance in the Quadratic-Layer Antiferromagnets K 2 MnF4 and Rb 2 MnF4 ", Phys. Rev. B, 8, 299 (1973).
    [3.8] Schr?der B., Wagner V., Lehner N., Kesharwani K. M., Geick R., "Spin Wave Analysis of the Two-Dimensional Heisenberg Antiferromagnets Rb 2 MnCl 4 and (CH 3 NH 3 ) 2 MnCl 4", physica status solidi (b), 97, 501 (1980).
    [3.9] Pich C., Schwabl F., "Néel temperature for quasi-two-dimensional dipolar antiferromag- -nets", Phys. Rev. B, 49, 413 (1994).
    [3.10] Pich C., Schwabl F., "Order of two-dimensional isotropic dipolar antiferromagnets", Phys. Rev. B, 47, 7957 (1993).
    [3.11] Cowley R. A. and Shirane G., Birgeneau R. J., Guggenheim H. J., "Spin fluctuations in random magneticnonmagnetic two dimensional antiferromagnets. I. Dynamics", Phys. Rev. B, 15, 4292 (1977).
    [3.12] Mermin N. D. and Wagner H., "Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models", Phys. Rev. Lett. 17, 1133 (1966).
    [3.13] Lee H. K., Landau D. P. and Schulthess T. C., "Monte Carlo simulations of phase transitions in Rb 2 MnF4 ", J. Phys. Appl. 93, 7643 (1994).
    [3.14] Chenggang Zhou, Landau D. P. and Schulthess T. C., "Monte Carlo simulations of Rb 2 MnF4 : A classical Heisenberg antiferromagnet in two dimensions with dipolar interaction", Phys. Rev. B, 76, 024433 (2007).
    [3.15] Birgeneau R. J., Guggenheim H. J. and Shirane G., "Neutron Scattering Investigation of Phase Transitions and Magnetic Correlations in the Two-Dimensional Antiferromagnets K 2 NiF4 , Rb 2 MnF4 , Rb 2 FeF4 ", Phys. Rev. B, 1, 2211 (1970).
    [3.16] Pich C., Schwabl F., "Magnetic order of two-dimensional isotropic dipolar antiferro- -magnets", J. Magn. Magn. Matter, 140-144, 1709 (1995).
    [3.17] Pich C., Schwabl F., "Spin-wave dynamics of two-dimensional isotropic dipolar honey- -comb antiferromagnets", J. Magn. Magn. Matter, 148, 30 (1995).
    [3.18] Lee Y. S., Greven M., Wells B. O., Birgeneau R. J. and Shirane G., "Spin Correlations in the Two-Dimensional Spin-5/2 Heisenberg Antiferromagnet Rb 2 MnF4 ", Eur. Phys. J. B, 5, 15 (1998).
    [3.19]de Wijnl H. W., Walker L. R., Geschwind S. and Guggenheim H. J., "Antiferromagnetic Resonance in the Quadratic-Layer Antiferromagnets K 2 MnF4 and Rb 2 MnF4 ", Phys. Rev. B, 8, 299 (1973).
    [3.20] Manojlovi? M., Pavkov M., ?krinjar M., Panti? M., Stojanovi? M., "Spin-wave dispersion and transition temperature in the cuprate antiferromagnet ", Phys. Rev. B, 68, 014435 (2003).
    [3.21] Milica S. Rutonjski, Slobodan M. Rado?evi?, Mario G?krinjar, Milica V. Pavkov Hrvojeci?, Darko V. K., and Milan R. Panti?, "Temperature dependence of sublattice magnetization in quasi-two-dimensional S=1/2 cuprate antiferromagnets: Green's function approach", Phys. Rev. B, 76, 172506 (2007).
    [3.22] Tyablikov S. V., Method in Quantum Theory of Magnetism (Plenum, New York, 1967).
    [3.23] Fr?brich P. and Kuntz P. J., "Many-body Green's function theory of Heisenberg films", Phys. Rep. 432, 223 (2006).
    [3.24] Callen H. B., "Green Function Theory of Ferromagnetism", Phys. Rev 130 890 (1963).
    [3.25] Oguchi T. and Honma A., "Theory of Ferro- and Antiferromagnetic Resonance Absorption", J. Phys. Soc. Jpn. 16, 79 (1961).
    [3.26] Nagata K. and Tomono Y., "Antiferromagnetic Resonance Frequency in Quadratic Layer Antiferromagnets", Prog. Theor. Phys. 47, 807 (1972).
    [4.1] Kusters R. M., Singleton J., Keen D. A., Mcgreevy R. and Hayes W., "Magnetoresistan- -ce measurements on the magnetic semiconductor Nd 0.5 Pb 0.5 MnO 3", Physica B, 155, 362 (1989).
    [4.2] Von Helmholt R., Wecker J., Holzapfel B., Schultz L. and Samwer K., "Giant negative magnetoresistance in perovskitelike La 2/3 Ba 1/3 MnO xferromagnetic films", Phys. Rev. Lett. 71, 2331 (1993).
    [4.3] Chahara K. I., Ohno T., Kasai M. and Kozono Y., "Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure", Appl. Phys. Lett. 63, 1990 (1993).
    [4.4] Jin S., Tiefel T. H., Mc Cormack M., Fastnacht R. A., Ramesh R. and Chen L. H., "Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films", Science, 264, 413 (1994).
    [4.5] Mc Cormack M., Jin S., Tiefel T. H., Fleming R. M., Phillips J. M. and Ramesh R., "Microstructure of epitaxial oxide thin film heterostructures on silicon by pulsed laser deposition", Appl. Phys. Lett. 64, 3407 (1994).
    [4.6] Ju H. L., Kwon C., Li Q., Greene R. L. and Venkatesan T., "Giant magnetoresistance in La 1-x Srx MnO zfilms near room temperature", Appl. Phys. Lett. 65, 2109 (1994).
    [4.7] Chen J. C., Law S. C., Tung L. C., Chi C. C. and Weiyuan G., "Correlation of anomalous Hall resistivity, magnetoresistance, and magnetization in thin films of La 2/3S r1 /3 MnO 3", Phys. Rev. B, 60, 12143 (1999).
    [4.8] Zhou S. M., Zhao S. Y., Guo Y. Q., Zhao J. Y. and Shi L., "Griffiths phase and exchange bias in La 1-x Ca x MnO 3 (x = 0.50, 0.67, and 0.75) nanoparticles", J. Appl. Phys. 107, 033906 (2010).
    [4.9] Jiandi Zhang., Ye F., Hao Sha, Peng cheng Dai, Fernandez Baca J. A. and Plummer E. W., "Magnons in ferromagnetic metallic manganites", J. Phys.: Condens. Matter, 19, 315204 (2007).
    [4.10] Herring C., in Magnetism, edited by Rado J. and Suhl H. (Academic, New York, 1965).
    [4.11] Urushibara A., Moritomo Y., Arima T., Asamitsu A., Kido G. and Tokura Y., "Insulator metal transition and giant magnetoresistance in La 1-x Srx MnO 3", Phys. Rev. B, 51, 14103 (1995).
    [4.12] Vasilliu Doloc L. and Lynn J. W., Moudden A. H., de Leon Guevara A. M. and Revcolevschi A., "Structure and spin dynamics of La 0.85 Sr0 .15 MnO 3", Phys. Rev. B, 58, 14913 (1998).
    [4.13] Zener C., "Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure", Phys. Rev. 82, 403 (1951).
    [4.14] Tokura Y., Urushibara A., Moritomo Y., Arima T., Asamitsu A., Kido G. and Furukawa N., "Giant Magnetotransport Phenomena in Filling-Controlled Kondo Lattice System: La 1-x Srx MnO 3", J. Phys. Soc. Jpn. 63, 3931 (1994).
    [4.15] Millis A. J., Littlewood P. B. and Shraiman B. I., "Double Exchange Alone Does Not Explain the Resistivity of La 1-x Srx MnO 3", Phys. Rev. Lett. 74, 5144 (1995).
    [4.16] Millis A. J., "Orbital ordering and superexchange in manganite oxides", Phys. Rev. B, 55, 6405 (1997).
    [4.17] Anderson P. W. and Hasegawa H., "Considerations on Double Exchange", Phys. Rev. 100, 675 (1955).
    [4.18] de Gennes P. G., "Effects of Double Exchange in Magnetic Crystals", Phys. Rev. 118, 141 (1960).
    [4.19] Kubo K. and Ohata N., "A Quantum Theory of Double Exchange. I", J. Phys. Sco. Jpn. 33, 21 (1972).
    [4.20] Qing'an Li, Xiao Ma, and Zhi qi Kou, "Quantum form of the double-exchange interaction", Phys. Rev. B, 69, 014409 (2004).
    [4.21] Lynn J. W., Erwin R. W., Borchers J. A., Huang Q., Santoro A., Peng J. L. and Li Z. Y., "Unconventional Ferromagnetic Transition in La 1-x Srx MnO 3", Phys. Rev. Lett. 79, 4046 (1996).
    [4.22] Briático J., Alascio A. B., Butera R. A., Caneiro A., Causa T. M. and Tovar M., "Double exchange interaction in electron-doped CaMnO 3-δperovskites", Phys. Rev. B, 53, 14020 (1996); Allub R. and Alascio B., "Magnetization and conductivity for La 1-x Srx MnO 3 type crystals", Phys. Rev. B, 55, 14113 (1997); Yuan Chen, Wen Fang Xie, Kang Xian Guo, Hong Dong Liang and Ying Xiang, "Green's function method applied to the paramagnetic properties of R 1-x X x MnO 3", J. Phys.: Condens. Matter, 21, 146004 (2009).
    [4.23] Weisse A. and Fehske H., "Microscopic modelling of doped manganites", New J. Phys. 6, 158 (2004).
    [4.24] Huber D. L., Alejandro G., Caneiro A., Causa M. T., Prado F., Tovar M. and Oseroff S. B., "EPR linewidths in La 1-x Ca x MnO 3:0≤x≤1", Phys. Rev. B, 60, 12155 (1999).
    [4.25] Huai Yu Wang, Zhen Hong Dai, Fr?brich P., Jensen P. J. and Kuntz P. J., "Many body Green's function theory of ferromagnetic Heisenberg systems with single-ion anisotropies in more than one direction", Phys. Rev. B, 70, 134424 (2004).
    [4.26] Huai Yu Wang and Kun Xun, "Magnetization of ferromagnetic polycrystals subject to an external magnetic field", Phys. Rev. B, 74, 214425 (2006).
    [4.27] Huai Yu Wang, Ke Qiu Chen and En Ge Wang, "Abnormal magnetism and phase transformation of a Heisenberg-like model with internal spin fluctuation", Phys. Rev. B, 66, 092405 (2002); Huai Yu Wang, Shan Ying Wang, Chong Yu Wang, Wen Hui Duan and Ke Qiu Chen, "A comprehensive study of Heisenberg-like systems with internalspin fluctuation", J. Phys.: Condens. Matter, 15, 2783 (2003).
    [4.28] Yuan Chen, Zhao Ming Wang and Ai Yuan Hu, "Green's function method applied to the crossover of the one-dimensional quantum anisotropic Heisenberg ferromagnet", Phys. Rev. B, 72, 172406 (2005).
    [4.29] Causa T. M., Tovar M., Caneiro A., Prado F., Ibaňez G., Ramos A. C., Butera A., Alascio. B., Obradors X., Piňol S., Rivadulla F., Vazquez Vazquez C., Lopez Quintela A., Rivas J., Tokura Y. and Oseroff B. S., "High-temperature spin dynamics in CMR manganites: ESR and magnetization", Phys. Rev. B, 58, 3233 (1998).
    [4.30] Callen H. B., "Green Function Theory of Ferromagnetism", Phys. Rev. 130, 890 (1963).
    [4.31] Tyablikov S. V., Method in Quantum Theory of Magnetism (Plenum Press, New York, 1967).
    [4.32] Fr?brich P. and Kuntz P. J., "Many-body Green's function theory of Heisenberg films", Phys. Rep. 432, 223 (2006).
    [4.33] Fr?brich P., Jensen P. J. and Kuntz P. J., "Field-induced magnetic reorientation and effective anisotropy of a ferromagnetic monolayer within spin wave theory", Eur. Phys. J. B, 13, 477 (2000); Fr?brich P., Jensen P. J., Kuntz P. J. and Ecker A., "Many-body Green's function theory for the magnetic reorientation of thin ferromagnetic films", Eur. Phys. J. B, 18, 579 (2000).
    [4.34] Yablonskiy D. A., "Tyablikov approximation in the theory of low-dimensional quantum Heisenberg ferromagnets and antiferromagnets", Phys. Rev. B, 44, 4467 (1991).
    [4.35] Sheng L., Xing D. Y., Sheng D. N. and Ting C. S., "Theory of Colossal Magnetoresist- -ance in R 1-x A x MnO 3", Phys. Rev. Lett. 79, 1710 (1996).
    [4.36] Yukitoshi Motome and Nobuo Furukawa, "Monte Carlo study of doping change and disorder effect on double-exchange ferromagnetism", Phys. Rev. B, 68, 144432 (2003).
    [4.37] Asamitsu A., Moritomo Y., Kumai R. and Tomioka Y., Tokura Y., "MagnetostructuralLa 1-x Srx MnO 3 phase transitions in La 1-x Srx MnO 3with controlled carrier density", Phys. Rev. B, 54, 1716 (1996).
    [4.38] Hemberger J., Krimmel A., Kurz T., Krug von Nidda H. A., Ivanov V. Y., Mukhin A. A., Balbashov A. M. and Loidl A., "Structural, magnetic, and electrical properties of single-crystalline La 1-x Srx MnO 3(0.4    [4.39] Dagotto E., Hotto T. and Moreo A., "Colossal magnetoresistant materials: the key role of phase separation", Phys. Rep. 344, 1 (2001).
    [4.40] R?der H., Singh R. R. P. and Zang J., "High-temperature thermodynamics of the ferromagnetic Kondo-lattice model", Phys. Rev. B, 56, 5084 (1997).
    [4.41] Furukawa N., "Magnetic Transition Temperature of (La,Sr)MnO 3", J. Phys. Soc. Jpn. 64, 2754 (1995). The values of Tc in Table I are calculated for the density of states in 3D in the thermodynamic limit.
    [4.42] Yunoki S., Hu J., Malvezzi A., Moreo A., Furukawa N. and Dagotto E., "Phase Separation in Electronic Models for Manganites", Phys. Rev. Lett. 80, 845 (1998).
    [4.43] Calderón M. J. and Brey L., "Monte Carlo simulations for the magnetic phase diagram of the double-exchange Hamiltonian", Phys. Rev. B, 58, 3286 (1998).
    [4.44] Yi H., Hur N. H. and Yu J., "Anomalous spin susceptibility and magnetic polaron formation in the double-exchange systems", Phys. Rev. B, 61, 9501 (2000).
    [4.45] Moritomo Y. and Furukawa N., "Crystal and Magnetic Structure of Conducting Double Perovskite Sr2 FeMoO 6", J. Phys. Sco. Jpn. 69, 1723 (2000).
    [4.46] Qu Shao Hua, Yao Kai Lun, Liu Zu Li, Fu Hua Hua, "Percolation Model of the Temperature Dependence of Exotic Magnetic Field in Doped Manganese Perovskites", Chin. Phys. Lett. 22, 2639 (2005).
    [4.47] Smolyaninova V. N., Hamilton J. J., Green R. L., Mukovskii Y. M., Karabashe S. G. and Balbashov A. M., "Low temperature field-dependent magnetization ofLa 1-x Srx MnO 3", Phys. Rev. B, 55, 5640 (1997).
    [4.48] Golosov D. I., "Spin Wave Theory of Double Exchange Ferromagnets", Phys. Rev. Lett. 84, 3974 (2000).
    [5.1] Kusters R. M., Singleton J., Keen. D. A., Mcgreevy R. and Hayes W., "Magnetoresista- -nce measurements on the magnetic semiconductor Nd 0.5 Pb 0.5 MnO 3", Physica B, 155, 362 (1989).
    [5.2] Von Helmholt R., Wecker J., Holzapfel B., Schultz L. and Samwer K., "Giant negative magnetoresistance in perovskitelike La 2/3 Ba 1/3 MnO x ferromagnetic films", Phys. Rev. Lett. 71, 2331 (1993).
    [5.3] Chahara K. I., Ohno T., Kasai M. and Kozono Y., "Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure", Appl. Phys. Lett. 63, 1990 (1993).
    [5.4] Jin S., Tiefel T. H., Mc Cormack M., Fastnacht R. A., Ramesh R. and Chen L. H., "Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films", Science, 264, 413 (1994).
    [5.5] Mc Cormack M., Jin S., Tiefel T. H., Fleming R. M., Phillips J. M. and Ramesh R., "Microstructure of epitaxial oxide thin film heterostructures on silicon by pulsed laser deposition", Appl. Phys. Lett. 64, 3407 (1994).
    [5.6] Ju H. L., Kwon C., Li. Q., Greene R. L. and Venkatesan T., "Giant magnetoresistance in La 1-x Srx MnO zfilms near room temperature", Appl. Phys. Lett. 65, 2109 (1994).
    [5.7] Chen J. C., Law S. C., Tung L. C., Chi C. C. and Wei yuan Guan, "Correlation of anomalous Hall resistivity, magnetoresistance, and magnetization in thin films of ", Phys. Rev. B, 60, 12143 (1999).
    [5.8] Zhou S. M., Zhao S. Y., Guo Y. Q., Zhao J. Y. and Shi L., "Griffiths phase and exchange bias in La 1-x Ca x MnO 3(x = 0.50, 0.67, and 0.75) nanoparticles", J. Appl. Phys. 107, 033906 (2010).
    [5.9] Zener C., "Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure", Phys. Rev. 82, 403 (1951).
    [5.10] Briático J., Alascio Allub. B., Butera R. A., Caneiro A., Causa T. M. and Tovar M., "Double-exchange interaction in electron-doped CaMnO 3-δperovskites", Phys. Rev. B, 53, 14020 (1996).
    [5.11] Allub R. and Alascio B., "Magnetization and conductivity for La 1-x Srx MnO 3-type crystals", Phys. Rev. B, 55, 14113 (1997).
    [5.12] Yuan Chen, Wen Fang Xie, Kang Xian Guo, Hong Dong Liang and Ying Xiang, "Green's function method applied to the paramagnetic properties of R 1-x X x MnO 3", J. Phys.: Condens. Matter, 21, 146004 (2009).
    [5.13] Causa T. M., Tovar M., Caneiro A., Prado F., Ibaňez G., Ramos A. C., Butera A., Alascio B., Obradors X., Piňol S., Rivadulla F., Vazquez Vazquez C., Lopez Quintela A., Rivas J., Tokura Y. and Oseroff B. S., "High-temperature spin dynamics in CMR manganites: ESR and magnetization", Phys. Rev. B, 58, 3233 (1998).
    [5.14] Golosovsky M., Monod P., Muduli P. K. and Budhani R. C., "Spin-wave resonances in La 0.7 Sr0 .3 MnO 3 films: Measurement of spin-wave stiffness and anisotropy field", Phys. Rev. B, 76, 184413 (2007).
    [5.15] Belmeguenai M., Mercone1 S., Adamo C., Méchin L., Fur C., Monod P., Moch P. and Schlom D. G., "Temperature dependence of magnetic properties of La 0.7 Sr0 .3 MnO 3 /SrTiO 3thin films on silicon substrates", Phys. Rev. B, 81, 054410 (2010).
    [5.16] Li H., Hu X., Wei Y., Yu Z., Zhang X., Droopad R., Demkov A. A., Edwards J., Moore K., Ooms W., Kulik J. and Fejes P., "Two-dimensional growth of high-quality strontium titanate thin films on Si", J. Appl. Phys. 93, 4521 (2003).
    [5.17] McKee R. A., Walker F. J. and Chisholm M. F., "Crystalline Oxides on Silicon: TheFirst Five Monolayers", Phys. Rev. Lett. 81, 3014 (1998).
    [5.18] Fr?brich P. and Kuntz P. J., "Many-body Green's function theory of Heisenberg films", Phys. Rep. 432, 223 (2006).
    [5.19] Jensen P. J., Bennemann K. H., "Magnetic structure of films: Dependence on anisotrop- -y and atomic morphology", Surf. Sci. Rep. 61, 129 (2006).
    [5.20] Fr?brich P., Jensen P. J. and Kuntz P. J., "Field-induced magnetic reorientation and effective anisotropy of a ferromagnetic monolayer within spin wave theory", Eur. Phys. J. B, 13, 477 (2000).
    [5.21] Fr?brich P., Jensen P. J., Kuntz P. J. and Ecker A., "Many-body Green's function theory for the magnetic reorientation of thin ferromagnetic films", Eur. Phys. J. B, 18, 579 (2000).
    [5.22] Huai Yu Wang, Chong Yu Wang and En Ge Wang, "Magnetization in the case of anisotropic exchange interaction", Phys. Rev. B, 69, 174431 (2004).
    [5.23] Huai Yu Wang, Zhen Hong Dai, Fr?brich P., Jensen P. J. and Kuntz P. J., "Many body Green's function theory of ferromagnetic Heisenberg systems with single-ion anisotropies in more than one direction", Phys. Rev. B, 70, 134424 (2004).
    [5.24] Schwieger S., Kienert J. and Nolting W., "Theory of field-induced spin reorientation transition in thin Heisenberg films", Phys. Rev. B, 71, 024428 (2005).
    [5.25] Pini M. G., Politi P. and Stamps R. L., "Anisotropy effects on the magnetic excitations of a ferromagnetic monolayer below and above the Curie temperature", Phys. Rev. B, 72, 014454 (2005).
    [5.26] Callen H. B., "Green Function Theory of Ferromagnetism", Phys. Rev. 130, 890 (1963).
    [5.27] Yablonskiy D. A., "Tyablikov approximation in the theory of low-dimensional quantum Heisenberg ferromagnets and antiferromagnets", Phys. Rev. B, 44, 4467 (1991).
    [5.28] Jensen P. J., Bennemann K. H., Morr D. K. and DreysséH., "Two-dimensionalHeisenberg antiferromagnet in a transverse field", Phys. Rev. B, 73, 144405 (2006).
    [5.29] Huai Yu Wang and Kun Xun, "Magnetization of ferromagnetic polycrystals subject to an external magnetic field", Phys. Rev. B, 74, 214425 (2006).
    [5.30] Mermin N. D. and Wagner H., "Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models", Phys. Rev. Lett. 17, 1133 (1966).
    [5.31] Weiss P., "L'hypothèse du champ moléculaire et la propriétéferromagnétique", J. Phys. 6, 661 (1907).
    [5.32] Kittel C., "Excitation of Spin Waves in a Ferromagnet by a Uniform of Field", Phys. Rev. 110, 1295 (1958).
    [5.33] Kobler U., Hoser A. and Schafer W., "Weak ferromagnets with integer and half-integer spin quantum numbers", Physica B, 364, 55 (2005).
    [5.34] Farle M., "Ferromagnetic resonance of ultrathin metallic layers", Rep. Prog. Phys. 61, 755 (1998).
    [5.35] Lindner J. and Baberschke K., "In situ ferromagnetic resonance: an ultimate tool to investigate the coupling in ultrathin magnetic films", J. Phys.: Condens. Matter, 15, R193 (2003).
    [5.36] Lindner J. and Baberschke K., "Ferromagnetic resonance in coupled ultrathin films", J. Phys.: Condens. Matter, 15, S465 (2003).
    [6.1] Devlin J. F., "Effect of Crystal Anisotropy on Magnetically Order System", Phys. Rev. B, 74, 214425 (2006).
    [6.2] Yablonskiy D. A., "Tyablikov approximation in the theory of low-dimensional quantum Heisenberg ferromagnets and antiferromagnets", Phys. Rev. B, 44, 4467 (1991).
    [6.3] Callen H. B., "Green Function Theory of Ferromagnetism", Phys. Rev. 130, 890 (1963).
    [6.4] Nagata K. and Tomono Y., "Green's-Function Formalism of the One Dimensional Heisenberg Spin System", Prog. Theor. Phys. 47, 807(1972).
    [6.5] Juhász Junger I., Ihle D., Bogacz L. and Janke W., "Thermodynamics of Heisenberg ferromagnets with arbitrary spin in a magnetic field", Phys. Rev. B, 77, 174411 (2008).
    [6.6] Yuan Chen, Wen Fang Xie, Kang Xian Guo, Hong Dong Liang and Ying Xiang, "Green's function method applied to the paramagnetic properties of R 1-x X x MnO 3", J. Phys.: Condens. Matter, 21, 146004 (2009).
    [6.7] Fr?brich P., Jensen P. J. and Kuntz P. J., "Field-induced magnetic reorientation and effective anisotropy of a ferromagnetic monolayer within spin wave theory", Eur. Phys. J. B, 13, 477 (2000).
    [6.8] Fr?brich P., Jensen P. J., Kuntz P. J. and Ecker A., "Many-body Green's function theory for the magnetic reorientation of thin ferromagnetic films", Eur. Phys. J. B, 18, 579 (2000).
    [6.9] Schwieger S., Kienert J. and Nolting W., "Theory of field-induced spin reorientation transition in thin Heisenberg films", Phys. Rev. B, 71, 024428 (2005).
    [6.10] Pini M. G., Politi P. and Stamps R. L., "Anisotropy effects on the magnetic excitations of a ferromagnetic monolayer below and above the Curie temperature", Phys. Rev. B, 72, 014454 (2005).
    [6.11] Huai Yu Wang and Kun Xun, "Magnetization of ferromagnetic polycrystals subject toan external magnetic field", Phys. Rev. B, 74, 214425 (2006).
    [6.12] Fr?brich P. and Kuntz P. J., "Many-body Green's function theory of Heisenberg films", Phys. Rep. 432, 223 (2006).
    [6.13] Jensen P. J., Bennemann K. H., Morr D. K. and DreysséH., "Two-dimensional Heisenberg antiferromagnet in a transverse field", Phys. Rev. B, 73, 144405 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700