用户名: 密码: 验证码:
导电性超硬材料的第一性原理计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要采用基于密度泛函理论的第一性原理计算方法,计算研究导电性超硬材料的理想强度等物理性质。导电性材料在国防、工业乃至日用生活中都有广泛的应用。在国防和工业应用中还会对导电性材料的硬度或强度有较高的要求。研究设计超硬、超强的导电性材料具有重要的理论和实用意义。
     论文的第一、二章简单介绍了相关的研究背景与理论基础知识。
     在第三章中,我们研究了由轻元素组成的导电性超硬材料类金刚石结构的BC_3(d-BC_3),计算了d-BC_3在不同应变下拉伸与切变理想强度。对该材料的电子态密度计算结果显示d-BC_3不但在平衡结构位置甚至在大尺度拉伸和切变形变下依然保持金属性。通过计算分析d-BC_3在各方向上的理想强度结果,比较得到最弱方向上的理想切变强度,从而确定d-BC_3是一种迄今具有导电性的最硬超硬材料之一。为配合实验合成这种材料,我们又模拟了两种层状BC_3的亚稳态结构。并指出其中一种层状结构可以通过跨越较低的势垒合成类金刚石结构d-BC_3材料。
     在第四章中,我们对Fe_4N材料进行了计算研究。Fe_4N材料由于具有很高的饱和磁矩以及很高的硬度特别适用于需要耐磨磁性材料的应用领域,如设计高密度磁记录设备的磁头等等。由于在[001]方向上Fe和N原子的距离最近,可以形成较强的原子键,以往的理论和实验一般都认为Fe_4N结构的(001)晶面具有最大的强度。我们对Fe_4N结构在各低指数晶面,如(001)、(011)、(111)、(112)面,完成了基于第一性原理的拉伸强度和切变强度计算。结果发现(011)晶面具有比其它各晶面更好的机械性质,(001)面的切变强度比其它晶面的切向强度值高出35%。我们的计算结果表明如果实验上能生长高质量单相(011)Fe_4N薄膜,可以设计更理想的高密度记录磁头。
     在第五章中,我们计算研究了一种新型的特硬材料OsB_2。由单纯轻元素(B、C、N等)组成的(绝缘或导电)超硬材料的合成都需要极高的压力和温度,大规模生产需要很高的成本。近年来国外有研究小组提出利用过渡金属和共价键轻元素形成的化合物或许更加容易得到既导电又具有良好机械强度的新型超硬材料。一般来讲,共价轻元素(B、C、N等)的共价键是很强的化学键,并且具有良好的方向性,可抵抗材料的切向形变;而过渡金属元素的高密度价电子可使材料具有很高的体弹性模量,使材料结构不易被压缩。将共价元素掺入到过渡金属中就是结合了两种化学键的优点,从而达到增强结构的抗压缩和切向形变能力,从而提高结构的硬度。OsB_2是第一批采用这种机制合成的样品,实验发现在(001)面上它的Vickers硬度达到30GPa,高于一般的钢铁材料,有可能成为新型的钢铁器件的研磨切割工具,以及耐磨防腐涂层。但我们通过第一性原理计算研究发现OsB_2在一些晶面上的切向强度具有极大的各项异性,如(001)晶面上沿[010]方向的切向强度(约10GPa)只是[100]方向切向强度(约30GPa)的三分之一,OsB_2并不适合用来设计新型的钢铁器件的研磨切割工具。我们的计算结果表明简单的硬度实验并不能精确地探测OsB_2结构的强度特性,设计新型的超硬材料时应特别注意研究材料在原子尺度的结构畸变和失稳模式。
     在第六章中,我们研究了刻痕硬度实验中压头下正压力对材料硬度的影响。ReB_2是过渡金属和共价键轻元素化合物超硬材料的又一典型结构。ReB_2材料引起广泛的注意是因为实验发现这一材料可以在金刚石表面上留下划痕,显示出很高的(划痕)硬度。但刻痕硬度实验却显示ReB_2材料的维氏硬度只有20~30GPa,远低于金刚石的维氏硬度(约为100GPa)。为解释这一现象,我们采用第一性原理计算方法分别计算了ReB_2材料在没有外加正压力情况下结构的切向强度(对应于划痕硬度实验)和在外加正压力情况下结构的切向强度(对应于刻痕硬度实验)。计算结果表明外加正压力将减弱ReB_2材料的切向强度,造成材料刻痕硬度的下降。理论上计算得到在考虑了正压力情况下ReB_2切向理想强度为26GPa,与实验值很符合。论文中还进一步仔细分析了正压力造成ReB_2材料强度下降的微观物理机制。
In this dissertation, the first-principles calculation method based on density function theory is used to study the physical properties of conductive super-hard materials, such as their ideal strengths. The conductive materials have wide applications in national defense, industry and daily life, where the hardness or strengths of conductive materials may become vital in their applications. It is of prime importance both theoretically and practically to study and design conductive materials with super- or ultra-hardness.
     In the first two chapters of this dissertation, we give a briefly introduction to the research background and basic theories of our studies.
     In chapter three, we present the studies on a new kind of light elements super-hard material, the diamond-like BC_3 structure (d-BC_3). We calculate its tensile and shear strengths under different stain loads. The calculated electronic density of states reveals that d-BC_3 is metallic not only at equilibrium, but also under large tensile and shear deformation. With the analysis of tensile and shear strengths under strains along various high symmetrical directions, we found that d-BC3 structure is one of the hardest conductor studied to date. We also proposed and studied two types of meta-stable layered BC3 structures. One of these layered BC3 structures can become the precursor that will lead to the synthesis of d-BC3 at much reduced pressure and temperature.
     In chapter four, we present the results of extensive studies on Fe_4N for its potential applications as high density magnetic recording heads and recording materials because of its high hardness and large saturation magnetization. Due to the nearest distance between the strong N-Fe bonding chains in <001> direction in Fe_4N structure, previous theoretical and experimental studies of Fe_4N believe that the (001) plane is the crystal plane with the highest hardness or strength in Fe_4N structure. We carried out first principles calculations of tensile and shear strengths for Fe_4N on its (001), (011), (111) and (112) low index crystal planes. Our results show that the (011) plane of Fe_4N has superior mechanical properties with a shear stress 35% higher than those of other planes, possessing the highest scratching hardness suitable for designing high density magnetic recording heads. Our studies call for experimental efforts to grow high quality single phase Fe_4N films in (011) crystalline direction for designing better high density magnetic recording heads.
     In chapter five, we study a new type of ultra-hard materials, OsB_2. Synthesizing super-hard materials with only light covalent elements (such as B, C and N) in mass production is usually expensive, since their processes require extremely high pressures and temperatures. Recently, a new design principle is proposed to synthesize ultra-hard materials by combining light covalent elements (such as B, C and N) with electron-rich transition metals to obtain materials with good electric conductivity and superior mechanical strength. Generally speaking, light covalent elements can form strong, directional covalent bonds with high resistance against structural shear deformations, while the high density of valence electrons from transition metals results in high bulk modulus that prevents the material structures from being squeezed together, both of which enhance the resistance of the structures against large inelastic deformations, leading to increased hardness. A primary example and among the first synthesized following this principle is OsB_2, which shows a experimental Vickers hardness of 30 GPa, over that of steel, on its (001) plane, applicable in designing abrasives and cutting tools for ferrous metals as well as scratch-resistance coatings. However, our first- principles calculation results show highly anisotropic shear strength distributions in certain crystalline planes of OsB_2. For instance, the peak shear stress (about 10 GPa) in the [010] direction on the (001) plane of OsB_2 is only one third of that (about 30 GPa) in the [100] direction on the same plane. This prevents OsB_2 from being used as cutting tools for steels. Our calculations demonstrate that simple hardness experimental tests may not accurately detect the strength properties of OsB_2 and highlight the importance of exploring atomistic deformation and instability modes in designing new ultra-hard materials.
    
     In chapter six, we study the effects of normal pressures beneath indenters on the hardness of materials in indentation hardness tests. Rhenium diboride (ReB_2), another typical crystal structure recently synthesized by combining covalent elements with transition metals, has attracted considerable interest for its high scratching hardness capable of scratching the diamond surface. However, the measured Vickers hardness (Hv) of ReB_2 is unexpectedly low ranging from 20GPa to 30GPa, which is well below that of diamond (about 100GPa). To explain this seemingly contradictory hardness behavior of ReB_2, we report first-principles calculations of ideal shear strengths of ReB_2 by neglecting the normal pressures beneath indenters (similar to scratch hardness experiment) and including the normal pressures beneath indenters (similar to indentation hardness experiment) in the calculations. Our results show that the normal pressure beneath the indenter indeed reduces the shear strength of ReB_2. The calculated ideal indentation strength of ReB_2 under a Vickers indenter is about 26 GPa, which agrees well ReB_2 with that of experiments. Detailed atomistic physical mechanisms to explain the reduction of indentation strength of 2 by the normal pressures beneath indenters are discussed in the thesis.
引文
[1] R. H. Wentorf, R. C. DeVries, and F. P. Bundy,“Sintered Superhard Materials”, Science, 1980, 208, 873-880.
    [2] N. Dubrovinskaia, L. Dubrovinsky, V. L. Solozhenko, "Comment on "Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure", Science, 2007, 318, 1550.
    [3] P. John, N. Polwart, C. E. Troupe, and J. I. B. Wilson,“The oxidation of (100) textured diamond”, Diamond Relat. Mater., 2002, 11, 861-866.
    [4] K. Nassau, and J. Nassau,“The history and present status of synthetic diamond”, J. Cryst. Growth, 1979, 46, 157-172
    [5] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstr?m, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook,“High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond”, Science, 2002, vol. 297, no. 5587, 1670-1672.
    [6] M. D. Koppang, M. Witek, J. Blau, and G. M. Swain,“Electrochemical Oxidation of Polyamines at Diamond Thin-Film Electrodes”, Anal. Chem., 1999, 71, 1188-1195.
    [7] N. V. Novikov,“Synthesis of superhard materials”, J. Mater. Process. Technol., 2005, 161, 169-172.
    [8]“superhard material”, http://en.wikipedia.org/wiki/Superhard_material
    [9] A. S. Barnard,“The Diamond Formula: Diamond Synthesis: A Gemmological Perspective”, Butterworth-Heinemann, 2000.
    [10] H. Liander, and E. Lundblad,“Artificial diamonds”, ASEA J., 1955, 28, pp. 97-98.
    [11] F. P. Bundy, H. M. Hall, H. M. Strong, and R. H. Wentorf,“Man-made Diamonds”, Nature, 1955, 176, 51-55.
    [12] R. H. Wentorf,“Cubic Form of Boron Nitride”, J. Chem Phys., 1957, 26, page 956.
    [13] M. L. Wu, M. U. Guruz, V. P. Dravid, Y. W. Chung, S. Anders, F. L. Freire, and G. Mariotto,“Formation of carbon nitride with sp3-bonded carbon in CNx/ZrN superlattice coatings”, Appl. Phys. Lett., 2000, 76, 2692.
    [14] H. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. Yang, S. H. Tolbert, and R. B. Kaner,“Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure”, Science, 2007, 316, 436-439.
    [15] J. Qin, D. He, J. Wang, L. Fang, L. Lei, Y. Li, J. Hu, Z. Kou, and Y. Bi,“Is Rhenium Diboride a Superhard Material?”, Adv. Mater., 2008, Volume 20, Issue 24, 4780-4783.
    [16] "Diamond",http://en.wikipedia.org/wiki/Diamond
    [17] L. Wei, P. K. Kuo, R. L. Thomas, T. R. Anthony, and W. F. Banholzer,“Thermal conductivity of isotopically modified single crystal diamond”, Phys. Rev. Lett., 1993, 70, 3764-3767.
    [18] J. Walker,“Optical absorption and luminescence in diamond”, Rep. Prog. Phys., 1979, 42, 1605.
    [19] M. H. Nazare, and A. J. Neves,“Properties, growth and applications ofdiamond”, INSPEC Inc., 2000
    [20] C. Frondel, and U.B. Marvin,“Lonsdaleite, a Hexagonal Polymorph of Diamond”, Nature, 1967, 214, 587-589.
    [21]潘梓诚,“外压力下超硬材料BC2N结构与理想强度的第一性原理研究”,博士论文,上海交通大学, 2008.
    [22] F. P. Bundy, and J. S. Kasper,“Hexagonal Diamond: A New Form of Carbon”, J. Chem. Phys.,1967, 46, 3437.
    [23] Z. C. Pan, H. Sun, Y. Zhang, and C. F. Chen,“Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite”, Phys. Rev. Lett., 2009, 102, 055503.
    [24] E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen,“High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions”, Phys. Rev. B, 1995, 51, 12149.
    [25] V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D. C., Rubie,“Synthesis of superhard cubic BC2N”, Appl. Phys. Lett., 2001, Vol. 78, Issue 10, 1385.
    [26] Y. Zhao, D. W. He, L. L. Daemen, T. D. Shen, R. B. Schwarz, Y. Zhu, D. L. Bish, J. Huang, J. Zhang, G. Shen, J. Qian, and T. W. Zerda,“Superhard B-C-N materials synthesized in nanostructured bulks”, J. Mater. Res., 2002, 17, 3139-3145.
    [27] R. F. Mamin, and T. Inushima,“Conductivity in boron-doped diamond”, Phys. Rev. B, 2001, 63, 033201.
    [28] E. A. Ekimov, V. A. Sldorov, E. D. Bauer, N. N. Mel’nik, N. J. Curro, J. D.Thompson, and S. M. Stishov,“Superconductivity in diamond”, Nature, 2004, 428, 542-545.
    [29] J. E. Lowther,“Potential super-hard phases and the stability of diamond-like boron–carbon structures”, J. Phys.: Condens. Matter, 2005, Vol. 17, Issue 21, 3221.
    [30] Z. Y. Liu, J. He, J. Yang, X. Guo, H. Sun, H. T. Wang, E. Wu, and Y. Tian,“Prediction of a sandwichlike conducting superhard boron carbide: First-principles calculations”, Phys. Rev. B, 2006, 73, 172101.
    [31] V. L. Solozhenko, N. A. Dubrovinskaia, and L. S. Dubrovinsky,“Synthesis of bulk superhard semiconducting B–C material”, Appl. Phys. Lett., 2004, 85, 1508-1510.
    [32] P. V. Zinin, L. C. Ming, I. Kudryashov, N. Konishi, M. H. Manghnani, and S. K. Sharma,“Pressure- and temperature-induced phase transition in the B–C system”, J. Appl. Phys., 2006, 100, 013516.
    [33]“Osmium”, http://en.wikipedia.org/wiki/Osmium
    [34] J. W. Arblaster,“Densities of Osmium and Iridium”, Platinum Metals Rev., 1989, 33, 14-16.
    [35] J. W. Arblaster,“Osmium, the Densest Metal Known”, Platinum Metals Rev., 1995, 39, 164.
    [36] M. B. Weinberger, and S. H. Tobert, and A. Kavner,“Osmium Metal Studied under High Pressure and Nonhydrostatic Stress”, Phys. Rev. Lett., 2008, 100, 045506.
    [37] H. Cynn, J. E. Klepeis, C. S. Yoo, and D. A. Young,“Osmium has the Lowest Experimentally Determined Compressibility”, Phys. Rev. Lett., 2002, Vol. 88, Issue 13, 135701.
    [38] B. R. Sahu, and L. Kleinman,“Osmium is not harder than diamond”, Phys. Rev. B, 2005, 72, 113106.
    [39] C. R. Hammond, "The Elements, in Handbook of Chemistry and Physics 81st edition", CRC press., 2004.
    [40]“Rhenium”, http://en.wikipedia.org/wiki/Rhenium
    [41] V. S. Neshpor, V. I. Novikov, V. A. Noskin, and S. S. Shalyt,“Superconductivity of Some Alloys of the Tungsten-rhenium-carbon System”, Soviet Physics JETP, 1968, 27, 13.
    [42] J. G. Daunt, and T. S. Smith,“Superconductivity of Rhenium”, Phys. Rev., 1952, 88, 309-311.
    [43] R. W. Cumberland, M. B. Weinberger, J. J. Gilman, S. M. Clark, S. H. Tolbert, and R. B. Kaner,“Osmium Diboride, An Ultra-Incompressible, Hard Material”, J. Amer. Chem. Soc., 2005, 127, 7264-7265.
    [44]“Osmium borides”, http://en.wikipedia.org/wiki/OsB2
    [45] M. Hebbache, L. Stuparevic, and D. Zivkovic,“A new superhard material: Osmium diboride OsB2”, Sol. State Commun., 2006, 139, 227-231.
    [46] C. P. Kempter, and R. J. Fries,“Crystallography of the RuxB and OsxB Systems”, J. Chem. Phys., 1961, 34, 1994-1995.
    [47] R. B. Roof, and C. P. Kempter,“New Orthorhombic Phase in the RuxB and OsxBSystems”, J. Chem. Phys., 1962, 37, 1473-1476.
    [48] J. Yang, H. Sun, and C. F. Chen,“Is Osmium Diboride An Ultra-Hard Material?”, J. Amer. Chem. Soc., 2008, 130, 7200-7201.
    [49] S. J. La Placa, B. Post,“The Crystal Structure of Rhenium Diboride”, Acta Cryst., 1962, 15, 97-99.
    [50]“Rhenium diboride”, http://en.wikipedia.org/wiki/ReB2
    [51] W. Zhou, H. Wu, and T. Yildirim,“Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study”, Phys. Rev. B, 2007, 76, 184113.
    [52] "iron", http://en.wikipedia.org/wiki/Iron
    [53] H. Jacobs, D. Rechenbach, and U. Zachwieja,“Structure determination ofγ′-Fe4N andε-Fe3N”, J. Alloys Compd., 1995, 227, 10-17.
    [54] D. M. Borsa, S. Grachev, D. O. Boerma, and J. W. J. Kerssemakers,“High-quality epitaxial iron nitride films grown by gas-assisted molecular-beam epitaxy”, Appl. Phys. Lett., 2001, 79, 994.
    [55] R. Loloee, K. R. Nikolaev, and W. P. Pratt, Jr.,“Growth and characterization of sputtered epitaxialγ′Fe4N and NbN films and bilayers using electron backscatter diffraction patterns and magnetometry”, Appl. Phys. Lett., 2003, 82, 3281-3283.
    [56] J. L. Costa-Kramer, D. M. Borsa, J. M. Garcia-Martin, M. S. Martin-Gonzalez, D. O. Boerma, and F. Briones,“Structure and magnetism of single-phase epitaxialγ′-Fe4N”, Phys. Rev. B, 2004, 69, 144402.
    [57] J. M. Gallego, S. Yu. Grachev, D. M. Borsa, D. O. Boerma, D. Ecija, and R.Miranda,“Mechanisms of epitaxial growth and magnetic properties ofγ′-Fe4N(100) films on Cu(100)”, Phys. Rev. B, 2004, 70, 115417.
    [58] C. Navio, J. Alvarez, M. J. Capitan, D. Ecija, J. M. Gallego, F. Yndurain, and R. Miranda,“Electronic structure of ultrathinγ′-Fe4N (100) films epitaxially grown on Cu(100)”, Phys. Rev. B, 2007, 75, 125422.
    [59] S. Kokado, N. Fujima, K. Harigaya, H. Shimizu, and A. Sakuma,“Theoretical analysis of highly spin-polarized transport in the iron nitride Fe4N”, Phys. Rev. B, 2006, 73, 172410.
    [60] Z. J. Wu and J. Meng,“Elastic and electronic properties of CoFe3N, RhFe3N, and IrFe3N from first principles”, Appl. Phys. Lett.,2007, Vol. 90, Issue 24, 241901.
    [61] T. Gressmann, M. Wohlschl?gel, S. Shang, U. Welzel, A. Leineweber, E. J. Mittemeijer, and Z. K. Liu,“Elastic anisotropy ofγ′-Fe4N and elastic grain interaction inγ′-Fe4N1?y layers onα-Fe: First-principles calculations and diffraction stress”, Acta Mater., 2007, 55, 5833-5843.
    [62] E. J. Zhao, H. P. Xiang, J. Meng, and Z. J. Wu,“First-principles investigation on the elastic, magnetic and electronic properties of MFe3N (M = Fe, Ru, Os)”, Chem. Phys. Lett., 2007, 449, 96-100.
    [63] K. Hussain, A. Tauqir A. ul Haq, and A. Q. Khan,“Influence of gas nitriding on fatigue resistance of maraging steel”, Int. J. Fatigue, 1999, Volume 21, Issue 2, 163-168.
    [64] E. A. Ochoa, C. A. Figueroa, and F. Alvarez,“The influence of the ion currentdensity on plasma nitriding process”, Surf. Coat. Technol., 2005, Volume 200, Issue 7, 2165-2169.
    [65] R. M. Mu?oz Riofano, L. C. Casteletti, L. C. F. Canale, and G. E. Totten,“Improved wear resistance of P/M tool steel alloy with different vanadium contents after ion nitriding”, Wear, 2008, 265, 57-64.
    [66] T. Nakamoto, N. Shirakawa, N. Ueda, Y. Miyata, and T. Sone,“Plasma nitriding to selective laser sintering parts made of SCM430 powder”, Surf. Coat. Technol., 2008, 202, 5484-5487.
    [67] Kaner, R. B.; Gilman, J. J.; Tolbert, S. H. ,“Designing Superhard Materials”, Science, 2005, 308, 1268-1269.
    [68] H. Y. Chung, M. B. Weinberger; J. B. Levine, R. W. Cumberland, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner,“Response to Comment on" Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure"”, Science, 2007, 318, 1550d.
    [69] J. B. Levine, S. L. Nguyen, H. I. Rasool, J. A. Wright, S. E. Brown, and R. B. Kaner,“Preparation and Properties of Metallic, Superhard Rhenium Diboride Crystals”, J. Am. Chem. Soc., 2008, 130, 16953-16958.
    [70] H. Y. Chung, M. B. Weinberger, J. M. Yang, S. H. Tolbert, and R. B. Kaner,“Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2”, Appl. Phys. Lett., 2008, 92, 261904.
    [71] A. Latini, J. V. Rau, D. Ferro, R. Teghil, V. R. Albertini, and S. M. Barinov,“Superhard Rhenium Diboride Films: Preparation and Characterization”, Chem. Mater., 2008, 20, 4507-4511.
    [72] S. N. Tkachev, J. B. Levine, A. Kisliuk, A. P. Sokolov, S. Q. Guo, J. T. Eng, and R. B. Kaner,“Shear Modulus of Polycrystalline Rhenium Diboride Determinedfrom Surface Brillouin Spectroscopy”, Adv. Mater., 2009, 21, 4284-4286.
    
    [1] R. M. Martin,“Electronic Structure: Basic Theory and Practical Methods”, Cambridge University Press, 2004.
    [2] Zicheng Pan, Hong Sun, and Changfeng Chen,“Indenter-angle-sensitive fracture modes and stress response at incipient plasticity”, Phys. Rev. B, 2009, 79, 104102.
    [3] P. Hohenberg, and W. Kohn,“Inhomogeneous Electron Gas”, Phys. Rev., 1964, 136, B864-B871.
    [4] N. David Mermin,“Thermal Properties of the Inhomogeneous Electron Gas”, Phys. Rev., 1965, 137, A1441-A1443.
    [5] W. Kohn, and L. J. Sham,“Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., 1965, 140, A1133-A1138.
    [6] L. H. Thomas,“On the Capture of Electrons by Swiftly Moving Electrified Particles”, Proc. Cambridge Phil. Roy. Soc., 1927, 23, 542.
    [7] E. Fermi,“Un Metodo Statistico per la Determinazione di alcune Prioprietàdell'Atomo”, Rend. Accad. Naz. Lincei, 1927, 6, 602-607.
    [8] P. A. M. Dirac,“Note on exchange phenomena in the Thomas-Fermi atom”, Proc. Cambridge Phil. Roy. Soc., 1930, 26, 376-385.
    [9] H. Hellmann,“A New Approximation Method in the Problem of Many Electrons”, J. Chem. Phys., 1935, 3, 61.
    [10] H. Hellmann,“Metallic binding according to the combined approximation procedure”, J. Chem. Phys., 1936, 4, 324.
    [11] C. Herring,“A New Method for Calculating Wave Functions in Crystals”, Phys. Rev., 1940, 57, 1169-1177.
    [12] C. Herring, and A. G. Hill,“The Theoretical Constitution of Metallic Beryllium”, Phys. Rev., 1940, 58, 132-162.
    [13] "pseudopotential", http://en.wikipedia.org/wiki/Pseudopotential.
    [14] G. P. Kerker,“Non-singular atomic pseudopotentials for solid state applications”,J. Phys. C: Solid State Phys., 1980, 13, L189.
    [15] N. Troullier, and J. L. Martins,“Efficient pseudopotentials for plane-wave calculations”, Phys. Rev. B, 1991, 43, 1993-2006.
    [16] K. Burke, J. P. Perdew, and M. Ernzerhof,“Why the Generalized Gradient Approximation Works and How to Go Beyond It”, Int. J. Quantum Chem., 1997, 61, 287-293.
    [17]孙弘,《计算凝聚态物理讲义》,上海交通大学, 2010, (unpublished).
    [18] D. M. Ceperley, and B. J. Alder,“Ground State of the Electron Gas by a Stochastic Method”, Phys. Rev. Lett., 1980, 45, 566-569.
    [19] J. P. Perdew, and A. Zunger,“Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B, 1981, Volume 23, Issue 10, 5048-5079.
    [20] J. Kohanof, and I. Gidopoulos,“Handbook of Molecular Physics and Quantum Chemistry, Vol. 2”, John Wiley and Sons, 2003.
    [21] G. S. Smith, E. B. Tadmor, and E. Kaxiras,“Multiscale Simulation of Loading and Electrical Resistance in Silicon Nanoindentation”, Phys. Rev. Lett., 2000, 84, 1260-1263.
    [22] Y. G. Gogotsi, A. Kailer, and K. G. Nickel,“Materials: Transformation of diamond to graphite”, Nature (London), 1999, 401, 663-664.
    [23] M. W. Barsoum, A. Murugaiah, S. R. Kalidindi, and T. Zhen,“Kinking Nonlinear Elastic Solids, Nanoindentations, and Geology”, Phys. Rev. Lett., 2004, 92, 255508.
    [24] J. Jang, M. J. Lance, S. Wen, T. Y. Tsui, and G. M. Pharr,“Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior”, Acta Mater., 2005, 53, 1759-1770.
    [25] H. Bei, E. P. George, J. L. Hay, and G. M. Pharr,“Influence of Indenter Tip Geometry on Elastic Deformation during Nanoindentation”, Phys. Rev. Lett., 2005, 95, 045501.
    [26] Y. T. Cheng, W. Ni, and C. M. Cheng,“Nonlinear Analysis of Oscillatory Indentation in Elastic and Viscoelastic Solids”, Phys. Rev. Lett., 2006, 97,075506.
    [27] C. Kearney, Z. Zhao, B. J. F. Bruet, R. Radovitzky, M. C. Boyce, and C. Ortiz,“Nanoscale Anisotropic Plastic Deformation in Single Crystal Aragonite”, Phys. Rev. Lett., 2006, 96, 255505.
    [28] S. Ogata, J. Li, and S. Yip,“Ideal Pure Shear Strength of Aluminum and Copper”, Science, 2002, 298, 807-811.
    [29] S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, and S. Yip,“Ideal shear strain of metals and ceramics”, Phys. Rev. B, 2004, 70, 104104.
    [30] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris,“The ideal strength of tungsten”, Philos. Mag. A, 2001, 81, 1725.
    [31] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris,“Ideal Shear Strengths of fcc Aluminum and Copper”, Phys. Rev. Lett., 1999, Volume 82, Issue 13, 2713-2716.
    [32] H. Chacham, and L. Kleinman,“Instabilities in Diamond under High Shear Stress”, Phys. Rev. Lett., 2000, 85, 4904-4907.
    [33] S. H. Jhi, S. G. Louie, M. L. Cohen, and J. W. Morris,“Mechanical Instability and Ideal Shear Strength of Transition Metal Carbides and Nitrides”, Phys. Rev. Lett., 2001, 87, 075503.
    [34] D. M. Clatterbuck, C. R. Krenn, M. L. Cohen, and J. W. Morris,“Phonon Instabilities and the Ideal Strength of Aluminum”, Phys. Rev. Lett., 2003, 91, 135501.
    [35] X. Blase, P. Gillet, A. San Miguel, and P. Melinon,“Exceptional Ideal Strength of Carbon Clathrates”, Phys. Rev. Lett.,2004, 92, 215505.
    [36] Y. Zhang, H. Sun, and C. F. Chen,“Superhard Cubic BC2N Compared to Diamond”, Phys. Rev. Lett., 2004, 93, 195504; Y. Zhang, H. Sun, and C. F. Chen,“Atomistic Deformation Modes in Strong Covalent Solids”, Phys. Rev. Lett., 2005, 94, 145505.
    [37] M. G. Fyta, I. N. Remediakis, P. C. Kelires, and D. A. Papaconstantopoulos,“Insights into the Fracture Mechanisms and Strength of Amorphous and Nanocomposite Carbon”, Phys. Rev. Lett., 2006, Volume 96, Issue 18, 185503.
    [38] V. Brazhkin, N. Dubrovinskaia, M. Nicol, N. Novikov, R. Riedel, V. Solozhenko, and Y. Zhao,“From our readers: What does 'harder than diamond' mean?”, Nature Mater., 2004, 3, 576-577.
    [39] T. Li, J. W. Morris, N. Nagasako, S. Kuramoto, and D. C. Chrzan,““Ideal”Engineering Alloys”, Phys. Rev. Lett., 2007, 98, 105503.
    [40] M. I. Eremets, I. A. Trojan, P. Gwaze, J. Huth, R. Boehler, and V. D. Blank,“The strength of diamond”, Appl. Phys. Lett.,2005, 87, 141902.
    [41] K. J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh,“Quantifying the early stages of plasticity through nanoscale experiments and simulations”, Phys. Rev. B, 2003, 67, 104105.
    [42] T. Zhu, J. Li, K. J. Van Vliet, S. Ogata, S. Yip, and S. Suresh,“Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper”, J. Mech. Phys. Solids, 2004, 52, 691-724.
    [43] A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos, and S. Suresh,“Discrete and continuous deformation during nanoindentation of thin films”, Acta Mater.,2000, 48, 2277-2295.
    [1] R. F. Mamin, and T. Inushima,“Conductivity in boron-doped diamond”, Phys. Rev. B, 2001, 63, 033201.
    [2] E. A. Ekimov, V. A. Sldorov, E. D. Bauer, N. N. Mel’nik, N. J. Curro, J. D. Thompson, and S. M. Stishov,“Superconductivity in diamond”, Nature, 2004, 428, 542-545.
    [3] E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen,“High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions”, Phys. Rev. B, 1995, 51, 12149-12156.
    [4] V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar and D. C. Rubie,“Synthesis of superhard cubic BC2N”, Appl. Phys. Lett., 2001, Volume 78, Issue 10, 1385.
    [5] Y. Zhao, D. W. He, L. L. Daemen, T. D. Shen, R. B. Schwarz, Y. Zhu, D. L. Bish, J. Huang, J. Zhang, G. Shen, J. Qian, and T. W. Zerda,“Superhard B–C–N materials synthesized in nanostructured bulks”, J. Mater. Res., 2002, Volume 17, Issue 12, 3139-3145.
    [6] J. E. Lowther,“Potential super-hard phases and the stability of diamond-like boron–carbon structures”, J. Phys.: Condens. Matter, 2005, Volume 17, Number 21, 3221.
    [7] Z. Y. Liu, J. He, J. Yang, X. Guo, H. Sun, H. T. Wang, E. Wu, and Y. Tian,“Prediction of a sandwichlike conducting superhard boron carbide: First-principles calculations”, Phys. Rev. B, 2006, Volume 73, Issue 17,172101.
    [8] V. L. Solozhenko, N. A. Dubrovinskaia, and L. S. Dubrovinsky,“Synthesis of bulk superhard semiconducting B–C material”, Appl. Phys. Lett., 2004, Volume 85, Issue 9, 1508 .
    [9] P. V. Zinin, L. C. Ming, I. Kudryashov, N. Konishi, M. H. Manghanni, and S. K. Sharma,“Pressure- and temperature-induced phase transition in the B–C system”, J. Appl. Phys., 2006, 100, 013516.
    [10] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris,“Ideal Shear Strengthsof fcc Aluminum and Copper”, Phys. Rev. Lett., 1999, Volume 82, Issue 13, pp2713-2716.
    [11] W. D. Luo, D. Roundy, M. L. Cohen, and J. W. Morris,“Ideal strength of bcc molybdenum and niobium”, Phys. Rev. B, 2002, 66, 094110.
    [12] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris,“The ideal strength of tungsten”, Phil. Mag. A, 2001, 81, 1725.
    [13] Y. Zhang, H. Sun, and C. F. Chen,“Superhard Cubic BC2N Compared to Diamond”, Phys. Rev. Lett., 2004, 93, 195504; Y. Zhang, H. Sun, and C. F. Chen,“Atomistic Deformation Modes in Strong Covalent Solids”, Phys. Rev. Lett., 2005, 94, 145505.
    [14] Z. C. Pan, H. Sun, and C. F. Chen,“Diverging synthesis routes and distinct properties of cubic BC2N at high pressure”, Phys. Rev. B, 2004, 70, 174115; Y. Zhang, H. Sun, and C. F. Chen,“Strain dependent bonding in solid C3N4: High elastic moduli but low strength”, Phys. Rev. B, 2006, 73, 064109; Y. Zhang, H. Sun, and C. F. Chen,“Structural deformation, strength, and instability of cubic BN compared to diamond: A first-principles study”, Phys. Rev. B, 2006, 73, 144115.
    [15] A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos, and S. Suresh,“Discrete and continuous deformation during nanoindentation of thin films”, Acta Mater., 2000, 48, 2277.
    [16]“PARATEC”, http://www.nersc.gov/projects/paratec/
    [17] J. Ihm, A. Zunger, and M. L. Cohen,“Momentum-space formalism for the total energy of solids”, J. Phys. C: Solid State Phys., 1979, 12, 4409.
    [18] D. M. Ceperley, and B. J. Alder,“Ground State of the Electron Gas by a Stochastic Method”, Phys. Rev. Lett., 1980, 45, 566-569.
    [19] M. L. Cohen,“Pseudopotentials and Total Energy Calculations”, Phys. Scr., 1982, T1, 5.
    [20] N. Troullier, and J. L. Martins,“Efficient pseudopotentials for plane-wave calculations”, Phys. Rev. B, 1991, Volume 43, Issue 3, 1993-2006.
    [21] J. P. Perdew, and A. Zunger,“Self-interaction correction to density-functionalapproximations for many-electron systems”, Phys. Rev. B, 1981, Volume 23, Issue 23, 5048-5079.
    [22] B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen,“Relaxation of Crystals with the Quasi-Newton Method”, J. Comput. Phys., 1997, 131, 233-240.
    [23] H. J. Monkhorst, and J. D. Pack,“Special points for Brillouin-zone integrations”, Phys. Rev. B, 1976, 13, 5188-5192.
    [24] Z. C. Pan, H. Sun, and C. F. Chen,“Ab initio structural identification of high density cubic BC2N”, Phys. Rev. B, 2006, 73, 214111.
    [25] D. Tomanek, R. M. Wentzcovitch, S. G. Louie, and M. L. Cohen,“Calculation of electronic and structural properties of BC3”, Phys. Rev. B, 1988, 37, 3134-3136.
    [26] H. Sun, F. J. Ribeiro, J. L. Li, D. Roundy, M. L. Cohen, and S. G. Louie,“Ab initio pseudopotential studies of equilibrium lattice structures and phonon modes of bulk BC3”, Phys. Rev. B, 2004, 69, 024110.
    [1] H. Jacobs, D. Rechenbach, and U. Zachwieja,“Structure determination ofγ′-Fe4N andε-Fe3N”, J. Alloys Compd., 1995, Volume 227, Issue 1, 10-17.
    [2] D. M. Borsa, S. Grachev, D. O. Boerma, and J. W. J. Kerssemakers,“High-quality epitaxial iron nitride films grown by gas-assisted molecular-beam epitaxy”, Appl. Phys. Lett., 2001, 79, 994.
    [3] R. Loloee, K. R. Nikolaev, and W. P. Pratt, Jr.,“Growth and characterization of sputtered epitaxialγ′Fe4N and NbN films and bilayers using electron backscatter diffraction patterns and magnetometry”, Appl. Phys. Lett., 2003, 82, 3281.
    [4] J. L. Costa-Kramer, D. M. Borsa, J. M. Garcia-Martin, M. S. Martin-Gonzalez, D. O. Boerma, and F. Briones,“Structure and magnetism of single-phase epitaxialγ′-Fe4N”, Phys. Rev. B, 2004, 69, 144402.
    [5] J. M. Gallego, S. Yu. Grachev, D. M. Borsa, D. O. Boerma, D. Ecija, and R. Miranda,“Mechanisms of epitaxial growth and magnetic properties ofγ′-Fe4N(100) films on Cu(100)”, Phys. Rev. B, 2004, 70, 115417.
    [6] C. Navio, J. Alvarez, M. J. Capitan, D. Ecija, J. M. Gallego, F. Yndurain, and R. Miranda,“Electronic structure of ultrathinγ′-Fe4N (100) films epitaxially grown on Cu(100)”, Phys. Rev. B, 2007, 75, 125422.
    [7] S. Kokado, N. Fujima, K. Harigaya, H. Shimizu, and A. Sakuma,“Theoretical analysis of highly spin-polarized transport in the iron nitride Fe4N”, Phys. Rev. B, 2006, 73, 172410.
    [8] Z. J. Wu and J. Meng,“Elastic and electronic properties of CoFe3N, RhFe3N, and IrFe3N from first principles”, Appl. Phys. Lett., 2007, 90, 241901.
    [9] T. Gressmann, M. Wohlschl?gel, S. Shang, U. Welzel, A. Leineweber, E. J. Mittemeijer, and Z. K. Liu,“Elastic anisotropy ofγ′-Fe4N and elastic grain interaction inγ′-Fe4N1?y layers onα-Fe: First-principles calculations and diffraction stress measurements”, Acta Mater., 2007, 55, 5833-5843.
    [10] E. J. Zhao, H. P. Xiang, J. Meng, and Z. J. Wu,“First-principles investigation on the elastic, magnetic and electronic properties of MFe3N (M = Fe, Ru, Os”, Chem. Phys. Lett., 449, 96 (2007).
    [11] K. Hussain, A. Tauqir, A. ul Haq, and A. Q. Khan,“Influence of gas nitriding on fatigue resistance of maraging steel”, Int. J. Fatigue, 1999, 21, 163.
    [12] E. A. Ochoa, C. A. Figueroa, and F. Alvarez,“The influence of the ion current density on plasma nitriding process”, Surf. Coat. Technol., 2005, 200, 2165-2169.
    [13] R. M. Mu?oz Riofano, L. C. Casteletti, L. C. F. Canale, and G. E. Totten,“Improved wear resistance of P/M tool steel alloy with different vanadium contents after ion nitriding”, Wear, 2008, 265, 57-64.
    [14] T. Nakamoto, N. Shirakawa, N. Ueda, Y. Miyata, and T. Sone,“Plasma nitriding to selective laser sintering parts made of SCM430 powder”, Surf. Coat. Technol., 2008, 202, 5484-5487.
    [15] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris,“Ideal Shear Strengths of fcc Aluminum and Copper”, Phys. Rev. Lett., 1999, 82, 2713-2716.
    [16] R. H. Telling, C. J. Pickard, M. C. Payne, and J. E. Field,“Theoretical Strength and Cleavage of Diamond”, Phys. Rev. Lett., 2000, 84, 5160-5163.
    [17] S. H. Jhi, S. G. Louie, M. L. Cohen, and J. W. Morris,“Mechanical Instability and Ideal Shear Strength of Transition Metal Carbides and Nitrides”, Phys. Rev. Lett., 2001, 87, 075503.
    [18] S. Ogata, J. Li, and S. Yip,“Ideal Pure Shear Strength of Aluminum and Copper”, Science, 2002, 298, 807-811.
    [19] Y. Zhang, H. Sun, and C. F. Chen,“Superhard Cubic BC2N Compared to Diamond”, Phys. Rev. Lett., 2004, 93, 195504.
    [20] Y. Zhang, H. Sun, and C. F. Chen,“Atomistic Deformation Modes in Strong Covalent Solids”, Phys. Rev. Lett., 2005, 94, 145505.
    [21] Z. C. Pan, H. Sun, and C. F. Chen,“Colossal Shear-Strength Enhancement of Low-Density Cubic BC2N by Nanoindentation”, Phys. Rev. Lett., 2007, 98, 135505.
    [22] J. Yang, H. Sun, and C. F. Chen,“Is osmium diboride an ultra-hard material?”, J. Am. Chem. Soc., 2008, 130, 7200-7201.
    [23] C. R. Krenn, D. Roundy, M. L. Cohen, D. C. Chrzan, and J. W. Morris,“Connecting atomistic and experimental estimates of ideal strength”, Phys. Rev. B,2002, 65, 134111.
    [24] M. I. Eremets, I. A. Trojan, P. Gwaze, J. Huth, R. Boehler, and V. D. Blank,“The strength of diamond”, Appl. Phys. Lett., 2005, 87, 141902.
    [25] T. Li, J. W. Morris, N. Nagasako, S. Kuramoto, and D. C. Chrzan,““Ideal”Engineering Alloys”, Phys. Rev. Lett., 2007, 98, 105503.
    [26] P. E. Blochl,“Projector augmented-wave method”, Phys. Rev. B, 1994, 50, 17953-17979.
    [27] G. Kresse, and D. Joubert,“From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B, 1999, 59, 1758-1775.
    [28] D. M. Ceperley, and B. J. Alder,“Ground State of the Electron Gas by a Stochastic Method”, Phys. Rev. Lett., 1980, 45, 566-569.
    [29] J. P. Perdew, and A. Zunger,“Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B, 1981, 23, 5048-5079.
    [30] M. P. Teter, M. C. Payne, and D. C. Allan,“Solution of Schr?dinger’s equation for large systems”, Phys. Rev. B, 1989, 40, 12255-12263.
    [31] D. M. Bylander, L. Kleinman, and S. Lee,“Self-consistent calculations of the energy bands and bonding properties of B12C3”, Phys. Rev. B, 1990, 42, 1394-1403.
    [32] H. J. Monkhorst, and J. D. Pack,“Special points for Brillouin-zone integrations”, Phys. Rev. B, 1976, 13, 5188-5192.
    [33] D. M. Clatterbuck, D. C. Chrzan, and J. W. Morris,“The ideal strength of iron in tension and shear”, Acta Mater., 2003, 51, 2271-2283.
    [1] R. W. Cumberland, M. B. Weinberger, J. J. Gilman, S. M. Clark, S. H. Tolbert, and R. B. Kaner,“Osmium Diboride, An Ultra-Incompressible, Hard Material”, J. Am. Chem. Soc., 2005, 127, 7264-7265.
    [2] R. B. Kaner, J. J. Gilman, and S. H. Tolbert,“Designing Superhard Materials”, Science, 2005, 308, 1268-1269.
    [3] M. Hebbache, L. Stuparevic, and D. Zivkovic,“A new superhard material: Osmium diboride OsB2”, Solid State Commun., 2006, 139, 227-231.
    [4] A. F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R. J. Hemley, and H. K. Mao,“Synthesis of Novel Transition Metal Nitrides IrN2 and OsN2”, Phys. Rev. Lett., 2006, 96, 155501.
    [5] H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner,“Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure”, Science, 2007, 316, 436-439.
    [6] H. Y. Gou, L. Hou, J. W. Zhang, H. Li, G. F. Sun, and F. M. Gao,“First-principles study of low compressibility osmium borides”, Appl. Phys. Lett., 2006, 88, 221904.
    [7] Z. Y. Chen, H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu,“Structural and electronic properties of OsB2: A hard metallic material”, Phys. Rev. B, 2006, 74, 012102.
    [8] S. Chiodo, H. J. Gotsis, N. Russo, and E. Sicilia,“OsB2 and RuB2, ultra-incompressible, hard materials: First-principles electronic structure calculations”, Chem. Phys. Lett., 2006, 425, 311-314.
    [9] X. F. Hao, Z. J. Wu, Y. H. Xu, D. F. Zhou, X. J. Liu, and J. Meng,“Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations”, J. Phys.: Condens. Matter, 2007, 19, 196212.
    [10] Y. X. Wang,“Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations”, Appl. Phys. Lett., 2007, 91, 101904.
    [11] R. F. Zhang, S. Veprek, and A. S. Argon,“Mechanical and electronic properties of hard rhenium diboride of low elastic compressibility studied by first-principles calculation”, Appl. Phys. Lett., 2007, 91, 201914.
    [12] C. Z. Fan, S. Y. Zeng, L. X. Li, Z. J. Zhan, R. P. Liu, W. K. Wang, P. Zhang, and Y. G. Yao,“Potential superhard osmium dinitride with fluorite and pyrite structure: First-principles calculations”, Phys. Rev. B, 2006, 74, 125118.
    [13] J. C. Zheng,“Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN”, Phys. Rev. B, 2005, 72, 052105.
    [14] R. H. Telling, C. J. Pickard, M. C. Payne, and J. E. Field,“Theoretical Strength and Cleavage of Diamond”, Phys. Rev. Lett., 2000, 84, 5160-5163.
    [15] H. Chacham, and L. Kleinman,“Instabilities in Diamond under High Shear Stress”, Phys. Rev. Lett., 2000, 85, 4904-4907.
    [16] S. H. Jhi, S. G. Louie, M. L. Cohen, and J. W. Morris,“Mechanical Instability and Ideal Shear Strength of Transition Metal Carbides and Nitrides”, Phys. Rev. Lett., 2001, 87, 075503.
    [17] S. Ogata, J. Li, and S. Yip,“Ideal Pure Shear Strength of Aluminum and Copper”, Science, 2002, 298, 807-811.
    [18] C. R. Krenn, D. Roundy, M. L. Cohen, D. C. Chrzan, and J. W. Morris,“Connecting atomistic and experimental estimates of ideal strength”, Phys. Rev. B, 2002, 65, 134111.
    [19] D. M. Clatterbuck, D. C. Chrzan, and J. W. Morris,“The ideal strength of iron in tension and shear”, Acta Mater., 2003, 51, 2271-2283.
    [20] Y. Zhang, H. Sun, and C. F. Chen,“Superhard Cubic BC2N Compared to Diamond”, Phys. Rev. Lett., 2004, 93, 195504. Y. Zhang, H. Sun, and C. F. Chen,“Atomistic Deformation Modes in Strong Covalent Solids”, Phys. Rev. Lett., 2005, 94, 145505.
    [21] A. Simunek,“How to estimate hardness of crystals on a pocket calculator”, Phys. Rev. B, 2007, 75, 172108.
    [22]“VASP”, http://cms.mpi.univie.ac.at/vasp/
    [23] P. E. Bl?chl,“Projector augmented-wave method”, Phys. Rev. B, 1994, 50,17953-17979.
    [24] G. Kresse, and J. Joubert,“From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B, 1999, 59, 1758-1775.
    [25] D. M. Ceperley, and B. J. Alder,“Ground State of the Electron Gas by a Stochastic Method”, Phys. Rev. Lett., 1980, 45, 566-569.
    [26] J. P. Perdew, and A. Zunger,“Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B, 1981, 23, 5048-5079.
    [27] M. P. Teter, M. C. Payne, and D. C. Allan,“Solution of Schr?dinger's equation for large systems”, Phys. Rev. B, 1989, 40, 12255-12263.
    [28] D. M. Bylander, L. Kleinman, and S. Lee,“Self-consistent calculations of the energy bands and bonding properties of B12C3”, Phys Rev. B, 1990, 42, 1394-1403.
    [29] H. J. Monkhorst, and J. D. Pack,“Special points for Brillouin-zone integrations”, Phys. Rev. B, 1976, 13, 5188-5192.
    [30] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris,“Ideal Shear Strengths of fcc Aluminum and Copper”, Phys. Rev. Lett., 1999, 82, 2713-2716.
    [31] W. D. Luo, D. Roundy, M. L. Cohen, and J. W. Morris,“Ideal strength of bcc molybdenum and niobium”, Phys. Rev. B, 2002, 66, 094110.
    [32] Z. F. Hou,“First-Principles Study of Elasticity and Electronic Structure of Incompressible Osmium Diboride”, cond-mat/0601216 (unpublished).
    [33] R. B. Roof, and C. P. Kempter,“New Orthorhombic Phase in the RuxB and OsxB Systems”, J. Chem. Phys., 1962, 37, 1473.
    [34] M. Hebbache, L. Stuparevic, and D. Zivkovic,“A new superhard material: Osmium diboride OsB2”, Solid State Commun., 2006, 139, 227-231.
    [1] H. Y. Chung, M. B. Weinberger; J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner,“Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure”, Science, 2007, 316, 436-439.
    [2] a) N. Dubrovinskaia, L. Dubrovinsky, and V. L. Solozhenko,“Comment on“Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure””, Science, 2007, 318, 1550c; b) H. Y. Chung, M. B. Weinberger; J. B. Levine, R. W. Cumberland, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner,“Response to Comment on" Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure"”, Science, 2007, 318, 1550d.
    [3] J. B. Levine, S. L. Nguyen, H. I. Rasool, J. A. Wright, S. E. Brown, and R. B. Kaner,“Preparation and Properties of Metallic, Superhard Rhenium Diboride Crystals”, J. Am. Chem. Soc., 2008, 130, 16953-16958.
    [4] H. Y. Chung, M. B. Weinberger, J. M. Yang, S. H. Tolbert, and R. B. Kaner,“Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2”, Appl. Phys. Lett., 2008, 92, 261904.
    [5] A. Latini, J. V. Rau, D. Ferro, R. Teghil, V. R. Albertini, and S. M. Barinov,“Superhard Rhenium Diboride Films: Preparation and Characterization”, Chem. Mater., 2008, 20, 4507-4511.
    [6] J. Q. Qin, D. W. He, J. H. Wang, L. M. Fang, L. Lei, Y. J. Li, J. Hu, Z. Kou, and Y. Bi,“Is Rhenium Diboride a Superhard Material?”, Adv. Mater., 2008, 20, 4780-4783.
    [7] S. N. Tkachev, J. B. Levine, A. Kisliuk, A. P. Sokolov, S. Q. Guo, J. T. Eng, and R. B. Kaner,“Shear Modulus of Polycrystalline Rhenium Diboride Determined from Surface Brillouin Spectroscopy”, Adv. Mater., 2009, 21, 4284-4286.
    [8] R. B. Kaner, J. J. Gilman, and S. H. Tolbert,“Designing Superhard Materials”,Science, 2005, 308, 1268-1269.
    [9] Y. G. Gogotsi, A. Kailer, and K. G. Nickel,“Materials: Transformation of diamond to graphite”, Nature, 1999, 401, 663-664.
    [10] K. J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh,“Quantifying the early stages of plasticity through nanoscale experiments and simulations”, Phys. Rev. B, 2003, 67, 104105.
    [11] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris,“Ideal Shear Strengths of fcc Aluminum and Copper”, Phys. Rev. Lett., 1999, 82, 2713-2716.
    [12] H. Chacham, and L. Kleinman,“Instabilities in Diamond under High Shear Stress”, Phys. Rev. Lett., 2000, 85, 4904-4907.
    [13] S. H. Jhi, S. G. Louie, M. L. Cohen, and J. W. Morris,“Mechanical Instability and Ideal Shear Strength of Transition Metal Carbides and Nitrides”, Phys. Rev. Lett., 2001, 87, 075503.
    [14] S. Ogata, J. Li, and S. Yip,“Ideal Pure Shear Strength of Aluminum and Copper”, Science, 2002, 298, 807-811.
    [15] D. M. Clatterbuck, C. R. Krenn, M. L. Cohen, and J. W. Morris,“Phonon Instabilities and the Ideal Strength of Aluminum”, Phys. Rev. Lett., 2003, 91, 135501.
    [16] X. Blase, P. Gillet, A. S. Miguel, and P. Melinon,“Exceptional Ideal Strength of Carbon Clathrates”, Phys. Rev. Lett., 92, 215505 (2004).
    [17] a) Y. Zhang, H. Sun, and C. F. Chen,“Superhard Cubic BC2N Compared to Diamond”, Phys. Rev. Lett., 2004, 93, 195504; b) Y. Zhang, H. Sun, and C. F. Chen,“Atomistic Deformation Modes in Strong Covalent Solids”, Phys. Rev. Lett., 2005, 94, 145505.
    [18] M.G. Fyta, I. N. Remediakis, P. C. Kelires, and D. A. Papaconstantopoulos,“Insights into the Fracture Mechanisms and Strength of Amorphous and Nanocomposite Carbon”, Phys. Rev. Lett., 2006, 96, 185503.
    [19] R. F. Zhang, S. Veprek, and A. S. Argon,“Mechanical and electronic properties of hard rhenium diboride of low elastic compressibility studied by first-principles calculation”, Appl. Phys. Lett., 2007, 91, 201914.
    [20] J. Yang, H. Sun, and C. F. Chen,“Is Osmium Diboride An Ultra-Hard Material?”, J. Am. Chem. Soc., 2008, 130, 7200-7201.
    [21] a) Z. C. Pan, H. Sun, and C. F. Chen,“Colossal Shear-Strength Enhancement of Low-Density Cubic BC2N by Nanoindentation”, Phys. Rev. Lett., 2007, 98, 135505; b) Z. C. Pan, H. Sun, and C. F. Chen,“Indenter-angle-sensitive fracture modes and stress response at incipient plasticity”, Phys. Rev. B, 2009, 79, 104102.
    [22] C. R. Krenn, D. Roundy, M. L. Cohen, D. C. Chrzan, and J. W. Morris,“Connecting atomistic and experimental estimates of ideal strength”, Phys. Rev. B, 2002, 65, 134111.
    [23]“VASP”, http://cms.mpi.univie.ac.at/vasp/
    [24] a) P. E. Bl?chl,“Projector augmented-wave method”, Phys. Rev. B, 1994, 50, 17953-17979; b) G. Kresse, and J. Joubert,“From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B, 1999, 59, 1758-1775.
    [25] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais,“Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Phys. Rev. B, 1992, 46, 6671-6687.
    [26] a) M. P. Teter, M. C. Payne, D. C. Allan,“Solution of Schr?dinger's equation for large systems”, Phys. Rev. B, 1989, 40, 12255-12263; b) D. M. Bylander, L. Kleinman, and S. Lee,“Self-consistent calculations of the energy bands and bonding properties of B12C3”, Phys Rev. B, 1990, 42, 1394-1403.
    [27] H. J. Monkhorst, and J. D. Pack,“Special points for Brillouin-zone integrations”, Phys. Rev. B, 1976, 13, 5188-5192.
    [28] Y. X. Wang,“Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations”, Appl. Phys. Lett., 2007, 91, 101904.
    [29] W. Zhou, H. Wu, and T. Yildirim,“Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles - 99 -and neutron scattering study”, Phys. Rev. B, 2007, 76, 184113.
    [30] J. Wang, and Y. J. Wang,“Mechanical and electronic properties of 5d transition metal diborides MB2 (M = Re, W, Os, Ru)”, J. Appl. Phys., 2009, 105, 083539.
    [31] S. La Placa, and B. Post,“The crystal structure of rhenium diboride”, Acta Crystallogr., 1962, 15, 97-99.
    [32] a) R. Hill,“The Elastic Behaviour of a Crystalline Aggregate”, Proc. Phys. Soc. London, 1952, A 65, 349; b) V. I. Nikolaev, V.V. Shpeizman, and B. I. Smirnov,“Determination of elastic moduli of GaN epitaxial layers by microindentation technique”, Phys. Solid State, 2000, 42, 437-440.
    [33] X. Q. Chen, C. L. Fu, M. Krcmar, and G. S. Painter,“Electronic and Structural Origin of Ultraincompressibility of 5d Transition-Metal Diborides MB2 (M=W, Re, Os)”, Phys. Rev. Lett., 2008, 100, 196403.
    [34] a) A. D. Becke, and K. E. Edgecombe,“A simple measure of electron localization in atomic and molecular systems”, J. Chem. Phys., 1990, 92, 5397; b) B. Silvi, and A. Savin,“Classification of chemical bonds based on topological analysis of electron localization functions”, Nature, 1994, 371, 683-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700