用户名: 密码: 验证码:
动力法反演地球重力场模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星重力测量技术可以快速获取全球重力场中长波静态信息及时变信息,已成为地球物理、大地测量、海洋等学科研究的一种高技术手段,因此利用卫星测量技术反演地球重力场模型成为近年来国际大地测量领域研究的热点。动力法反演地球重力场模型是一类最早得到应用的传统的反演地球重力场模型的方法,最初的和目前得到广泛应用的地球重力场模型大多是采用这种方法获取的。随着CHAMP、GRACE重力卫星计划的成功实施,一些新的方法(例如能量法等)迅速得到研究和重视,但动力法也还是最基础的一种方法。本文主要研究了在新的观测资料的条件下进行动力法反演地球重力场模型的原理,深入研究了卫星重力观测数据特点,并利用CHAMP数据进行实际计算。同时,由于目前卫星重力测量数据的大量获取,不同科研机构建立的地球重力场模型的数量也越来越多,这些模型在应用中与实际地面重力测量数据比较,相差并不太大,但其对应的系数却不完全相同(特别是高阶项,互差值可能是系数值本身的30%~100%,有的甚至更大),即存在地球重力场模型系数的稳定性问题。因此本文从近现代相关学科的基本原理出发,研究了动力法反演地球重力场模型的问题。
     本文的主要内容如下:
     1.给出了卫星重力测量所涉及的基础理论知识,详细阐述了各个摄动力模型,并给出了实用计算公式。
     2.利用数值方法研究了地心运动对卫星轨道的影响。
     3.给出了引力位在地固坐标系中的球谐表达式和轨道根数表达式以及在卫星重力测量实用计算中的直角坐标系下的引力位、引力向量和引力梯度张量的表达式。
     4.讨论了地球引力位系数的一般特性、低阶项的物理意义,以及重力场功率谱约束等;分析了地球引力位系数排列的多种方式对法方程结构的影响,确定了卫星重力测量解算中最优的地球引力位系数的排列方式。
     5.研究了动力法精密定轨的基本原理,给出了不同观测资料的偏导数,针对卫星重力测量SST-HL和SST-LL模型分别给出动力法解算地球重力场模型的具体数学模型和计算过程。
     6.研究分析了CHAMP星载加速度计数据、轨道数据的特点和先验重力场模型、积分弧长等问题,利用CHAMP数据进行了实际计算,计算得到模型G-ModelS1(50阶),并采用与GGM02S、DQM2000d、UGM05和EGM2008四种模型计算相同重力场元的互差的方式进行了精度评估。
     7.在进一步分析了地球重力场模型位系数作为常数的物理意义的基础上,给出了利用“点质量”思想表示的地球引力位系数的表达式,分析了C n 0, C nk ,S nk与地球全球质量积分的关系。
     8.利用带谐函数的性质研究了C n 0, C nk ,S nk的特点,得出:不同的C n0对于n个纬度位置上的一层质量及其变化完全不敏感;当n→∞时,C n0趋向于仅包含两个极点质量的积分值或互差值(具体由奇偶性决定),由于数值会非常小,近似也可以认为C n0→0。对C nk ,S nk也有相类似的结论。
     9.从相对论的基本原理出发,定性分析了动力法反演地球重力场模型存在的问题,得出:根据广义相对论,我们习惯用的牛顿引力位的地球重力场模型是平直空间中地球引力场的精细描述,但却是实际地球周围弯曲空间的近似描述,由于度规的不同,不考虑后牛顿效应动力法解算的地球重力场模型(假定无误差)在地球平均半径ae处计算的大地水准面的极限平均精度约为10-9。
     10.基于混沌学讨论了动力法反演地球重力场模型的近可积非线性动力系统的本质和存在的内在随机性问题(注:这里的内在随机性表现为不同模型的各个系数的数值有偏差,但不同模型总体精度却相差不大)。
With the application of satellite gravimetry, static as well as time-variant information of middle and long wavelength gravity field of the Earth can be fast acquired, which has made satellite gravimetry one high-tech tool in the research of geophysics, geodesy and oceanography. Therefore, the recovery of the Earth's gravity field using satellite techniques has become a hot issue for the research of geodesy in recent years. Dynamic method is one of the earliest applied methods for the recovery of the Earth's gravity field. The earliest and current widely used gravity field models were mostly acquired using the Dynamic method. With the successful implementation of satellite gravity missions like CHAMP, GRACE, some new methods, say, the Energy method, etc., attract more attention, however the Dynamic method is still one basic method that plays an important role. The dissertation covered the principle of the recovery of the Earth's gravity field using the Dynamic method with new types of observations, discussed the characteristics of satellite gravimetry observations and made practical computations using CHAMP data. At the same time, due to the enormous increasing of satellite gravimetry observations, there are more and more gravity field models of the Earth that were established by a lot of research institutions. The models make less difference when compared with real ground gravity observations, but their coefficients differs a lot, especially the higher degree, for which the inter-difference reaches 30%-100% of the coefficient itself and some to a higher extent. Therefore, the stability problem of gravity field model coefficients arises. From the fundamental of related contemporary sciences, the dissertation studied the recovery of the Earth's gravity field using the Dynamic method.
     The main work is as follows:
     1. The basic theory for satellite gravimetry was systematically presented. Perturbing forces that affect satellite gravimetry were categorized and discussed in detail and practical formulae were also presented.
     2. The effect of the Earth center movement on satellite orbit was studied using numerical methods.
     3. The spherical harmonic expressions of gravitational potential within the Earth Fixed System was provided. For the practical computations of satellite gravity, the expressions of gravity potential, gravity vector and gravity gradient tensor were also provided.
     4. The features of the Earth's gravity potential as well as the physical meanings of lower-degree coefficients were discussed. Power spectral constraint of the gravity field was also analyzed. The influence of the arrangement of gravity potential model coefficients on the structure of normal equations was analyzed, from which the optimal arrangement of model coefficients was determined that can be applied in satellite gravity solution.
     5. Precise Orbit Determination (POD) using the Dynamic method was researched, in which the partial derivatives for different observations were obtained. The specific math model and procedure for the Earth's gravity field solution were presented aiming at SST-HL and SST-LL model in current satellite gravimetry.
     6. Data of space-borne accelerometer as orbit of CHAMP were analyzed, along with the a priori gravity field model and integral arc length. Based on CHAMP data, practical computations were made, from which gravity field model G-Model S1(up to 50 degree) was derived. And then the model was assessed by making comparisons in computing gravity field elements with four models, i.e. GGM02S, DQM2000d, UGM05 and EGM2008.
     7. When used as constants, the gravity field model coefficients have certain physical meanings, which were analyzed in the dissertation. Based on the physical meanings of model coefficients, the expression of model coefficients in terms of point masses was presented, and the relation between C n 0, C nk ,S nk and the global mass integral was analyzed.
     8. C n 0, C nk ,S nk were studied based on the characteristics of zonal harmonics. From the analysis, different C n0 is totally insensitive to the mass layer and mass variation of n latitudes, and when n→∞, C n0 converges to the integral or inter-difference that includes two polar masses. Due to the infinitesimally small value, approximately C n0→0 can be taken. Similar points holds for coefficients C nk ,S nk.
     9. From the principle of the Theory of Relativity, the problem that gravity field recovery using the Dynamic method encounters was qualitatively analyzed. According to the Generalized Theory of Relativity, the Earth's gravity field model of Newton gravitational potential that people are used to is the subtle description of the gravitational field within 3-D Cartesian system; however, it is the approximation of the curved space that surrounds the Earth. Due to the different scale, the limit mean accuracy reaches 10-9 for the geoid computed at the mean radius of the Earth using the Earth's gravity field model that is solved with no post-Newton effect taken into account.
     10. The nature of the near integrable nonlinear dynamic system as well as its internal randomness was discussed from the viewpoint of the Chaos Theory. The randomness manifests that there exist bias between coefficients of different gravity field models, but the total accuracy between different models make less difference.
引文
[1]许厚泽.卫星重力研究:21世纪大地测量研究的新热点.测绘科学,2001,(03): 1-3.
    [2]陈俊勇.现代低轨卫星对地球重力场探测的实践与进展[J].测绘科学,2002,27(1):8-10.
    [3]陈俊勇.重力卫星和测高卫星五年来的进展[J].测绘科学,2005,30(5):9-10.
    [4]宁津生,罗志才.卫星跟踪卫星技术的进展及应用前景[J].测绘科学,2000,25(4):1-5.
    [5]宁津生.卫星重力探测技术与地球重力场研究[J].大地测量与地球动力学,2002,(01):1-4.
    [6]陆仲连.地球重力场理论与方法[M].北京:解放军出版社,1996.
    [7]陆仲连,吴晓平.人造地球卫星与地球重力场[M].北京:测绘出版社,1994.
    [8]刘林.天体力学方法[M].南京:南京大学出版社,1998.
    [9]李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995.
    [10]张传定.卫星重力测量-基础、模型化方法与数据处理算法:[博士论文][D].郑州:解放军信息工程大学,2000b.
    [11]徐天河.利用CHAMP卫星轨道和加速度计数据推求地球重力场模型:[博士论文][D].郑州:解放军信息工程大学,2004.
    [12]肖云.基于卫星跟踪卫星数据恢复地球重力场的研究:[博士论文][D].郑州:解放军信息工程大学,2006.
    [13]王正涛.卫星跟踪卫星测量确定地球重力场的理论与方法:[博士论文][D].武汉:武汉大学,2005.
    [14]王兴涛,夏哲仁.SST恢复重力场研究报告[R].西安测绘研究所,2005.
    [15]罗佳.利用卫星跟踪卫星确定地球重力场模型的理论与方法:[博士论文][D].武汉:武汉大学,2003.
    [16]赵东明.卫星跟踪卫星任务的引力谱分析和状态估计方法:[博士论文][D].郑州:解放军信息工程大学,2004.
    [17]沈云中.应用CHAMP星历精化地球重力场模型的研究:[博士论文][D].武汉:中国科学院测量与地球物理研究所,2000.
    [18]石磐,王兴涛.利用CHAMP卫星数据反演地球重力场[A].见:朱耀仲等主编.大地测量与地球动力学进展[C].武汉:湖北科学技术出版社,2004:219-224.
    [19]王兴涛.利用CHAMP卫星数据恢复地球重力场[A].中国地球物理[C].南京:南京师范大学出版社,2003.
    [20]徐天河,杨元喜.利用CHAMP卫星几何法轨道恢复地球重力场模型[J].地球物理学报,2005,48(2):483-486.
    [21]徐天河,杨元喜.利用CHAMP卫星星历及加速度计数据推求地球重力场模型[J].测绘学报,2004a,33(2):95-99.
    [22]郑伟,邵成刚,罗俊.近地极轨卫星恢复地球重力场的研究[A].见:朱耀仲等主编.大地测量与地球动力学进展[C].武汉:湖北科学技术出版社,2004:328-333.
    [23]周旭华,吴斌,许厚泽,彭碧波.数值模拟估算低低卫-卫跟踪观测技术反演地球重力场的空间分辨率[J].地球物理学报,2005,48(2):282-287.
    [24]胡明城.现代大地测量学的理论及其应用[M].北京:测绘出版社,2003.
    [25]胡明城,鲁福.现代大地测量学[M].北京:测绘出版社,1994.
    [26]刘经南,罗佳.武汉CHAMP站的建立及以CHAMP任务的应用.武汉大学学报信息科学版,2002a,27(6):551-554
    [27]刘经南,赵齐乐.基于PANDA软件的低轨卫星精密轨道确定研究报告.北京:卫星精密定轨专题研讨会,2003.
    [28]刘经南,赵齐乐,张小红.CHAMP卫星的几何定轨及动力平滑中的动力模型补偿研究.武汉大学学报信息科学版,2004,29(1):1-6.
    [29]罗佳,宁津生,晁定波,徐晓华.CHAMP星载加速度计数据(0.1Hz)处理与分析[J].武汉大学学报信息科学版,2004a,29(5):380-384.
    [30]罗佳,宁津生.地球重力场与KBR系统频谱关系的建立与分析.武汉大学学报信息科学版,2004b,(11):951-954.
    [31]吴晓平,夏哲仁,孙和平.中国地区重力场与大地水准面[M].北京:解放军出版社,2001.
    [32]夏哲仁,石磐,李迎春.高分辨率区域重力场模型DQM2000.武汉大学学报信息科学版,2003a,28(特):124-128.
    [33]夏哲仁.重力测量与地球重力场[M].西安:西安地图出版社,2005.
    [34]章传银,胡建国,党亚民,常晓涛.多种跟踪组合卫星重力场恢复方法初探[J].武汉大学学报信息科学版,2003,28(Special Issue):137-141.
    [35]沈云中,许厚泽,吴斌.星间加速度解算模式的模拟与分析[J].地球物理学报,2005,48(4):807-811.
    [36]沈云中,许厚泽.卫-卫跟踪重力卫星测量模式的模拟与精度分析[M].大地测量与地球动力学进展.武汉;湖北科学技术出版社,2004,211-218.
    [37]黄润一,黄浩.混沌及其应用[M].武汉:武汉大学出版社,2005.
    [38]孙义燧,周济林.现代天体力学导论[M].北京:高等教育出版社,2008.
    [39]刘宗华.混沌动力学基础及其应用[M].北京:高等教育出版社,2006.
    [40]刘式达等.自然科学中的混沌和分形[M].北京:北京大学出版社,2003.
    [41]杨万利,王铁宁.非线性动力学理论方法及应用[M].北京:国防工业出版社,2007.
    [42]李士勇.非线性科学与复杂性科学[M].黒龙江:哈尔滨工业大学出版社,2006.
    [43]爱因斯坦著,易洪波等译.相对论[M].重庆:重庆出版社,2006.
    [44]赵展岳.相对论导引[M].北京:清华大学出版社,2003.
    [45] Arabelos D, CC Tscherning. Globally coveringa priori regional gravity covariance models[J]. Advances in Geosciences, 2003,1:143-147.
    [46] Arsov K, R Pail. Assessment of two methods for gravity field recovery from GOCE GPS-SST orbit solutions[J]. Advances in Geosciences, 2003, 1:121-126.
    [47] Austen G, EW Grafarend, T Reubelt. Analysis of the earth’s gravitational field from semi-continuous ephemeris of low Earth orbiting GPS-tracked satellite of type CHAMP, GRACE or GOCE[A]. In:IAG2001 Scientific Assembly, Budapest, Hungary, 2-7 September 2001.
    [48] Bae Tae-suk, JH Kown, DA Grejner-Brzezinska. Data screening and quality analysis for kinematic orbit determination of CHAMP Satellite[A]. In:Proceedings of ION Technical Meeting, San Diego,Califormia.
    [49] Bettadpur S. Gravity Recovery and Climate Experiment Product Specification Document[R]. GRACE 327-720(CSR-GR-03-02), Center for Space Research, the university of Texas at Austin, 2004.
    [50] Biancale R, G Balmino, JM Lemoine, JC Marty, B Moynot, F Barlier, P Exertier, O Laurain, P Gegout, P Schwintzer, C Reigber, A Bode, R K?nig, FH Massmann, JC Raimondo, R Schmidt, SY Zhu. A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1[J]. Geophys. Res. Lett. , 2000, 27, 3611-3614.
    [51] Bisnath S, RB Langley. CHAMP orbit determination with GPS phase-connected, precise point positioning[A]. In:Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003. 59-64.
    [52] Bobojc A, A Drozyner. Satellite orbit determination using satellite gravity gradionmetry observations in GOCE mission perspective[J]. Advances in Geosciences, 2003, 1:109-112.
    [53] Bock H, U Hugentobler, A Jaeggi, G Beulter. Precise orbit determination for CHAMP using an efficient kinematic and reduced-dynamic procedure[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004, 157-162.
    [54] Boomkamp H. The CHAMP orbit comparison campaign[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003. 53-58.
    [55] Bouman J, R Koop. Error assessment of GOCE SGG data using along track interpolation[J]. Advacnes in Geosciences, 2003, 1:27-32.
    [56] Bouman J, R Koop, CC Tescherning, P Visser. Calibration of GOCE SGG data using high-low SST terrestrial gravity data and global gravity field models[J]. Journal of geodesy, 2004, 78:124-137.
    [57] Braasch MS. Multipath effects. In: Parkinson BW, Spiker JJ eds. Global Postioning System: Theory and applications, Vol.I,1996.
    [58] Case K, GLH Kruizinga, SC Wu. GRACE Level 1B Data Product User Handbook[R]. JPL D-22027, Jet Propulsion Laboratory, California Institute of Technology, 2004.
    [59] Cheng MK, B D Tapley, S Casotto. A new method for computing the spectrum of the gravitational perturbations on satellite orbits[J]. Celest. Dynam Astron, 1995,62:117-143.
    [60] Cheng MK. Gravitational perturbation theory for intersatellite tracking[J]. Journal of Geodesy, 2002, 76: 169-185.
    [61] Crossley D, J Hinderer, M Llubes, N Florsch. The potential of ground gravity measurements to validate GRACE data[J]. Advances in Geosciences, 2003,1:65-71.
    [62] Delefile F, P Exertier, G Metris, P Berio, O Laurain, JM Lemoine, S Loyer. A first analysis of the mean motion of CHAMP[J]. Advances in Geosciences, 2003b, 1:95-101.
    [63] Ditmar P, R Kless. A method to compute the Earth’s gravity field from SGG/SST data to be acquired by the GOCE satellite[R]. Delft: Delft University Press, 2002.
    [64] Ditmar P, P Visser, R Kless. On the joint inversion of SGG and SST data from the GOCE mission[J], Advances in Geosciences, 2003a, 1:87-94.
    [65] Ditmar P, R Kless, F Kostenko. Fast and accurate computation of spherical harmonic coefficientsfrom satellite gravity-gradionmetry data[J]. Journal of Geodesy, 2003b, 76:690-705.
    [66] Ditmar P and AA Van Eck van der Slujis. A technique for modeling the Earth’s gravity field on the basis of satellite accelerations[J]. Journal of Geodesy, 2004, 78:12-33.
    [67] European Space Agency. Gravity field and steady-state ocean circulation mission[R]. Reports for misson selection. The four candidate earth explorer core mission, SP-1233(1). European Space Agency, Noordwijk, 1999.
    [68] F?ldavry L, D Svehla, C Gerlach et al. Gravity model TUM-2Sp based on the energy balance approach and kinematic CHAMP orbits[A]. In: Reigber C., et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004. 13-18.
    [69] F?rste C, P Schwintzer, C Reigber. Format Description: The CHAMP Data Format. Ch-GFZ-FD-001 2.0, GFZ Potsdam, 2002.
    [70] F?rste C and S Choi. CHAMP accelerometer preprocessing at GeoForschungsZentrum Potsdam[A]. In: Reigber C, et al. eds. Earth Obervation with CHAMP results from three years in orbit[C]. Berlin: Spring, 2004. 169-174.
    [71] F?rste C, Flechrner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, K?nig R, Neumayer KH, Rothacher M, Reigber C, et al. A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission altimetry/gravimetry surface gravity data[A]. European Geosciences Union General Assembly 2005, Vienna, Austria, Apr. 2005.
    [72] Frommknecht B, H Oberndorfer, F Flechtner, R Schmidt. Integrated sensor analysis for GRACE development and validation[J]. Advances in Geosciences, 2003, 1:57-63.
    [73] Garcia RV. Local geoid determination from GRACE mission[R]. OSU Report No.460. Columbus: the Ohio State University, 2002.
    [74] Gerlach C, N Sneeuw, P Visser, D Svehla. CHAMP gravity field recovery with the energy balance approach: first results[A]. In: Proceedings of the 1st CHAMP international Science Meeting, Potsdam, 2002.
    [75] Gerlach C, N Sneeuw, P Visser, D Svehla. CHAMP gravity field recovery using the energy balance approach[J]. Advances in Geosciences, 2003a, 1:73-80.
    [76] Gerlach C, N Sneeuw, P Visser, D Svehla. CHAMP gravity field recovery with the energy balance approach[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin:Springer, 2003b. 134-139.
    [77] GFZ Announcement of Opportunity for CHAMP. GFZ-Potsdam, 2001.
    [78] Gooding RH, CA Wagner, J Klokocnik, J Kostelecky, C Reigber. CHAMP and resonances[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004. 101-107.
    [79] Han Shin-Chan, C Jekeli, and CK Shum. Static and temporal gravity field recovery using GRACE potential difference observables[J]. Advances in Geosciences, 2003a,1:19-26.
    [80] Han, S.-C. Efficient global gravity determination from satellite-to-satellite tracking(SST)[R]. OSU Report No.467. The Ohio State University, 2003b.
    [81] Hinga MB, SR Poole, BD Tapley. Application of eigenvalue of eigenvalue decomposltion in theparallel computation of a CHAMP 100×100 gravity field[A]. In: Reigber C, et al. eds. Earth Obervation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004. 115-120.
    [82] Howe E, CC Tschernig. Preliminary analysis of CHAMP state vector and accelerometer data fir the recovery of the gravity potential[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berling:Springer, 2003a, 140-145.
    [83] Howe E, L Stenseng and CC Tscherning. Analysis of one month of CHAMP state vector and accelerometer data for the recovery of the gravity potential[J]. Advances in Geosciences, 2003b,1:1-4.
    [84] IIK KH, T Mayer-Guerr, M Feuchtinger. Gravity field recovery by analysis of short arcs of CHAMP[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004. 127-132.
    [85] Jekeli C. Calibration/validation methods for GRACE[A]. In: IAG symposia 121: Geodesy Beyond 2000-The Challenges of the First Decade, 2000.
    [86] Kang Z, S Bettadour, B Tapley, MK Cheng, J Ries. Determination of CHAMP accelerometer calibration parameters[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP misson result for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003. 19-25.
    [87] Kang Z. Accelerometer. Lecture, 2005.
    [88] K?nig R, H Neumayer. Thermospheric events in CHAMP precise orbit determination[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003a, 112-119.
    [89] K?nig R, KH Neumayer, G Michalak, L Grunwaldt. CHAMP clock error characterization[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003b, 32-37.
    [90] K?nig R, G Michalak, KH Neumayer, R Schmidt, SY Zhu, H Meixner, C Reigber. Recent developments in CHAMP orbit determinationa at GFZ[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004a, 65-70.
    [91] K?nig R, G Michalak, L Grunwaldt, C Reigber. CHAMP clock characterization revisited[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004b, 175-180.
    [92] Kusche J. Noise variance estimation and optimal weight determination for GOCE gravity recovery[J]. Advances in Geosciences, 2003, 1:81-85.
    [93] L?cher A, KH IIK. Energy balance relations for validation of gravity field models and orbit determinations applied to the CHAMP[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004. 53-58.
    [94] Loyer S, S Bruinsma, S Tamagnan, J Lemoine, F Perosanz, R Biancale. STAR acclelerometer contribution to dynamic orbit and gravity field model adjustment[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003. 85-91.
    [95] Lu Y and H shi. Evaluation of gravity data by EIGEN-2(CHAMP-only) model in China[A]. In:Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004, 47-52.
    [96] Mayer-Guerr T, M Feuchtinger, J Kushe. A comparison of various procedures for global field recovery from CHAMP orbits[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004, 151-156.
    [97] Michalak G, G Baustert, R K?nig, C Reigber. CHAMP rapid science orbit determination-status and future prospects[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003. 98-103.
    [98] Moore P, JF Turner, Zhang Q. CHAMP precise orbit determination and gravity field recovery[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003b. 146-152.
    [99] Neumayer KH, R K?nig, C Reigber, SY Zhu. Approaches to CHAMP precise orbit determination[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003. 78-84.
    [100] Obernadorfer H, J Mueller. CHAMP accelerometer and star sensor data combination[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003. 26-31.
    [101] Pail R, G Plank. Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradionmetry implemented on a parallel platform[J]. Journal of Geodesy, 2002, 76:462-474.
    [102] Pail R and M Wermuth. GOCE SGG and SST quick-look gravity field analysis[J]. Advances in Geosciences, 2003b, 1:5-9.
    [103] Pail R. Local gravity field continuation for the Purpose in-orbit calibration of GOCE SGG observations[J]. Advances in Geosciences, 2003c, 1:11-18.
    [104] Peng Bibo, Bin Wu, Jun Li, Houze Hsu. A new method to detect and estimate CHAMP clock bias change and cycle slip[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004, 83-88.
    [105] Perosanz F., Richard B., Lemonie JM, et al., Evaluation of the CHAMP accelerometer on two year of mission[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004, 77-82.
    [106] Ramon RH, NK Pavlis. The development and analysis of geopotential coefficient models to spherical harmonic degress 360[J]. Journal of Geophysical Research, 1990, 95:885-911.
    [107] Reigber C. Gravity field recovery from satellite tracking data. In: Sansoe F et al. ed. Theory of Satellite Geodesy and Gravity Field Determination. In: Bhattacharji S et al. ed. Notes in Earth Sciences 25. Berlin: Springer,1989.
    [108] Reigber C, H Luehr, P Schwintzer. CHAMP mission status[J]. Adv Space Res., 2002b, 30(2):129-134
    [109] Reigber C, G Balmino, P Schwintzer, R Biancale, A Bode, J Lemoine, R K?nig, S loyer, H Neumayer, J Marty, R Barthelmes, F Perosanz, SY Zhu. New global gravity field models fromselected CHAMP data set[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003a. 120-127.
    [110] Reigber C, H Neumayer, J Wunsch, KH Neumayer, P Schwintzer. First insight into temporal gravity variability from CHAMP[A]. In: Reigber C, Lueehr H, Schwintzer P eds. First CHAMP mission results for gravity, magnetic and atmospheric studies[C]. Berlin: Springer, 2003b. 128-133.
    [111] Reigber C, P Schwintzer, KH Neumayer et al. The CHAMP-only Earth gravity field model EIGEN-2[J]. Adv. Space Res., 2003c, 31(8): 1883-1888.
    [112] Reigber C, H Jochmann, J Wuensch et al. Earth gravity field and seasonal variability from CHAMP[A]. In: Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004a. 25-30.
    [113] Reigber C, R Schmidt, F Flechtner et al. An Earth gravity model complete to degree and order 150 from GRACE: EINGEN-GRACE02S[J]. Journal of geodynamics, 2004b, 39(1):1-10.
    [114] Reubelt T, G Austen, EW Grafarend. Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemeris of a low Earth orbiting GPS-tracked satellite, Case Study:CHAMP[J]. Journal of Geodesy, 2003a, 77:257-278.
    [115] Tapley B, C Reigber. The GRACE mission: status and future plans[A]. EOS Trans. AGU 82(47), 2001b Fall meet. Suppl. G41C-02.
    [116] Tapley B, S Bettadpur, MM Watkins, C Reigber. The gravity recovery and climate experiment Mission overview and first results[J]. Geophys., Res. Lett., 2004, 31.
    [117] Tapley B, J Ries, S Bettadpur, D Chambersk, M Cheng, F condi, B Gunter, Z Kang, et al. GGM02-An improved earth gravity field model from GRACE[J]. Journal of Geodesy, 2005, DOI10.1007.
    [118] Visser PNAM, J. van den Ijssel, R Koop, R Klees. Exploring gravity field determination from orbit perturbations of the European Gravity Mission GOCE[J]. Journal of Geodesy, 2001,75:89-98.
    [119] Visser PNAM, J. van den Ijssel. Verification of CHAMP accelerometer obervations[J]. Advances in Space Research, 2002.
    [120] Zhang Q, P Moore. On bias and scale and thrust factors for CHAMP acelerometry[A]. In: Reigber C., et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin: Springer, 2004.163-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700