用户名: 密码: 验证码:
地球参考框架的理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球参考框架是地球参考系的实现,习惯上称为大地坐标系,或者称为大地基准,是大地测量的基础,一直是大地测量中最基本的问题。大地测量的主要任务之一是测量和绘制地球的表面形状。为了表示、描绘和分析测量成果,必须建立大地坐标系。本文主要从数据处理角度出发,探讨地球参考框架建立的本质,以及建立现代地球参考框架的约束种类和处理方法;讨论了现在已经建立的地球参考框架的原点、尺度、定向、及其时间演化的实质,即如何认识现有的参考框架;研究了地球参考框架的维持问题,对我国建立基于GNSS的参考框架的基本问题给出了建议。
     本文研究的基本结论如下:
     一、确定参考框架的问题,实质上就是完成控制网的定位。定位控制网需要七个参数,3个平移参数、3个旋转参数和尺度参数,建立动态的参考框架则还需要上述七个参数的速率参数,共14个参数。从大地测量的观点看,这14个参数可以看做两个TRF之间的相对值,其选择应当满足所采用的TRS定义。
     二、自由网平差是一种可以保持控制网最佳网形的数据处理方法。在空间大地测量阶段,松约束方法更方便应用。算例证实,在一个相当宽的数值范围内,松约束法有很好的数值稳定性,且松约束方法的解与自由网附加条件法解等价。保持控制网最佳网形的各种数据处理方法,又都可以归为最小约束一类。最小约束可以认为是提供了分析解算的充分必要数据或约束条件,使得处理结果能够保持控制网由观测得到的最佳网形。一般的,任何解集,这里指解的方差协方差矩阵,都可以化分为内部噪声和参考系效应。
     三、ITRF2000原点所实现的本质在长期上近似为CM,在季节性和其它的短时间尺度上为CF。在ITRF2000之前,以前版本的ITRF原点实现的本质在所有的时间尺度上近似为CF。ITRF2000在1mm/a的精度水平内,与NNR-NUVEL1A是匹配的,即满足NNR条件。精细、科学的全球板块运动模型对更好地实现NNR条件是很重要的。PB2002边界模型就是一个更精细的模型,受此启发,对建立我国构造地块的边界模型给出建议。
     四、所谓参考框架的维持,就是指给出点位随时间变化的坐标。维持参考框架的技术手段主要有两种,一种是给出台站速率,一种是利用空间大地测量技术给出台站的实测坐标时间序列,而后一种是多数地区维持区域参考框架的选择。
     五、针对GNSS的参考框架,是GNSS做的所有事情的基础,因而需要特别的关注。IGS实现的长期参考框架IGS00是较ITRF更为精密的参考框架,是IGS产品的基础。GSGP也要实现基于Galileo系统的GTRF。我国北斗二代关于参考框架的设计和实现可借鉴IGS和GGSP的经验。
Terrestrial reference frame (TRF) is the realization of terrestrial reference system, customarily called geodetic coordinate system or geodetic datum. TRF is the foundation of geodesy. Also, it has always been the fundamental problem of geodesy. The main task of geodesy is to deal with the measurement and representation of the Earth. Geodetic coordinate system is indispensable to represent and analyze the results of surveying. This paper reviews the nature of establishment of TRF, constraint types and their processing methods in establishing modern TRF. The nature of origin, scale, orientation, and their time evolution of current ITRF is discussed in order to understand it better. In addition, the maintenance of TRF is researched. Some suggestion is given on how to establish reference frame of GNSS of China.
     The conclusions of this paper are as follows:
     1. The nature of establishment TRF is to realize the positioning of geodetic control network. The positioning of a control network requires seven parameters, three translation components, one scale factor, and three rotation angles. If a dynamic reference frame is to be established, another seven parameters is needed, i.e., seven rates of the above components. From a geodetic point of view, the 14 parameters should be viewed as relative values between two TRFs, their selection should correspond to the adopted TRS definition that one wants to satisfy.
     2. Free network adjustment is a method that can conserve the best shape of control network only determined by observations. Loose constraint, as a method of free network adjustment, is suitable and convenient for spatial geodetic technique. A simple example has approved that there is a quite wide range of value, in which loose constraint solution is identical to free network solution. Various methods conserving the best shape of control network can be classified as minimum constraint. Minimum constraint provides sufficient and essential data for adjustment, which conserves the properties of the observing technique. Generally speaking, any solution can be identified into two parts: an internal noise in an observation and the reference system effect.
     3. The realized nature of the ITRF2000 origin becomes CM in the long term, but CF on seasonal and short timescales. Before ITRF2000, the realized nature of previous ITRF origins was not CM but approximately CF on all timescales due to an incomplete kinematic model under a CF frame. ITRF2000 is aligned with NNR-NUVEL1 A at 1 mm/a level, i.e., it satisfies NNR condition. An elaborate and scientific global plate kinermatic model is very important for realizing NNR condition, which states that the integral over the Earth’s surface of all plate motions should be zero. Plate boundary model, being a more elaborate model than ever, inspires us to give some considerations on establishment of plate boundary model in China.
     4. Simply speaking, the maintenance of terrestrial reference frame is to provide coordinates of points varying with time, taking the form of velocity model or of coordinate time series in general. As for as the maintenance of regional reference frame, the latter is preferred.
     5. The reference frame must be recognized as the foundation of everything the GNSS does and therefore deserving of special attention. IGS00, the IGS long-term frame realization, is a frame of more accuracy than ITRF and is the basis of IGS products. GGSP (Galileo Geodetic Service Provider Prototype) is researching to realize Galileo TRF based on Galileo system. There is some experience for the design and construction of BeidouⅡreference frame.
引文
1.柴洪洲.地壳运动背景场及其监测网数据处理理论与方法研究[D].郑州:中国人民解放军信息工程大学,2006.
    2.陈俊勇.大地坐标框架理论和实践的进展[J].大地测量与地球动力学,2007,27(1):1-6.
    3.陈俊勇.空间大地测量技术对确定地面坐标框架、地形变与地球重力场的贡献和进展——出席2005年国际大地测量协会(IAG)科学大会札记[J].地球科学进展,2005,20(10):1053-1058.
    4.陈俊勇.空间定位技术和国家大地基准的现代化[J].中国测量,2004,No.1:36-38.
    5.陈俊勇.现代大地测量在大地基准,卫星重力以及相关研究领域的进展[J].测绘通报,2003,29(6):1-7.
    6.陈俊勇,党亚民.完善大地坐标框架和地球重力场时变测量的进展——2005年国际大地测量协会(IAG)科学大会札记[J].测绘通报,2005,31(12):1-4.
    7.陈俊勇,许厚泽,胡建国,党亚民,姜卫平.23届IUGG大会有关大地测量的最新进展[J].测绘学报,2004,33(1):12-21.
    8.陈俊勇,杨元喜,王敏,张燕平,唐颖哲,李辉,程鹏飞,孙凤华,张鹏,郭春喜.2000国家大地控制网的构建和它的技术进步[J].测绘学报,2007a,36(1):1-8.
    9.陈俊勇,张鹏,武军郦,张全德.关于在中国构建全球导航卫星国家级连续运行站系统的思考[J].测绘学报,2007b,36(4):366-369.
    10.崔希璋,於宗俦,陶本藻,刘大杰,于正林,孙海燕,王新洲.广义测量平差(新版)[M].武汉:武汉测绘科技大学出版社,2001:115.
    11.崔希璋,於宗俦,陶本藻,刘大杰,于正林.广义测量平差(第二版)[M].北京:测绘出版社,1992:115.
    12.党亚民,陈俊勇.GGOS和大地测量技术进展[J].测绘科学,2006,31(1):131-133.
    13.甘卫军,张锐,张勇,唐方头.中国地壳运动观测网络的建设及应用[J].国际地震动态,2007,第7期(总第343期):43-52
    14.顾旦生,张莉,程鹏飞,王权,李夕银,成英燕,秘金钟.我国大地坐标系发展目标[J].测绘通报,2003,29(3):1-4.
    15.顾国华.参考框架、坐标变换和地壳运动[J].测绘通报,2006,32(8):24-27.
    16.顾国华.GNSS(GPS)观测研究地壳运动的新进展[J].国际地震动态,2007,No.7(总第343期):9-15.
    17.胡明城.现代大地测量学的理论及其应用[M].北京:测绘出版社,2003:186.
    18.黄维彬.近代平差理论及其应用[M].北京:解放军出版社,1992:
    19.黄立人.地壳运动的参考框架[J].大地测量与地球动力学,2002,22(3):102-108.
    20.黄立人,王敏.中国大陆构造块体的现今活动和变形[J].地震地质,2003,25(1):23-32
    21.焦文海.卫星导航系统坐标基准建立问题的研究.中国科学院上海天文台博士后研究工作报告.中国科学院上海天文台.2003.8.
    22.金双根,朱文耀ITRF2000参考架的评价及其探讨[J],武汉大学学报(信息科学版),2002,27(6)
    23.李毓麟,刘经南,葛茂荣,陈俊勇.中国国家A级GPS网的数据处理和精度评估[J].测绘学报,1996,25(2),81-86.
    24.刘大杰,刘经南,刘国辉.GPS与地面测量数据的三维联合平差[J].测绘学报,1994,23(1),14-22.
    25.刘根友,郝晓光,柳林涛.参数约束平差法[J].大地测量与地球动力学,2006,26(4),5-9.
    26.吕志平,张建军,乔书波.大地测量学基础[M].北京:解放军出版社,2005:
    27.吕志平.大地测量数据共享环境与数据标准的研究[D].武汉:武汉大学,2001:
    28.马杏垣.中国岩石圈地球动力学图集[M].北京:中国地图出版社,1989
    29.孟国杰,赵承坤,顾国华,郑贵明,牛红叶,许永江.不同约束对GPS观测网平差结果的影响[J].地壳形变与地震,Vol. 21, No 1, 2001.
    30.宁津生.现代大地测量参考系统[J].测绘通报,2002,28(6):1-5.
    31.宁津生,陈俊勇,李德仁,刘经南,张祖勋.测绘学概论[M].武汉:武汉大学出版社,2004.
    32.宁津生,刘经南,陈俊勇,陶本藻等编著.现代大地测量理论与技术[M].武汉:武汉大学出版社,2006:133-198.
    33.石耀霖,朱守彪.利用GPS观测资料划分现今活动块体的方法[J].大地测量与地球动力学,2004,24(2):1-5
    34.施一民.论测量控制网定位的各种处理方法[J].同济大学学报,2002,30(11):1331-1336.
    35.宋力杰.测量平差程序设计[M].北京:国防工业出版社,2009.
    36.隋立芬.高精度GPS网的统一与数据处理若干问题研究[D].郑州:中国人民解放军信息工程大学,2001a.
    37.隋立芬,陶大欣.多种顾及先验信息的平差及其比较[J].测绘工程,2001b,10(4):9-12.
    38.隋立芬,宋力杰.误差理论与测量平差基础[M].北京:解放军出版社,2004:
    39.唐颖哲,杨元喜,宋小勇.2000国家GPS大地控制网数据处理方法与结果[J].大地测量与地球动力学,2003,23(3):77-82.
    40.陶本藻.自由网平差与变形分析[M].北京:测绘出版社,1984:1-88.
    41.陶本藻.自由网平差与变形分析[M].武汉:武汉测绘科技大学出版社,2001:1-108.
    42.陶本藻.测量数据统计分析[M].北京:测绘出版社,1992:115.
    43.陶本藻.论秩亏模型参数估计的统计性质[J].测绘通报,2002,28(2):1-3.
    44.王穗辉,刘大杰.附合网平差的基准与起始数据误差的影响[J].大地测量与地球动力学,2004,24(3):19-23.
    45.王敏,沈正康,牛之俊等.现今中国大陆地壳运动与活动块体模型[J].中国科学(D辑),2003,33(増刊):21-32
    46.王敏,沈正康,董大南.非构造形变对GPS连续站位置时间序列的影响和修正[J].地球物理学报,2005,48(5):1045-1052.
    47.王敏,张祖胜,许明元,周伟,李鹏,尤晓青.2000国家GPS大地控制网的数据处理和精度评估[J].地球物理学报,2005,48(4):817-823.
    48.王敏.GPS数据处理方面的最新进展及其对定位结果的影响[J].国际地震动态,2007,No.7(Serial No. 343):3-8.
    49.王伟,王琪.GPS观测约束下的中国大陆活动地块运动学模型[J].大地测量与地球动力学,2008,28(4):75-82
    50.魏子卿.我国大地坐标系的换代问题[J],武汉大学学报(信息科学版),2003,28(2):138-143
    51.魏子卿.2000中国大地坐标系[J].大地测量与地球动力学,2008,28(6):1-5.
    52.杨元喜.中国大地坐标系建设主要进展[J].测绘通报,2005,31(1):6-9.
    53.姚宜斌.GPS精密定位定轨后处理算法与实现[D].武汉:武汉大学,2001:
    54.姚宜斌,刘经南,陶本藻,施闯.基于SINEX文件的ERP参数估计[J].武汉大学学报(信息科学版),2005,30(8):739-743.
    55.于寅.高等工程数学[M].武汉:华中理工大学出版社,1995:15.
    56.许才军,申文斌,晁定波.地球物理大地测量学原理与方法[M].武汉:武汉大学出版社,2006.9.
    57.许厚泽,熊熊.东北亚大陆地壳运动的GPS研究[J].大地测量与地球动力学,2004,24(4):1-6
    58.许其凤. GPS卫星导航与精密定位[M].北京:解放军出版社,1994.
    59.徐天河.利用CHAMP卫星轨道和加速度计数据推求地球重力场模型[D].郑州:中国人民解放军信息工程大学,2004.
    60.杨元喜.国际大地测量协会(IAG)新组织机构及对我国大地测量发展的思考[J].测绘通报,2003,29(6):8-10.
    61.张培震,王琪,马宗晋.中国大陆强震活动与活动地块[J].中国科学(D),2003,33(増刊):12-20
    62.中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006—2020年)
    63.朱文耀,符养,李彦,吴显兵ITRF2000的无整体旋转约束及最新全球板块运动模型NNR-ITRF2000VEL[J],中国科学(D辑),2003,33,增刊
    64. Altamimi, Z., et al., The terrestrial reference frame and the dynamic Earth, Eos Trans. AGU,
    82, 273, 278– 279, 2001.
    65. Altamimi, Z., and C. Boucher, Multi-technique Combination of Time Series of Station Positions and Earth Orientation Parameters[A].In: Bernd Richter, Wolfgang Schwegmann, and Wolfgang R. Dick(eds.). Proceedings of the IERS Workshop on Combination Research and Global Geophysical Fluids[C].http://www. iers.org/iers/publications/tn/tn30/,2003:102-106.
    66. Altamimi, Z., P. Sillard, and C. Boucher, ITRF2000: A New release of the International Terrestrial Reference Frame for earth science applications [J], J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002a: ETG 2-1:ETG 2-19
    67. Altamimi, Z., P. Sillard, and C. Boucher, The impact of a No-Net-Rotation Condition on ITRF2000 [J], Geophys. Res. Lett., 30(2), 1064, doi:10.1029/2002GL016279, 2003: 36-1:36-4
    68. Altamimi, Z., C. Boucher, and P. Sillard, New trends for the realization of the International Terrestrial Reference System, Adv. Space Res.,30(2), 175– 184, 2002b.
    69. Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher. ITRF2005 :A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters[J], J. Geophys. Res., 2007, 112, B09401, doi:10.1029/2007JB004949.
    70. Altamimi, Z., X. Collilieux. IGS contribution to the ITRF[J]. J. Geod.,2009,83(3):375-383.
    71. Argus, D. F., and R. G. Gordon, No-net rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18, 2039–2042, 1991.
    72. Argus, D. F., and R. G. Gordon, Tests of the rigid-plate hypothesis and bounds on intraplate deformation using geodetic data from very long baseline interferometry [J], J. Geophys. Res., 101, 1996: 13,555–13,572
    73. Argus, D. F., W. R. Peltier, and M. M. Watkins, Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy, J. Geophys. Res., 104,
    29,077– 29,093, 1999.
    74. Bastos L., M.S. Bos and R.M.S. Fernandes. Contribution of GPS measurements to plate tectonics– overview and recent developments. 2009. personal communication.
    75. Bernd Richter, Wolfgang R. Dick, and Wolfgang Schwegmann(eds.). Proceedings of the IERS Workshop on site co-location. IERS Tech. Note 33, 2005.
    76. Bird, P., An updated digital model of plate boundaries [J], Geochem. Geophys. Geosyst., 4(3), 1027, doi:10.1029/2001GC000252, 2003.
    77. Blewitt, G., M. B. Heflin, F. H. Webb, U. J. Lindqwister, and R. P. Malla, Gloal coordiantes with centimeter accuracy in the international terrestrial reference frame using GPS[J], Geophy. Res. Lett., 19(9), 853-856, 1992.
    78. Blewitt, G., Y. Bock and J. Kouba: "Constraining the IGS Polyhedron by Distributed Processing", workshop proceedings: Densification of ITRF through Regional GPS Networks, held at JPL, Nov30-Dec 2, 1994, pp. 21-37.
    79. Blewitt, G., D. Lavallee, P. Clarke, and K. Nurutdinov, A new global mode of Earth deformation: Seasonal cycle detected, Science, 294, 2342– 2345, 2001.
    80. Blewitt, G., Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth, J. Geophys. Res., 108(B2), 2013, doi:10.1029/2002JB002082, 2003.
    81. Boucher C., Z. Altamimi, P. Sillard. The 1997International Terrestrial Reference Frame(ITRF97), IERS Tech. Note 27, Obs. de Paris, Paris, 1999
    82. Boucher C., Z. Altamimi, P. Sillard, and M. Feissel-Vernier, The ITRF2000[R], IERS Tech. Note31, Paris: Obs. de Paris, 2004.
    83. Bouille, F., A. Cazenave, J. M. Lemoine, and J.-F. Cretaux, Geocentre motion from the DORIS space system and laser data on Lageos satellites: Comparison with surface loading data, Geophys. J. Int., 143, 71– 82, 2000.
    84. Chen, J. L., C. R. Wilson, R. J. Eanes, and R. S. Nerem, Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104, 2683– 2690, 1999.
    85. Christopher Kotsakis. A study on the reference frame consistency in recent Earth gravitational models. J. Geod., 83:31-50. 2009.
    86. Davies, P., and G. Blewitt, Methodology for global geodetic time series estimation: A new tool for geodynamics, J. Geophys. Res., 105, 11,083–11,100, 2000.
    87. DeMets, C., R. G.. Gordon, D. F. Argus, and S. Stein, Current plate motions[J], Geophys. J. Int., 1990, 101, 425-478.
    88. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194, 1994.
    89. Denis, C., Y. Rogister, M. Amalvict, C. Delire, A. Ibrahim-Denis, and G. Munhoven, Hydrostatic flattening, core structure, and translational mode of the inner core, Phys. Earth Planet. Inter., 99, 195– 206, 1997.
    90. Dennis D. McCarthy and G′erard Petit (eds.), IERS Conventions(2003), IERS Tech. Note
    32, Verlag des Bundesamts fuer Kartographie und Geodaesie, Frankfurt am Main, 2004.
    91. Dong, D., J. O. Dickey, Y. Chao, and M. K. Cheng, Geocenter variations caused by atmosphere, ocean and surface ground water, Geophys. Res. Lett., 24, 1867– 1870, 1997.
    92. Dong, D., T. A. Herring, R. W. King. Estimating regional deformation from a combinationof space and terrestrial geodetic data[J]. J. Geod.,1998,72(1):200-214.
    93. Dong, D., P. Fang, Y. Bock, M. K. Cheng, and S. Miyazaki, Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res., 107(B4), 2075, doi:10.1029/2001JB000573, 2002.
    94. Dong,D., T. Yunck, and M. Heflin, Origin of the International Terrestrial Reference Frame, J. Geophys. Res., 108(B4), 2200, doi:10.1029/2002JB002035, 2003.
    95. Ferland, Rémi., [IGSMAIL-5064]: FW: Call for ITRF2004 and supplementation of IERS CPP, http://igscb.jpl.nasa.gov/mail/igsmail/2004/msg00287.html, 21 Dec 2004
    96. Ferland R., Altamimi Z., Bruyninx C., Craymer M., Habrich H., Kouba, J.. Regional networks densification[A]. Proceedings of“Towards real-time network, data, and analysis centre 2002 workshop”[C]. 2003
    97. Ferland R. [IGSMAIL-5455]: IGS05 Fine Tuning. http://igscb.jpl.nasa.gov/mail/ igsmail/ 2006/ msg00179.html. 2006
    98. Ferland R., M. Piraszewski. The IGS-combined station coordinates, earth rotation parameters and apparent geocenter[J]. J. Geod.,2009,83(3):385-392.
    99. GGSP Prototype Team. http://www.ggsp.eu. Accessed in 2008.
    100.Greff-Lefftz, M., Secular variation of the geocenter, J. Geophys. Res., 105, 25,685–25,692, 2000.
    101.Kouba, J., J. Ray and M.M. Watkins, IGS Reference Frame Realization, in 1998 IGS Analysis Center Workshop Proceedings, European Space Operations Centre, Darmstadt, Germany, 139-171, 1998.
    102.Heflin MB, Bertiger WJ, Blewitt G, Freedman AP, Hurst KJ, Lichten SM, Lingwister UJ, Vigue Y, and Webb FH(1992). Global geodesy using GPS without fiducial sites. Geophys Res Lett 19:131-134
    103.Herring, T. A., D. Dong, and R.W. King, Sub-milliarcsenond determination of pole position using Global Positioning System data, Geophys. Res. Lett. 18(10):1893-1896, 1991.
    104.Herring T. A., Davis J. L., ShapiroⅡ(1990). Geodesy by radio astronomy: the application of Kalman filtering to very long baseline interferometry. J Geophys Res 95:12561-12581
    105.Herring, T. A., R. W. King, S.C.McClusky. GAMIT/GLOBK reference manual(release
    10.3). Depart of Earth, Atmospheric, and Planetary Sciences, Massachussetts Institute of Technology. 2006.
    106.Juergen Mueller, Michael soffel, Sergei A. Klioner. Geodesy and relativity[J]. J. Geod.,2008,82:133-145.
    107.Instituto Geográfico Nacional, http://itrf.ensg.ign.fr/ITRF_solutions/2005/ITRF2005.php, 05 Oct 2006
    108.Kreemer, C., William E. Holt, A no-net-rotation model of present-day surface motions[J],Geophy. Res. Lett., 2001, 28(23), 4407-4410.
    109.Lavallee, D., and G. Blewitt, Degree-1 Earth deformation from very long baseline interferometry measurements, Geophys. Res. Lett., 29(20), 1967, 10.1029/2002GL015883, 2002.
    110.Minster, B., and T. H. Jordan, Present-day plate motions, J. Geophys. Res., 83, 5331– 5354, 1978. Minster, B., and T. H. Jordan, Present-day plate motions, J. Geophys. Res., 83, 5331– 5354, 1978.
    111.M. Rothacher. Towards a Rigorous Combination of Space Geodetic Techniques[A].In: Bernd Richter, Wolfgang Schwegmann, and Wolfgang R. Dick(eds.). Proceedings of the IERS Workshop on Combination Research and Global Geophysical Fluids[C].http://www. iers.org/iers/publications/tn/tn30/,2003:7-18.
    112.NIMA. Department of Defense World Geodetic System 1984: Its Definition and Relationships with Local Geodetic Systems, NATIONAL IMAGERY AND MAPPING AGENCY TECHNICAL REPORT 8350.2(Third Edition), 2000.
    113.NGA. Addendum to NIMA TR 8350.2: Implementation of the World Geodetic System 1984 (WGS 84) Reference Frame G1150, National Geospatial-Intelligence Agency, 2002.
    114.P. Sillard, and C. Boucher.A review of algebraic constraints in terrestrial reference frame datum definition[J].J. Geod.,2001,75(1):63-73.
    115.Ray, J., Blewitt, G., Boucher, C., Eanes, R., Feissel, M., Heflin, M., Herring, T., Kouba, J., Ma, C., Montag, H., Willis, P., Altamimi, Z., Eubanks, T. M., Gambis, D., Petit, G., Ries, J., Scherneck, H.-G., Sillard, P., 1999,“Report of the Working Group on ITRF Datum.”
    116.RAY J, Dong D, Altamimi Z. IGS Reference Frames: Status and Future Improvements [A].Position paper at IGS 2004 Workshop in Berne[C].[s.l.]:[s.n.],2004.
    117.Robert S. Radovanovic. Adjustment of Satellite-Based Ranging Observations for Precise Positioning and Deformation Monitoring [D]. University of Calgary. 2002.
    118.SINEX version 1.00 description: ftp://igscb.jpl.nasa.gov/igscb/data/format/sinex.txt
    119.Trupin, A. S., M. F. Meier, and J. M. Wahr, Effects of melting glaciers on the Earth’s rotation and gravitational field: 1965–1984, Geophys. J. Int., 108, 1– 15, 1992.
    120.Vigue, Y., S. M. Lichten, G. Blewitt, M. B. Heflin, and R. P. Malla, Precise determination of Earth’s center of mass using measurements from the Global Positioning System, Geophys. Res. Lett., 19, 1487–1490, 1992.
    121.Watkins, M. M., and R. J. Eanes, Long-term changes in the Earth’s shape, rotation and geocenter, Adv. Space Res., 11, 251–255, 1993.
    122.Watkins, M. M., and R. J. Eanes, Observations of tidally coherent variations in the geocenter, Geophys. Res. Lett., 24, 2231–2234, 1997.
    123.Zhang, Q. W. Zhu, and Y. Xiong, Global plate motion models incorporating the velocityfield of ITRF96[J], Geophys. Res. Lett., 1999, 26(18), 2813-2816
    124.Zhu, S. Y., F.-H. Massmann, Y. Yu, Ch. Reigber. Satellite antenna phase center offsets and scale errors in GPS solutions[J].J. Geod.,2003,76:668-672.
    125.Zhu, S., Ch. Reigber, R. Koenig. Integrated adjustment of CHAMP, GRACE, and GPS data[J].J. Geod.,2004,78:103-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700