用户名: 密码: 验证码:
基坑支护体系地震灾变特性及结构损伤状态评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球许多国家处于地震多发区域,其中智利、日本、美国与中国处于地震频发区域。全世界每年约发生地震500万次,其中有感地震约5万次,造成严重破坏的地震近20次。仅就中国而言,1900年以来,死于地震的人数达55万之多,占全球地震死亡人数的53%。震灾涉及中国22个省(自治区、直辖市),地震成灾面积达30多万平方公里,房屋倒塌达700万间。1976年唐山大地震造成24.28万人罹难;2008年5月12日汶川大地震造成8.7万人罹难,直接经济损失8451亿元人民币。
     长期以来,为了有效地预防和减轻地震灾害,世界各国围绕地震发生机理、建筑结构物的抗震理论与技术、次生灾害预防、地震灾后评估与灾区重建等进行过大量研究,取得了大量有理论意义和使用价值的研究成果。但由于种种主客观原因,研究的焦点主要集中于运营阶段建(构)筑物抗振性及其振损评价,而对施工期基坑地震反应及其支护结构抗震性能而言,迄今还少有系统研究。随着城市地铁交通、大型地下商场、超高层建筑等工程建设的迅速发展,大型深基坑工程日益增多,地震频发区深基坑施工技术、施工期的防灾减灾、临时设施及养护期混凝土震损检测与评估等将不可避免地成为包括中国在内的地震频发区域和国家建设的重大理论和技术问题。基坑施工期内,维护和支撑结构(包括土钉墙、锚喷、地下连续墙、钢支撑、钢筋混凝土结构支撑及其他临时支撑等)、施工设施、工程机械及施工设备等由于其自身的设置及性能特点,其地震反应及抗震性能与运营期结构有本质的区别,现有的研究成果难以直接应用于施工期基坑抗震防灾及结构震损分析。
     本文针对地震频发区基坑施工的关键技术和理论问题,在充分调研的基础上采用数值模拟、室内试验及理论分析等综合研究方法,系统研究了强地震作用下不同形式深基坑抗震稳定性、基坑支护体系地震位移及灾变的时程和空间分布、施工养护期混凝土受强地震后强度损失及其评价、早龄混凝土受强地震作用后内部损伤及其评价等。取得了相应有创新意义和工程实用价值的研究成果:
     1.通过文献资料的系统查询及对汶川地震灾区的现场调研,统计分析了全球地震分布的区域特征,基于调研统计数据建立了全球性地震发生数的时间累积关系及以中国为例的局部区域地震发生数的时间分布;根据现场调研获得的汶川地震基坑及边坡破坏案例,通过力学机理分析,提出和完善了施工期基坑地震破坏模式及其力学成因。
     2.结合成都地区深基坑工程实例,通过三维动力FEM模拟计算,研究了锚喷支护基坑、地下连续墙加钢支撑基坑的地震稳定性,系统分析了两类基坑在不同传播方向地震荷载作用下基坑结构位移、钢支撑灾变演化及其鞭梢效应。
     3.通过基坑支撑结构灾变倒塌过程的三维FEM数值模拟,系统研究了不同传播方向强地震荷载作用下基坑钢支撑灾变过程及破坏形式。揭示了强地震作用下基坑支撑体系倒塌危险的区域性分布特征、支撑破坏过程的阶段性时程特性。即支撑破坏过程分为往复振动时域、振动位移急剧增加时域、结构失稳破坏时域。结果对地震频发区基坑施工过程风险防范设施设置和防灾减灾具有重要指导意义。
     4.利用模拟地震振动台进行室内试验,系统研究了基坑施工不同龄期混凝土受强地震作用后的变形特性、压缩扩容性质及其动力学机理。结果表明:养护期混凝土受强地震作用后其体积应变具有显著的扩容(体积增大)特性且扩容程度与混凝土受振龄期密切相关;混凝土结构扩容的主要力学成因是强地震作用导致结构内部形成随机分布的微观及细观裂纹在外荷载作用下产生位错、转动等从而形成宏观状态下的体积增大。
     5.通过受振混凝土变形特性的试验研究,提出了早龄混凝土在强地震作用下裂纹产生与发育的受振龄期三阶段特性:振动强化阶段(养护龄期1~10h,包括混凝土液态及粘性可流动状态);振损但能自修复阶段(养护龄期10~60h,包括半固化状态及固化且弹性模量增长状态);振损不可逆阶段(养护龄期大于60h,主要是最终固化状态)。
     6.通过室内模拟地震试验,系统研究了不同养护龄期混凝土受强地震作用后的强度损失。结果表明:受振龄期为3~30h的混凝土,其强度显著降低;受振龄期大于30h的混凝土,其强度未见明显变化。
     7.通过受震混凝土的强度及超声波试验研究,建立了受振混凝土强度与超声波波速的相关关系、提出了强地震后混凝土结构强度现场超声波检测的建议方案及实施方法。
     8.将三维层析技术应用于地震作用后混凝土结构内部损伤的检测与评价,开发了基于任意三维正交立体交汇色谱分析法用于定点评价混凝土内部结构损伤并开发了相应三维解析软件,为混凝土结构内部损伤状态的可视化评价提供了有效的手段。
     综上所述,本研究的内容和成果涉及地震频发区基坑施工可能面临的关键理论和技术问题,一定程度上填补了国内外在该领域研究的不足。部分研究成果为成都及都江堰等地灾后重建所采用,为灾后重建基坑施工过程风险防范设计提供了依据并产生了良好的技术与社会效益。
Many countries around the world are areas with frequent earthquakes. Among those, Chile, Japan, United States and China are typical areas. There are about 5 million earthquakes happens every year around the world. Thereinto, there are about 50,000 felt earthquakes, and 20 of those result in severe catastrophe. Take China as an example, since 1900, there are more than 550,000 people die from earthquake, which is about 53% of the total number around the world. There are 22 provinces affected by earthquakes, which cover more than 300,000 square kilometers, and more than 7 million building are destroyed. In 1976, there were about 242,800 people died in the Tang Shan earthquake. In 2008, there were about 87,000 people died in the Wenchuan earthquake, and result in direct economic loss of about 845.1 billion Chinese Yuan.
     In order the prevent and reduce seismic catastrophe, researchers around the world conducted many studies on earthquake generating mechanism, structure earthquake resistant theory and technology for structures, secondary disaster prevention, evaluation and reconstruction after earthquake. However, most of the researches are focused on the earthquake resistance and damage evaluation of the structure in operation. There are very few studies on foundation pit seismic response and earthquake resistance performance of support structure during construction period. Along with the rapid development of city subway system, large underground supermarkets and super high-rise buildings, the number of deep foundation pit engineering grows very fast day by day. The issues of deep foundation pit construction technology, prevent and reduce disaster during construction period, temporary constructions and seismic damage evaluation for curing concrete in frequent earthquake areas will definitely become important theory and technology for the all the countries with frequent earthquakes. During foundation pit construction period, the support structures (including soil nailing wall, spray anchor, diaphragm wall, steel support, reinforced concrete support and other temporary support), construction equipment and engineering machinery have different seismic responses and earthquake resistance performances comparing with that of structures in operation. The existing research achievements con not directly apply to the foundation pit disaster prevention and structure damage evaluation during construction period.
     This paper look into the key technologies and theories of foundation pit construction in frequent earthquake areas. The seismic resistance stability of different deep foundation pit types under strong earthquake, seismic displacement and disaster history and distribution of foundation pit support system, strength loss and evaluation of curing concrete after strong earthquake, interior damage and evaluation of early-age concrete after strong earthquake have been studied by numerical simulation, laboratory test and theoretical analysis and some importance and useful research have been achieved as follow.
     1. By literature study and on site investigation of Wenchuan, the regional distribution characteristics of earthquakes around the world have been statistical analyzed. The global earthquake number accumulation along time has been studied and China is taken as example for local earthquake number distribution along time study based on statistical data. Based on the on site investigation of foundation pit and side slope destructions cases in Wenchuan, the seismic destruction model and mechanism of foundation pit under construction have been advanced and improved.
     2. With the data of deep foundation pit project in Chengdu area, the seismic stability of spray anchor foundation pit and steel support foundation pit with diaphragm wall has been studied by three-dimension dynamic finite element method (FEM) simulation. The foundation pit structure displacement, steel support disaster evolution and whiplash effect of the two different foundation pits under seismic load along different directions.
     3. The catastrophe process and failure pattern of steel support foundation pit under strong seismic effect have been studied by three-dimension dynamic finite element method (FEM) simulation of foundation pit support structure destruction. The regional distribution characteristics of foundation pit support system failure risk and support destroy phase history under strong seismic effect have been revealed, which include reciprocating vibration phase, vibration displacement rapid growth phase, structure failure phase. The conclusions have importance significance to risk prevention, disaster prevention and reduction during foundation pit construction process in the frequent earthquake area.
     4. The deformation characteristics, the dilatation under compression and its dynamic mechanism of different curing period concretes during foundation pit construction have been studied by laboratory test of seismic vibration simulator. It is concluded that: 1) the volumetric strain of curing concrete after strong seismic effect possess obvious dilatation property (volume increase) and the dilatation has strong relation with concrete curing period; 2) the mechanism of concrete dilatation is mainly due to the dislocation and rotation of random distributed micro cracks generated after strong seismic effect which result in macro volume increase.
     5. Based on the laboratory study of after-vibration concrete deformation properties, the three stages of vibration period for crack generation and evolution in early-age concrete have been concluded: (1) vibration strengthen stage (curing age 1-10 hours, including concrete liquid status and viscous fluid status); (2) vibration damage and self-repairing stage (curing age 10-60 hours, including semi-solidification status and solidification status with increasing elastic modulus); (3) vibration damage and irreversible stage (curing age more than 60 hours, mainly final solidification status)
     6. The strength loss of after-vibration concrete with different curing period has been studied by laboratory seismic simulation. It is concluded that for the concrete with 3-30 vibration time, the strength loss is greatly reduced, while for that of vibration time more than 30 hours, the strength does not change much.
     7. The relation of concrete strength with ultrasonic wave speed has been established by laboratory tests and the scheme for on site ultrasonic wave speed inspection for concrete structure after strong seismic effect has been advanced.
     8. By applying three-dimension layer-analise technique to the evaluation of concrete interior damage after earthquake, the three-dimension analysis software has been developed which is based on arbitrary three-dimension orthogonal chromatography. This work provides an effective approach for visual evaluation of interior damage for concrete structure.
     Based on the above stated, this paper is mainly dealing with the key theories and technologies for the foundation pit construction in frequent earthquake areas. Part of the research achievements have been used for some after-earthquake reconstructions in Chengdu and Dujiangyan Dam. It provides important suggestions for risk prevention during foundation pit reconstruction after earthquake and brings useful technique and social benefits.
引文
[1]莫海鸿,杨小平.基础工程[M].北京:中国建筑工业出版社,2003.
    [2]史佩栋.国内外高层建筑深基础及基坑工程技术发展概况[J].地基基础工程,1996,6(1):1-8.
    [3]杨光华.深基坑支护结构的实用计算方法及其应用[M].北京:地质出版社,2004.
    [4]唐孟雄,陈如桂.深基坑工程变形控制[M].北京:中国建筑工业出版社,2006.
    [5]冯玉宝,李罗刚,秦四清.深基坑支护工程问题与进展[J].中国地质灾害与防治学报,1998,9(4):38-41.
    [6]《地基处理手册》编委会编.地基处理手册[M].北京:中国建筑工业出版社,1998.
    [7] JGJ120-99.建筑基坑支护技术规程[S].北京:中国计划出版社,1999.
    [8]夏才初,潘国荣等.土木工程监测技术[M].北京:中国建筑工业出版社,2001.
    [9]第七届土力学及基础工程学术会议论文集编委会.第七届土力学及基础工程学术会议集[C].北京:中国建筑工业出版.
    [10]余子华.深基坑工程实践与研究[M].北京:中国水利水电出版社,1999.
    [11]郭文,王汝恒等.软土地基的工程特点及震害影响[J].四川建筑,2006,26(4):59-60.
    [12]陈跃庆,吕西林.几次大地震中地基基础震害的启示[J].工程抗震,2001,(2):8-15.
    [13]杨光等.日本阪神地震灾害的一些调查统计数据[J].华南地震,2005,25(1):83-86.
    [14]周炳章.日本阪神地震的震害及教讯[J].工程抗震,1996,(1):39-42.
    [15]罗奇峰,那向谦.1995年日本阪神地震近场强地面运动的特征.西北地震学报,1997,19(3):52-56.
    [16]陈化然,刘文兵,张国民.从土耳其地震看强震与活动断层的关系[J].东北地震研究,2000,16(4):1-7.
    [17]陈跃庆,吕西林.几次大地震中地基基础震害的启示[J].工程抗震,2001,7(2):8-15.
    [18]范一知.场地、地基及地基土对建筑物震害影响的探讨[J].福建建材,1999,20(5):57-58.
    [19]廖瑛,李静,夏海力.从士耳其、台湾地震谈建筑物的抗震问题[J].科技进步与对策,2000,17(4):145-146.
    [20]朱伯龙,张琨联.建筑结构抗震设计原理,上海:同济大学出版社,1998.
    [21]丁剑霆,姜淑珍,包峰.唐山市桥梁震害回顾[J],世界地震工程,2006,22(1):68-7l.
    [22]赵文峰.海城地震地质背景与发震构造叨.地震研究,1981,4(2):223-229.
    [23]尹荣一,刘运明,李有利等.唐山地区地震液化与地貌之间的关系[J].水土保持研究,2005,12(4):110-112.
    [24]蒋玉谦.海城7.3级地震破坏特征及震害预测[J].地震研究,1985,8(1):81-89.
    [25]郭子雄.关于日本阪神地震震害现象的几点研究[J].华侨大学学报(自然科学版),1996, 17(2):157-161.
    [26]何茂华,丁建生.日本阪神地震的启示[J].江苏建筑,1998,5(18);141-144.
    [27]钱培风.日本阪神地震灾害严重的主要原因[J].地震研究,1996,19(3):328-330.
    [28]黄少云等,1995年阪神地震引起基础设施的破坏阴.中国市政工程,1997,20(2):57-61.
    [29]王瑞民,阪神地震中地下结构和隧道的破坏现象浅析[J].灾害学,1998,13(2):63-66.
    [30]于翔.地铁建设中应充分考虑抗地震作用.阪神地震破坏的启示[J].铁道建筑技术,2000.
    [31]唱伟.超深基坑若干问题的研究及工程实践[D].吉林大学博士论文,2004.
    [32]张艳.成都地区土钉支护的应用和稳定性分析[D].硕士学位论文,四川大学,2005.
    [33]余志成,施文华.深基坑支护设计与施工[M].北京:中国建筑工业出版社,1999.
    [34]盛和太,喻海良,范训益.ANSYS有限元原理与工程应用实例大全[M].北京:清华大学出版社,2006.
    [35]姚爱国.基坑桩锚支护设计新方法[J].探矿工程,2000,7(5):33-37.
    [36]章杨松等.深基坑支护结构分析的共同变形法[J].高校地质学报,1999,5(3):283-289.
    [37] Huang, Q. H,“Excavation and support technology for deep foundation pit with overhead shield tunnel of existing metro.”J. Urban Rapid Rail Transit. 2005, 18(4), 45-48.
    [38] Peng, S., Duan, Z. Y., and Deng, T. W.“Construction technique for deep excavation adjacent to subway.”J. Geotechnical Engineering Technique. 2005, 22(1), 36-40.
    [39]王进.高层建筑深基坑开挖三维弹性弹塑性有限元分析[D].西安建筑科技大学硕士学位论文.西安:西安建筑科技大学,2001.
    [40]梁仕华.土钉支护结构的极限分析法及大变形固结有限元理分析[D].浙江大学博士学位论文,杭州:浙江大学,2004.
    [41]胡孔国,吴京,宋启根.深基坑开挖和支护全过程分析的弹塑性有限元法.建筑结构,1999,29(3):34-36.
    [42] Sharma, J. S., et al.“Effect of Large Excavation on Deformation of Adjacent MRT Tunnels.”J. Tunnelling and Underground Space Technology. 2001, 16 (2), 93-98.
    [43] Plumelle,C.&Schlosser,E, French National Research Project Oil Soil Nailing Clouterre.Geoteelmical Special Publication, ASCE, 1990, 13(25), 661-675.
    [44] Schlosser,E&Unerreiner,P.French Research Program Clouterre on soil Nailing.Getcchnical Special Publication, ASCE , 1992, 30(2), 739-749.
    [45] Wang, W. D., Wu, J. B., and Weng, Q. P.“Numerical modeling of affection of foundation pit excavation on metro tunnel.”J. Rock and Soil Mechanics. 2004, 25 (supply. 2), 251-255.
    [46]刘红军,贾永刚.深基坑支护设计的弹性抗力有限元法[J].青岛海洋大学学报,1999,29(2):309-313.
    [47]陶明星.土-地下结构动力相互作用有限元分析[D]:[西北工业大学硕士学位论文].西安:西北工业大学,2004.
    [48]吴文.深基坑柱锚支护体系支护机理、现场试验及数值分析研究[D].硕士学位论文,北京:中国科学院,2006.
    [49]张钦喜,霍达尹等.桩锚支护破坏形式及实例分析[J].工业建筑,2002,3(6):35-42.
    [50]朱彦鹏,李忠.深基坑土钉墙支护稳定性分析方法的改进及其设计软件的开发明.兰州理工大学学报,2005,8(6):34-38.
    [51] Jeeho Lee,Gregory L Fenves.A Plastic-Damage Concrete Model for Earthquake Analysis of Dams.Earthquake Engineering and Structural Dynamics.1998, 6(27),937-956.
    [52]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [53]邓修甫,白云峰.桩锚支护体系的受力和变形研究[J].焦作工学院学报(自然科学版),2003,22(8):190-192.
    [54] S Murakami and K Kamiya,Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics.Int.J.Mech Sci.,1997, 39(4), 473-486.
    [55] Jeeho Lee,Gregory L Fenves.Plastic-damage Model for Cyclic Loading of Concrete Structures.Journal of Engineering Mechanics, 1998, 20(8), 892-900 .
    [56]王光彬.土钉支护施工过程及地震作用下的有限元分析,兰州理工大学硕士论文.兰州:兰州理工大学,2006, 6.
    [57]杨曼,李博.国内外基坑发展概况[J].山西建筑,2007,33(24):123-124.
    [58]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [59]龚晓南,高有潮.基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998.
    [60]刘金砺.我国建筑基础工程技术的现状与发展述评[J ].建筑技术,1997,28 (7):466-468.
    [61]王步云,周龙翔.岩土工程治理手册[M].沈阳:辽宁科学技术出版社.1993.
    [62]牛富俊,刘玉海,倪万魁.软土基坑变形失稳形态模拟试验研究[J].工程地质学报,2001,9(1):93-99.
    [63]蓝日彦.深基坑排桩支护土压力及变形的试验研究[D].广西大学硕士学位论文.2002.
    [64]黄柳云.深基坑边坡破坏机理的室内模拟试验研究[D].广西大学硕士学位论文.2002.
    [65]周顺华,余绍锋,吴海平.水泥土-灌注桩基坑围护结构的试验与现场实测[J].岩土工程学报,1998,20(2):51-54.
    [66]杨龙才等.基坑边坡变形和稳定性的离心试验研究[J].上海铁道大学学报,2000,21(10):100-105.
    [67]徐前卫,马险峰等,软土地基超深基坑开挖的离心模型试验研究[J].土木工程学报,2009,42(12):154-161.
    [68]何颐华,杨斌等.深基坑护坡桩土压力的工程测试及研究[J].土木工程学报,1997,20(1):16-24.
    [69]刘国彬,刘金元,徐全庆.基坑开挖引起的土体力学特性变化的试验研究[J].岩石力学与工程学报,2000,19(1):112-116.
    [70]时伟,刘继明,王磊.基坑支护体系主动区土压力试验研究[J].岩石力学与工程学报,2002,21(增2) :2379-2381.
    [71]林国根.基坑工程支护结构受力和变形特性试验研究[J].岩土工程界,2005,8 (7):63-66.
    [72]王曙光.深基坑支护事故处理经验录[M].北京:机械工业出版社,2005.
    [73]潘劲,潘观强.深基坑工程监测技术概述[J].山西建筑,2007,33(5):111-112.
    [74]张成,贺跃光.基坑信息化施工中的工程监测技术[J].测绘工程,2000,9(4):43-45.
    [75] Claus Ludwig,Etienne Constable.Wireless Tiltmeters Monitor Stability during Trench Excavation for Reno Transportation Rail Access Corridor[N].Geotechnical News, 2005, 12(3), 112-118.
    [76] Rick Wilkins,Geoffrey Bastin,Adam Chrzanowski.A Fully Automated System for Montoring Pit Wall Displacement[C]. SME,2003.
    [77] Y.M.A.Hashash,J.N.Oliveira Filho,Y.Y.Su,etc.A Laser Scanning for Tracking Supported Excavation Construction [A].Proceedings of the Sessions of the Geo-Frontiers 2005 Congress[C].2005:1-9.
    [78] Y.M.A.Hashash,L.Y.Liu,J.Ghaboussi,etc.New Technologies for Tracking Urban Excavation Progress and Estimating Deormations[A].Underground Construction and Ground Movement[C].2006:1-6.
    [79]胡友健,李梅等.深基坑工程监测数据处理与预测报警系统[J].焦作工学院学报(自然科学版),2001,20(2):130-135.
    [80]贺志勇,徐鹏飞,申冠鹏等.城市地区深基坑信息化施工检测系统初探[J].工程勘察,2008(8):8-12.
    [81]徐湘涛,汪家林等.深基坑开挖过程中的稳定性监测分析[J]. 2009,35(4):124-127.
    [82]贾坚,谢小林,翟杰群等.“上海中心”圆形基坑明挖顺作的安全稳定和控制[J].岩土工程学报,2010,32(增刊1):370-376.
    [83]杨子胜,杨建中,杨毅辉.基坑工程项目风险管理研究[J].2004,14(9):205-207.
    [84] Einstein, H. H.: Risk and risk analysis in rock engineering. Tunneling and Underground Space Technology, 1996, 11(2), 141-155.
    [85] M.H.Faber, M.G.Stewart. Risk assessment for civil engineering facilities: critical overview and discussion. Reliability Engineering and System Safety, 2003, 5(80), 173-184.
    [86]同济大学等.崇明越江通道工程风险分析研究总报告[R]. 2003.
    [87]钟才根,刘慧霞.深基坑工程风险源分析及防范对策[J].建设监理,2005,(6):64-66.
    [88]王勖成,邵敏.有限元基本原理和数值方法[M].北京:清华大学出版社,2001.
    [89]李斯海,张玉军.深基坑开控与支护过程的平面有限元模拟[J].岩石力学与工程学报,1999,34(9):35-40.
    [90]胡孔国等.深基坑开挖和支护全过程分析的弹塑性有限元法[J].建筑结构,1999,5(3):34-36.
    [91]赵海燕,黄金枝.深基坑支护结构变形的三维有限元分析与模拟[J].上海交通大学学报,2001,35(4):610-613.
    [92]曾榕.基于FLAC3D的基坑支护开挖过程数值模拟[J].山西建筑,2008,34(34):116-117.
    [93]吴燕开,许文龙.基于蒙特卡罗法的基坑整体稳定性分析[J].建筑技术,2009,40(5):461-463.
    [94]陈昌富.仿生算法及其在边坡和基坑工程中的应用[D].湖南大学,2001,3.
    [95]林皋.中国地震工程研究进展.北京:地震出版社,1992.
    [96]廖红建,宋丽等.地震荷载.地基.结构相互作用分析.岩土工程学报,2001,20(01): 1142-1148.
    [97]严松宏.地下结构随机地震响应分析及其动力可靠度研究[D],西南交通大学博士学位论文.成都:西南交通大学,2003.
    [98] Su, Jen-Hui, Yen, Tsong, Effects of earthquake excitation on the strength properties of newly poured concrete, Journal of Marine Science and Technology, 2004, 12(1), 33-44.
    [99] Morgan, D.R., Kazakoff, K., Ibrahim, H., Seismic retrofit of a concrete immersed tube tunnel with reinforced shotcrete Shotcrete for Underground Support X - Proceedings of the Tenth International Conference on Shotcrete for Underground Support, 2006, 5(11), 270-284.
    [100] Krstul ovic-Opara, Neven; Malak, Tensile behavior of slurry infiltrated mat concrete (SIMCON3.)ACI Materials Journal, 1997, 94(1), 39-46
    [101] Chen, Bowang, Wang, Haibo; Cao, Guohui, Pseudo-dynamic experimental study on framed tube supported on frame-core tube structure of concrete filled steel tube (CFST), Journal of Building Structures, 2007, 28(12), 41-50
    [102] Yazdani, S., Schreyer, H.L, Nonlinear response of plain concrete shear walls with elastic-damaging behavior, American Society of Mechanical Engineers, Applied Mechanics Division, Damage Mechanics in Engineering Materials, 1990, 4(32)143-151
    [103] Barlow, Pete, Earthquake damage to historic courthouse, (Contech Services), Concrete Construction - World of Concrete, 2002, 47(11), 33-34
    [104] Klein, Frank, Archibald, James P.; Ardahl, Jon B. et al, Environmental engineering concrete structures, ACI Structural Journal, 1989, 86(3), 277-300.
    [105] Krstulovic-Opara, Neven, Compressive behavior of slurry infiltrated mat concrete, ACIMaterials Journal, 1999, 96(3), 367-377.
    [106] Men, Jinjie, Shi, Qingxuan; Zhou, Qi, Method of performance based seismic design for vertically irregular reinforced concrete frame structures, Civil Engineering Journal, 2008, 41( 9), 67-75.
    [107] Simmons, Lon B, Earth Contact Building: Accent on Post-tensioning of Concrete, American Solar Energy Soc, 1983, 20(5), 245-249.
    [108] Bazant, Zdenek P, Kim, Jang Jay H.; Brocca, Finite strain tube-squash test of concrete at high pressures and shear angles up to 70 degrees, ACI Materials Journal, 1999, 96(5), 580-592.
    [109]王朝祥.爆破震动对建筑物早期钢筋混凝土的影响.岩土工程界.2003,6(4):77-80.
    [110] Issa, M.A.,Yousif, A.A.,Issa, M.A. Effect of construction loads and vibrations on new concrete bridge decks[J]. Journal of Bridge Engineering, 2000, 5(3), 249-258.
    [111] Su, D.,Fujino, Y.,Nagayama, T.,Hernandez Jr.,J.Y.,Seki, M.. Vibration of reinforced concrete viaducts under high-speed train passage: Measurement and prediction including train-viaduct interaction[J]. Structure and Infrastructure Engineering, 2010, 6 (5), 621-633
    [112] Kwan, A.K.H.,Zheng,W.,Ng,I.Y.T. Effects of shock vibration on concrete[M]. ACI Mater. J., 2005, 12(4), 405-413.
    [113]张瀑,鲁兆红.地震时未达龄期混凝土的处置[J].施工技术.2008(12):75-77.
    [114]金南国,金贤玉,钱在兹,早期混凝土静力与动力损伤特性的研究试验研究[J].浙江大学学报,1997,20(3):372-379.
    [115]高华东.北京某深基坑开挖监测实例[J].岩土工程学报,2006,28(增刊):1853-1857.
    [116]赵文,李慎刚,徐岩,等.地铁基坑施工稳定性监测分析[J].岩土力学,2007,28(增刊):643-646.
    [117]郭印,赵刚,孙元帝,等.桩锚式支护桩内力和变形测试研究[J].地下空间与工程学报,2009,5(5):1020-1024.
    [118]张建伟,刘汉龙,戴自航.分布荷载推力桩计算的p-y曲线法研究[J].岩土力学,2008,29(12):3370-3374.
    [119]杨有海,武进广.杭州地铁秋涛路车站深基坑支护结构性状分析[J].岩石力学与工程学报,2008,27(增2):3386-3392.
    [120]郭文爱,钱德玲.悬臂排桩支护结构桩顶最大水平位移计算分析[J].合肥工业大学学报(自然科学版),2007,30(6):753-756.
    [121]赖冠宙,房营光,史宏彦.深基坑排桩支护结构空间共同变形分析[J].岩土力学,2007, 28(8), 1749-1752.
    [122]候永茂,王建华,顾倩燕.无支撑基坑变形特性的三维有限元分析[J].上海交通大学学报,2009,43(6):972-975.
    [123]刘红岩,秦四清,李厚恩等.深基坑工程开挖安全性的数值分析[J].岩土工程学报,2006,28(增刊):1441-1444.
    [124]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [125] TsuiY, Cheng YM. A Fundamental Study of Braced Excavation Construction[J].Computers and Geotechnics,1989, 8(1), 39-64.
    [126]方焘,梁宁慧,耿大新.SMW工法围护软粘土深基坑开挖蠕变特性分析[J].地下空间与工程学报,2009,5(4):797-802.
    [127]郑列威,胡蒙达.长条形深基坑开挖引起基坑底土体的回弹解析理论计算[J].建筑施工,2004,26(3):196-199.
    [128]田振,顾倩燕.大直径圆形深基坑基底回弹问题研究[J].岩土工程学报,2006,28(增刊):1360-1364.
    [129]丁勇春,戴斌,王建华,等.某邻近地铁隧道深基坑施工监测分析[J].北京工业大学学报,2008,34(5):492-497.
    [130]马险峰,张海华,朱卫杰,等.软土地区超深基坑变形特性离心模型试验研究[J].岩土工程学报,2009,31(9):1371-1377.
    [131]郭菊彬,宋吉荣,张昆.Logistic模型在基坑沉降预测的应用研究[J].建筑科学,2006,22(6):54-57.
    [132]刘兴旺,益德清,施祖元.基坑开挖地表沉陷理论分析[J].土木工程学报,2000,33(2):51-56.
    [133]李海兵,王宗秀,付小方等.2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征[J].中国地质,2008,35(5):803-813.
    [134]李忠权,应丹琳,郭晓玉等.龙门山汶川地震特征及构造运动学初析叨.成都理工大学学报(自然科学版),2008,35(4):426-430.
    [135]陈桂华,徐锡伟,郑荣章等.2008年汶川MS 810地震地表破裂变形定量分析明.地震地质.2008,30(30):54-63.
    [136] Burchfiel B C, Royden L H, Van der Hilst R D, et a1.A geological and geophysical context for the Wenchuan earthquake of May 1 2,2008, Sichuan,People’S Republic of China[J].GSAToday, 2008, 18(7),112-118.
    [137]徐锡伟等.汶川MS 810地震地表破裂带及其发震构造.地震地质,2008,30(3):12-22.
    [138]唐荣昌,韩渭宾.四川活动断裂与地震[M].北京:地震出版社.1993,5(8):123-132.
    [139] Burchfiel B C, Chen Z,Liu Y,et a1.Tectonics ofthe Longmen Shan and the adjacent regions,central China[J].International Geology Review,1995, 37(10), 661-735.
    [140]吴珍汉,张作辰.四川汶川Ms 8.0级地震的地表变形与同震位移[J].地质通报,2008, 27(12):2067-2075.
    [141]徐扬,赵晋泉,李小军.基于汶川地震远场强震动记录的厚覆盖土层对长周期地震动影响分析川.震灾防御技术,2008,3(4):345-351.
    [142]谢礼立,周雍年,胡成祥,于海英.地震动反应谱的长周期特性.地震工程与工程振动,1990,10(1):l-7.
    [143]刘廷权,朱庆杰,苏幼坡.唐山市基岩破裂对地震动的影响分析[J].岩石力学与工程学报,2004,23(10):1765-1769.
    [144]国家建委建筑科学研究院地基基础研究所编.地基基础震害调查与抗震分析[M].中国建筑工业出版社,1978,1(3):65-72.
    [145]侯立臣.唐山地震的回顾[J].华北地震科学,2007,25(6):94-97.
    [146]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,8(1):75-86.
    [147] YOSHIDA N,KOBAYASHI S,SUETOMI I,ct甜.Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J].Soil Dynamics and Earthquake Engineering, 2002, 22(4), 205-222.
    [148] FURUMOTO Y SUGITO M,YASHIMA A.Frequencydependent equivalent linearized technique for FEM response analysis of ground[C].Auckland,2002.
    [149] SUGITO M,GODA H,MASUDA T.Frequency dependent equi-linearized technique for seismic response analysis of multi-layered ground[J] . Journal of Geotechnical Engineering,JSCE,1994,493(III-27), 49-58.
    [150] YOSHIDA N,SUETOMI I.DYNEQ:a computer program for dynamic analysis of level ground based on equivalent linear method[R].Reports of Engineering Research Institute,Sato Kogyo Co.Ltd, 1996, 6(12), 61-70.
    [151] KAUSEL E,ASSIMAKI D.Seismic simulation of inelastic soils via frequency-dependent moduli and damping[J].Journal ofEngineering Mechanics,ASCE,2002, 128(1), 34-46.
    [152] FinnW D L , Byme PM , Martin G R . Seismic response and liquefaction of sands[J].Journal of the Geotechnical EngineeringDivision, ASCE, 1976, 102(8), 841-856.
    [153] Seed H B,Martin P E Lysmer J.Pore—water P ressure changes during soil liqueftion[J]. Journal ofthe Geotechnical Engineering Division, ASCE, 1976, 102(4), 323-346.
    [154] Ming H.Fully-coup led earthquake response analysis of earth darns using a critical stste sand model[D]. Hong Kong,Hong KongUniversity of Science and Technology,2001.
    [155] Hadush S, Yashima A,Uzuoka&Moriguchi S,Sawada K.Liquefaction induced lateral spread analysis using the CIP method[J].Computers and Geotechnics.2001, 28(8), 549-574.
    [156] Zienkiewiez O C,Leunf K H,Hinton E,Chang C T.Earth dam analysis for earthquake: numedcal solution and constitutive relations for non-inear(damage)analysis[A]. Proc.Int.Conf.On Dams and Earthquake[C],London,1981, 19(22), 179-194.
    [157] Moriguehi.S.CIP-based numerical analysis for large deformation of geomaterials [D].Gifu.Gifu University, 2005.
    [158] Tamura S.Contribution of Viscous Fome to horizontal Subgrade Reaction during Soil Liquefaction Based on Pile Top Vibration Tests[C].Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver,B.C.,Canada. 2004, 8(29),290-198.
    [159] Hadush S,Yashima A,Uzuoka R.Importance of Fluid Characteristics in Liquefaction Induced Lateral Spreading AnMysis computers and Geotechnics, 2000, 27(3), 199-224.
    [160] Zienkiewicz O C,PastorM,Chan A H C,and Xie YM.Computational app roaches to the dynamics and statica of saturated and unsaturated soils[A].Advanced Geotechnicai Analysis[C].ElssevierApp lied Science,London and New York,1991, 9(23), 1-46.
    [161] Lacy S J,Prevost J H.Nonlinear seismic response analysis of earth dRillS[J]. Soil Dyn Earthquake Engng, 1987, 6(1), 48-67.
    [162] &W Boulanger,“High overburden stress effects in liquefaction evaluations.”J.Geot.& Geoenv.Eng, ASCE, 2003, 129(12),1071-1082.
    [163] L W Boulanger,‘'Relating Ka to relative state parameter index.''J.Geotectmical and Geoenvironmental Engineering, ASCE, 2003, 129(8), 770-773.
    [164] Sawada l.Large Deformation Analysis in Geomechanics Using CIP Method[J].JSME International Journal.2004, 47(4), 735-743.
    [165] Montassar S,Buhan R A numerical model to investigate the effects of propagating liquefied soils on structures[J].C0mputerS and Geotechnics. 2006, 33(2):108-120.
    [166] Montassar S,Buhan E Minimum principle and related numerical scheme for simulating initial flow and subsequent propagation of liquefied ground[J].International Journal for Numerical andAnalytical Methods in Geomechanics.2005,29(11):1065-1086.
    [167] lverson RM,Reid ME,LaHusen RG Debris-flow mobilization from landslides.Annual Review ofEarth and Planetary Sciences. 1997, 25(12), 85-138.
    [168]黄世敏,罗开海.汶川地震建筑物典型震害探讨[A].中国科学技术协会2008防灾减灾论坛专题报告,2008.
    [169]李文涛.地震波作用下地下结构动态分析数值仿真[D]:[哈尔滨工程大学硕士学位论文].哈尔滨:哈尔滨工程大学.2003.
    [170]朱彬.城市地下工程结构抗震分析研究[D]:[西安科技大学硕士学位论文].西安科技大学,2005.
    [171]刘立平.水平地震作用下桩一土一上部结构弹塑性动力相互作用分析[D]:[重庆大学博士学位论文].重庆大学.2004.
    [172] Shinozuka, Masanobu, Kim, Sang-Hoon; Kushiyama, Shigeru; Yi, Jin-Hak, Fragility curves of concrete bridges retrofitted by column jacketing, Earthquake Engineering andEngineering Vibration, 2002, 1(2) 195-205.
    [173]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003
    [174] Porter, Keith A, Beck, James L.; Shaikhutdinov, Rustem, Simplified estimation of economic seismic risk for buildings, Earthquake Spectra, 2004, 20(4), 1239-1263.
    [175] R.E.谢里夫,L.P.吉尔达特.勘探地震学(第二版)[M],石油工业出版社,2002.
    [176] Corinaldesi, Valeria, Moriconi, Giacomo, Behavior of beam-column joints made of sustainable concrete under cyclic loading, Journal of Materials in Civil Engineering, 2006, 18(5), 650-658。
    [177] Kim, Sang-Hoon, Shinozuka, Masanobu, Fragility Curves for Concrete Bridges Retrofitted by Column Jacketing and Restrainers, Technical Council on Lifeline Earthquake Engineering Monograph, 2003, 6(25), 906-915.
    [178] Seible, Frieder, Priestley, M.J. Nigel; Hegemier, Gilbert A.; Innamorato, Donato, Seismic retrofit of RC columns with continuous carbon fiber jackets, Journal of Composites for Construction, 1997, 1(2), 52-62.
    [179] Longwei CHEN,Longqing HOU,Zhenzhong.CAO.Liquefaction Investigation of Wen chuan Earthquake.The 14th World Conferencc on Earthquake Engineering October,2008, 12-17。
    [180] CECS21:2000.超声波法检测混凝土缺陷技术规程[S].北京:中国工程建设标准化协会,上海同济大学,2000.
    [181]“新编混凝土无损检测技术”编写组.新编混凝土无损检测技术.北京:中国环境出版社,2002.
    [182]濮存亭,孙刚柱.超声波平测法检测混凝土裂缝深度测试方法实验研究[J].2007,20(5):55-59.
    [183]仝秋红.混凝土中超声波传播方式研究[J].中国公路学报,1998,13(2):27-28
    [184]林维正,苏勇,洪有根.混凝土裂缝深度超声波检测方法[J].无损检测,2001,10(22):114-115
    [185]沈国伟,吴瑞潜.关于提高超声法检测混凝土技术准确度的探讨[J].研究动态,2000,4(18):23-25.
    [186] WeiDu L.Frequency Spectrum Analysis of Ultrasonic Testing Singal Concrete.NewYork: SACE, 1992, 192-193。
    [187] Diamond S,Young J F.Scanning electron microscopy energy di spersive X-ray analysis of cement constitutes some cautoons[J].Cem Conc Res,1994, 19(3), 899-914.
    [188] Dieulesaint E.and Royer D.Elastics waves in sol ids:Appl ication to signal processing[J],Tr.by A.Bastin and M.Motz Chichester,Wi ley,1980, 4(17), 723-726.
    [189]傅竹武,王鑫.混凝土构件缺陷超声无损检测的研究[J].混凝土构件缺陷超声无损检测的研究.湖北.武汉NDT学术年会论文集2007,99-101.
    [190]董清华.混凝土无损检测方法评述[J].五邑大学学报(自然科学版),2005,19(1):4-6.
    [191]刘镇清,陈广.超声无损检测中的谱分析技术[J].无损检测,2001,23(2):10-11.
    [192]袁善杭等.混凝土裂缝深度检测技术研究[J].建筑设计,2006,35(1):90-92.
    [193]尹明干等.超声波检测混凝土缺陷的实验研究[J].盐城工学院学报,2007,20(3):117-119.
    [194]沈国伟,吴瑞潜.关于提高超声法检测混凝土技术准确度的探讨[J].传感器技术,2000,13(4):22-23.
    [195]张永乐,杨建超,唐德高.混凝土中超声波波速特征检验研究[J].河海大学学报,2008,36(3):100-102.
    [196]苏航等.冲击回波检测.方法及其在土木工程中的应用[J].无损检测,2003,25(2):81-83.
    [197] Daubenchies I. Orthonormal basis of compactly supported wavelets[J]. CommPure Applied Mathe, 1988, 41(11), 909-996.
    [198] Legendre S, Goyette J, Massicotte D. Ultrasonic NDE of composite material structures using wavelet coefficient[J]. NDT&E International, 2001, 34(2), 31-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700