用户名: 密码: 验证码:
类土质边坡稳定性及其控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山区高速公路多数路段都位于自然斜坡上,修筑过程中会形成路堑、路堤、桥基、隧道进出口等众多边坡,由坡残积层、全风化层和强风化层组成的类土质边坡是山区高速公路发生滑坡破坏比例最高的边坡,准确区分坡残积层、全风化层和强风化层较为困难,并且它们往往同时出现于同一边坡工程,因此有必要作为一个整体研究。类土质边坡具有与土质边坡和岩质边坡不同的特性,需要分析其破坏机理并提出有针对性的控制技术。本文以作者多年边坡工程勘察、设计、监测的生产实践为基础,结合国家自然科学基金“基于能量渐进耗散的流固耦合作用下土石混合体滑坡演化机制研究”(50878213/E080603)和交通运输部西部交通建设科技项目“西部地区公路地质灾害监测预报技术研究”(2003-318-802-01)、“路基塌方沉陷快速修复技术研究”(2006-318-802-111)、“贵州山区浅变质岩系风化层路基边坡稳定性研究”(2006-318-802-37),开展了以下研究工作:
     1)通过对贵州高等级公路边坡破坏情况及工程控制措施的分析,总结了公路类土质边坡的工程特性,选择了具有代表性的类土质边坡研究试验点,并进行了工程地质分析。
     2)在试验点上开展了人工降雨诱发类土质边坡破坏的试验,分析了降雨对类土质边坡坡面和坡体的影响规律。
     3)阐述了坡面径流的控制方程及考虑坡度影响的坡面流的控制方程和相应的定解条件,结合现场人工降雨试验,分析了坡面径流造成类土质边坡坡面破坏的机理。
     4)构建了适用于类土质边坡的损伤函数,并推导了基于损伤理论的Mohr-Coulomb模型。引入损伤比,对瑞典圆弧法进行了改进,并用于分析降雨诱发类土质边坡坡体破坏的机理。
     5)提出了基于损伤理论的类土质边坡渗透系数K的动态计算模型,构建了类土质边坡损伤—流-固耦合的数学模型,并应用于基于FLAC3D的数值模拟,分析了降雨诱发类土质边坡坡体破坏的机理。
     6)在进行室内模拟试验和物性试验的基础上,研究了基于TDR技术确定边坡滑面方法的可行性;通过与钻孔测斜确定边坡滑面方法的对比,验证了TDR技术应用于实际工程确定滑动面的可靠性、经济性和先进性。
     7)针对类土质边坡的工程特性、破坏规律和破坏机理,提出了类土质边坡稳定性控制思路,总结了类土质边坡稳定性工程控制措施。为控制坡面冲刷和减少降雨入渗,开发了浅层压力注浆新技术,提出了相应的设计程序、设计参数和所需的机具设备,并在多个类土质边坡加固中得到应用;为控制坡体破坏,应用能量分析理论分析抗滑桩位置设置对边坡稳定性的影响,提出了抗滑桩设计的简化设计流程,从美观协调的角度改进了抗滑桩的设计,提出了变截面抗滑桩,推导了变截面抗滑桩的桩身变位计算公式,并结合实际工程进行了具体应用。
Most sections of mountainous highways are located on the natural slopes. Many slopes such as cutting, embankment, bridge foundation, tunnel inlet and outlet etc., will come into being in the process of construction, among which the pseudo-soil slopes which are composed of eluvium, completely weathered layer and strong weathered layer are the largest failure rate. It is rather difficult to accurately distinguish completely weathered layer and strong weathered layer, in addition which come into being in the same slope engineering at the same time, so it is necessary to research them as a whole. Pseudo-soil slope has different characters from the ones of soil slope and rock slope, so it is necessary to analyze its failure mechanism and put forward the corresponding control technology. Based on years of slope engineering surveying, designing and monitoring, combining with the projects of National Natural Science Foundation“Study on Evolution Mechanism of Soil and Rock Blending Landslide Under Fluid-solid Coupling Based on Energy Progressive Dissipation”(50878213/E080603),“Research of Highway Geological Disaster Monitoring and Forecasting Techniques for Western Area”(2003-318-802-01) which is supported by the Ministry of Transport, and“Study on Quick Repair Technology of Subgrade Subsidence and Collapse (2006-318- 802-111),“Study on the Stability of Metamorphosed Rock Series Weathered Layer Subgrade Slope in Guizhou Mountainous Areas(2006-318-802 -37)”, this paper carries out the researches as follows:
     1) Based on the analysis of highway slope failures in Guizhou and engineering control measures, this paper has summarized the engineering characteristic of highway pseudo-soil slope, chosen representative pseudo-soil slope testing spot, and developed engineering geology analysis.
     2) By on-the-spot work of developing the pseudo-soil slope failure induced by artificial rainfall experiments, the law of rainfall influence on pseudo-soil slope surface and body is analyzed.
     3) The governing equation of runoff on slope surface and the governing equation of slope runoff with consideration of inclination influence and corresponding definite conditions are illustrated. Combining on-the-spot work of developing artificial rainfall experiments, the mechanism of pseudo-soil slope failure caused by slope runoff is analyzed.
     4) This paper has constructed a damage function which is suitable for pseudo-soil slope and derived the Mohr-Coulomb model based on damage function, and introduces the damage ratio to improve the Swedish circle method, which is applied to analyzes the mechanism of pseudo-soil slope failure caused by rainfall.
     5) The dynamic computational model of pseudo-soil slope permeability coefficient K has been brought up. The mathematical model for seepage-stress coupling damage behavior of pseudo-soil slope has been constructed. This model is applied to numerical simulation based on FLAC3D to analyze the mechanism of pseudo-soil slope failure caused by rainfall.
     6) On the basis of laboratory simulation tests and physical test, this paper researches the feasibility of slope slide face confirmation based on TDR technology; and it is proved that TDR technology applied in the actual engineering to confirm slide face is feasible, economical and advanced.
     7) Aimed to the engineering characteristic, the failure laws and failure mechanism of pseudo-soil slope, this paper puts forward the thought of stability control, and summaries the control measures for stability engineering control of pseudo-soil slope. In order to control slopewash and reduce rainfall infiltration, hallow pressure grouting technology has been developed and corresponding design program, design parameters and necessary apparatus have been put forward, which are applied in the multiple pseudo-soil slopes reinforcement. To control slope failure this paper has analyzed the anti-slide pile position arrangement influence on slope stability using failure energy analysis method, brought forward the simplified design process of anti-slide pile, advanced the design of anti-slide pile in aesthetic and coordination terms, come up with anti-slide pile with variable cross-section, deduced the calculation formula of anti-slide pile with variable cross-section displacement, and applied the result as above to the actual projects.
引文
[1]王毅才主编.隧道工程[M].北京:人民交通出版社, 2000.
    [2]马惠民,王恭先,周德培编著.山区高速公路高边坡病害防治实例[M].北京:人民交通出版社, 2006.
    [3]中华人民共和国国家标准.岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社, 2002.
    [4]廖小平.类土质路堑边坡变形破坏类型及其稳定性分析[J].岩石力学与工程学报, 2003, 22(S2): 2765-2772.
    [5]陈阵,蔡杰,王朝龙等.“类土质路堑边坡稳定性及锚固技术加固的应用研究”研究报告, CG2006010452[R].福州:福建省交通规划设计院, 2005.
    [6]赵晓彦.类土质边坡特性及其锚固设计理论研究[博士学位论文D].成都:西南交通大学, 2005.
    [7]朱宝龙,杨明,胡厚田等.类土质边坡锚固特性的试验研究[J].岩土力学, 2004, , 25(12): 1923-1927.
    [8]杨明,王波,胡厚田.类土质边坡特征的初步探讨[J].水土保持学报, 2002, (6): 110-112.
    [9]赵晓彦,胡厚田,庞烈鑫等.类土质边坡开挖的卸荷作用及卸荷带宽度的确定[J].岩石力学与工程学报, 2005, 24(4): 708~712.
    [10]黎剑华,鞠海燕,张治平.高速公路类土质边坡加固方法及应用[J].路基工程, 2007, (6): 43-44.
    [11]汪劭祎;张贵;张宝成.预应力锚索在类土质边坡中的作用分析[J].公路交通科技(应用技术版), 2008, (2): 68-70.
    [12] Hencher. S. R. & Mcnicholl. D. P. Engineering in weathered rock[J]. Quarterly Journal of Engnieering Geolog, 2007, (28): 253~266.
    [13]王群,杨顺泉,魏军才等.湖南省人类活动诱发地质灾害的现状与防治对策[J].中国地质灾害与防治学报, 2002, l3(2): 56—62+69.
    [14]李天斌.岩质工程高边坡稳定性及其控制的系统研究[博士学位论文D].成都:成都理工大学, 2002.
    [15]邓卫东,罗强,柴贺军等.“公路边坡稳定成套技术研究”研究报告, 200131800000[R].重庆:重庆交通科研设计院.
    [16]郑颖人,陈祖煜,王恭先等编著.边坡与滑坡工程治理[M].北京:人民交通出版社, 2007.
    [17]王思敬,黄鼎成主编.中国工程地质世纪成就[M].北京:地质出版社, 2004.
    [18]顾宝和,曲永新,彭涛.劣质岩(问题岩)的类型及其工程性质[J].工程勘察, 2006, (1): 1-7.
    [19]铁道部第一勘测设计院主编.铁路工程设计技术手册(路基)[M].北京:人民铁道出版社, 1992.
    [20]交通部第二公路勘察设计院主编.公路路基设计手册[M],北京:人民交通出版社出版, 1997.
    [21]西部交通建设科技项目管理中心.西部交通科技项目成果展[Z]. 2005, 3.
    [22]《工程地质手册》编写委员会.工程地质手册(第三版)[M].北京:中国建筑工业出版社, 1992.
    [23]中华人民共和国行业标准.公路路基设计规范(JTG D30-2004)[S].北京:人民交通出版社, 2004.
    [24]赵树良.类土质边坡锚固效应数值模拟[J].四川建筑, 2003, (04): 34-35.
    [25]罗戎,桂永叶,聂小伍等.预应力锚杆(索)在三福高速公路类土质边坡加固工程中的应用[J].广东公路交通, 2006, (04): 53 -56.
    [26]范汉泉.梅河高速公路类土质高边坡防护设计与施工[J].公路交通技术, 2005, (02): 8-11.
    [27]卢才金.考虑结构面效应的路堑类土质高边坡及其稳定性分析[J].岩土工程界, 2004, (10): 31-34.
    [28]熊自英.类土质边坡特性研究[J].四川建筑, 2004, (03): 42-43.
    [29] C. F. Lee et al. Literature Review on Engineering Properties of and Landslides in Granitic Saprolites in South China.
    [30]曾昭漩.我国南方红土区的水土流失问题[J].第四纪研究, 1991, (1): 14-15.
    [31]谢浩球.广东地质灾害概述[J].广东地质, 1991, 6(3): 1~8.
    [32]刘明俊.风化花岗岩边坡稳定性问题[A].第三届全国工程地质大会论文集[C].成都:成都科技大学出版社, 1988.
    [33]张文华.花岗岩残积土的抗剪强度及土质边坡稳定性分析[J].水文地质工程地质, 1994, (3): 41~43.
    [34] Noorishad J. A finite element method for coupled stress and flow analysis In fractured rock mass[J]. Int. J Rock Mech. Min. Set. Geomech. Abstr, 2007, (6): 151~159.
    [35] Noorlshad J. Coupled thermal-hydraulic-mechanical phenomena In saturated fractured porous. Numerical approach[J]. J. Geoph. Res, 2007, (B12): 231~236.
    [36] Wu Yan-Qing, Zhang Zhuo-Yuan. Research on Lumped Parameter model of coupled seepage and stress field in fractured rock mass[A]. Proc. Seventh International Congress International Association of Engineering Geology[C]. Sept, 2006, LISBOA. PORTUGAL. : 221~228.
    [37]柴军瑞,李康宏.米箭沟尾矿坝加高方案渗流数值分析[J].岩土力学, 2005, 26(6):973~977.
    [38]许增光,柴军瑞.考虑温度影响的岩体裂隙网络稳定渗流场数值分析[J].西安石油大学学报(自然科学版), 2007, 22(2): 169~172.
    [39] Witherspoon. A. etal. New approaches to problems of fluid in fractured rock masses[A]. In: Proc. U. S. Symposium Rock. Mech, 22nd[C]. 2007: 323~327.
    [40] Maini. Approaches to problems of fluid in fractured rock masses[J]. Int. Assoc. Hydrogeo, 2007, (17): 78~87.
    [41] Desai. Finite Element Methods for Flow in Porous Media in Fluids[M]. New York: Wiley, 1975: 28~38.
    [42]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学, 1997, (4): 59~62.
    [43] Oda. M. Permeability tensor for discontinuous rock masses[J]. Geotechnique, 2006, (4): 76~88.
    [44]傅鹤林.板裂介质理论在牟珠洞滑坡机理分析中的应用[J].中南大学学报, 2006, 37(1): 188~193.
    [45]朱珍德,邢福东,渠文平等.岩石-混凝土两相介质胶结面抗剪强度分形描述[J].岩土力学与工程学报, 2006, 25(1): 2910~2917.
    [46]罗晓辉,卫军,罗昕.混凝土力学性质的损伤监测分析[J].华中科技大学学报(城市科学版), 2006, 23(3): 11~15.
    [47]徐则民,黄润秋.滑坡灾害孕育-激发过程中的水-岩相互作用[J].自然灾害学报, 2005, (4): 1~9.
    [48]杨志锡,叶为民,杨林德.各向异性饱和土体的渗流耦合分析和数值模拟[J].岩石力学与工程学报, 2002, 1(21): 1447~1451.
    [49]平扬,刘明智,郑少河.降雨入渗条件下的膨胀土边坡稳定性分析[J].岩石力学与工程学报, 2004, 23(1): 4478~4484.
    [50]李宁,陈波,陈飞熊.寒区复合地基的温度场、水分场与变形场三场耦合模型[J].土木工程学报, 2003, 36(10): 66~71.
    [51]刘杰,孙志亮,付宝亮.重力式水泥搅拌桩挡土稳定性的分析研究[M].四川建筑科学研究, 2006, 32(5): 102~105.
    [52] Taylor D. W. Fundamentals of soil mechanics[M]. John Wiley & SONS, Inc. , 1948. : 28~37.
    [53] A. E.薛定谔.多孔介质中的渗流物理[M].北京:石油工业出版社, 1984.
    [54]黄文熙.土的工程性质[M].北京:水力电力出版社, 1984.
    [55] Chen W. F. (1989). Limit analysis and soil plastics. Elsevier Scientific Publishing Company[M]. Amsterdam.
    [56]沈珠江.理论土力学[M].北京:中国水利出版社, 2000.
    [57]李晓.土石混合体的工程地质力学特性研究[A].第五届全国地面岩石工程学术会议暨中南地区岩石力学与工程学术会议[C].专题报告.隧道网www. tunnelling. cn, 2005.
    [58]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与岩体破坏准则[J].岩石力学与工程学报, 2005, 24(17): 3003~3010.
    [59]周中.土石混合体滑坡的流—固耦合特性及其预测预报研究[博士学位论文D].长沙:中南大学, 2006.
    [60]李兆霞.损伤力学及其应用[M].北京:科学出版社, 2002.
    [61] Kachanov L. M. On the time to failure during creep[J]. Izv. AN SSS OTN, 1958, (8): 26~31.
    [62] Rabotnov Yu N. On the equation of state for creep[J]. Progress in Applied Mechanies, 1963, (1): 307~315.
    [63] Janson J, Hult J. Fracture mechanics and damage mechanics, a combined approach[J]. J. de Mech. Appl, 1977, 1(1): 59~64.
    [64] Kachanov L. M. Introduction to continuum damage mechanics[M]. Dordrecht, the Netherlands : Martinus Nijhoff Publishers, 1986.
    [65]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社, 2005.
    [66]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社, 1997.
    [67]张行,赵军.金属构件应用疲劳损伤力学[M].北京:国防工业出版社, 1998.
    [68] [美]B. I.桑多尔.循环应力与循环应变的基本原理[M].北京:科学出版社, 1985.
    [69]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社, 1995.
    [70] [美]L. M.卡恰诺夫著,杜善义,王殿富译.连续介质损伤力学引论[M].哈尔滨:哈尔滨工业大学出版社, 1989.
    [71]楼志文.损伤力学基础[M].西安:西安交通大学出版社, 1991.
    [72]吴鸿遥.损伤力学[M].北京:国防工业出版社, 1990.
    [73]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社, 1990.
    [74]尹双增.断裂损伤理论及其应用[M].北京:清华大学出版社, 1992.
    [75]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社, 1993.
    [76]王军.损伤力学的理论与应用[M].北京:科学出版社, 1997.
    [77]黄树槐.损伤力学[M].武汉:华中理工大学出版社, 1989.
    [78] J.勒迈特.损伤力学教程[M].北京:科学出版社, 1996.
    [79]葛修润.岩土损伤力学宏细观试验研究[M].北京:科学出版社, 2004.
    [80]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社, 1995.
    [81]易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社, 2005.
    [82] Lemaitre J. , Plumtree J. . Application of damage concepts to predict creep-fatigue failures [J]. J. Engg. Mater. Trans. ASME, 1997, 101: 284~292.
    [83] Wohua Zhang, Valliappan S. Continuum damage mechanics theory and application, Part I: Theory[J], Int. J. of Damage Mech. , 1998, (7): 250~273.
    [84] Wohua Zhang, Valliappan S. Analysis of random anisotropic damage mechanics problems of rock mass, Part II-Statistical Estimation[J]. Int. J. Rock Mech. And Rock Engg, 1990, (23): 241~259.
    [85] Dragon A. and Mroz. A model for Plastic creep of rock-like materials accounting for the rinetics off acture[J]. Int, J. Rock Mech. Min. Sci. and Geomech. , 1967, 10(3): 107~115.
    [86]张我华,金黄,陈云敏.损伤材料的动力响应特性[J].振动工程学报, 2000, 13(3): 413~425.
    [87] Wang J. Low cycle fatigue and cycle dependent creep with continuum mechanics[J]. Int. J. Damage Mech. , 1992, I(2): 237~244.
    [88] J. J. Xiong, R. A. Shenoi. A two-stage theory on fatigue damage and life prediction of composites[J]. Composites Science and Technology, 2004, (64): 1331~1343.
    [89] J. Lemaitre, J. P. Sermage, R. Desmorat. A two scale damage concept applied to fatigue[J]. International Jouma lof Fracture, 1999, (97): 67~81.
    [90] Zhang Wohua and Valliappan S. Continuum damage mechanics theory and application, PartII-Application[J]. Int. J. Damage Mechanics, 1998, (7): 274~297.
    [91] Kawamoto T. , Ichikawa Y. and Kyoya T. Deformation and fracturing of discontinuous rock mass and damage mechanics theory[J]. Int. J. for Numerical and Analytical Method in Geomechanics, 1988, (12): l~30.
    [92]张土乔.水泥土的应力应变关系及搅拌桩破坏研究[博士学位论文D].杭州:浙江大学, 1992.
    [93]童小东.水泥土添加剂及其损伤模型试验研究[博士学位论文D].杭州:浙江大学, 1999.
    [94]沈珠江,章为民.损伤力学在土力学中的应用[A].第三届全国岩土力学数值分析及解析方法讨论会论文[C].珠海: 1988.
    [95]孙林.高速公路沉降变形的剪损弹塑性分析[硕士学位论文D].南京:河海大学, 1997.
    [96]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究, 1993, (3): 247-255.
    [97]赵锡宏,孙红,罗冠威.损伤土力学[M].上海:同济大学出版社, 2000.
    [98]张青,史彦新,朱汝烈. TDR滑坡监测技术的研究[J].中国地质灾害与防治学报, 2001, (02): 64-66.
    [99] Rohring J. Location of faulty places by measuring with cathode ray oscillographs[J]. Elektrotech Z. , 1931, 8(3): 76~87.
    [100] Andrews J. R. Time demain reflectometry. Proceedings, Symposium and workshop on time demain reflectometry in environmental, Infrastructure, and mining applicationg [M].Northwestern University, U. S: Bureau of mines special publication, 1994.
    [101] Davis, J. L. , Chudobiak, W. J. . In-situ meter for measuring relative permittivity of soils[J]. Geological Survey, 1975, (05): 75-79. .
    [102] G. C. Topp, et al. . Electromagnetic Determination of Soil water Content: Measurements in Coaxial Transmission Lines[J]. Water Resources Research, 1980, 16(03): 574-582.
    [103] De Loor, G. P. . Dielectric Properties of Heterogeneous Mixtures Containing Water[J]. Journal of Microwave Power, 1968, 3(2): 67-73.
    [104] Birchak, J. R. , Gardner, C. G. , Hipp, J. e. . High Dielectric Constant Microwave Probes for Sensing Soil Moisture[J]. Proc. IEEE, 1974, 62(1): 93-98.
    [105] Zegelin, S. J. , I. White, and D. R. Jenkins. Improved Field Probes for Soil Water Content and Electrical Conductivity Measurement Using Time Domain Reflectometry[J]. Water Resources Research, 1989, 25(11): 2367-2376.
    [106] F. N. Dalton, et al. . Time Domain Reflectometry: Simultaneous Measurement of Soil Water Content and Eletrical Conductivity with a Single probe[J]. Science, 1984, (224): 989-990.
    [107]柴世伟,刘文兆,张聚庭等. TDR研制与应用方面的若干进展[J].中国农业生态学报, 2001, (02): 101-103.
    [108]门旗.时域反射仪研究进展及在灌溉学科中应用[J].节水灌溉, 1999, (04): 3-5.
    [109]邬晓岚,涂亚庆.滑坡监测的一种新方法——TDR技术探析[J].岩石力学与工程学报, 2002, 21(05): 740-744.
    [110] Dowding, C. H. and F. C. Huang. Early Detection of Rock Movement with Time Domain Reflectometry[J]. Journal of Geotechnical Engineering, ASCE, 1994: 120, (8): 28-35.
    [111] U. S. Bureau of Mines. Early Detection and Technical Animation of Rock Movements Using Time Domain Reflectometry[J]. Technology News, , 1995, 449(04): 2-6.
    [112] Kane, W. F. and Beck, T. . Development of a Time Domain Reflectometry System to Monitor Landslide Activity Proceedings[A]. 45th Highway Geology Symposium[C]. Portland, OR, 1994: 163-173.
    [113]张青.滑坡地质灾害TDR监测技术研究[博士学位论文D].长春:吉林大学, 2007.
    [114]陈云敏,陈赟,陈仁朋等.滑坡监测TDR技术的试验研究[J].岩石力学与工程学报, 2004, 23(16): 34~39.
    [115]史彦新,张青. TDR技术在雅安峡口滑坡监测中的应用[J].勘察科学技术, 2005, (01): 34~39.
    [116]唐然,汪家,范宣梅等. TDR技术在滑坡监测中的应用[J].地质灾害与环境保护, 2007, 18 (01): 105~110.
    [117]刘光代.浅谈抗滑桩的设计[A].滑坡文集(第十五集)[C].北京:中国铁道出版社, 2002.
    [118]李功伯,谢建清.滑坡稳定性分析与工程治理[M].北京:地震出版社, 1997.
    [119]陈祖煜.土质边坡稳定性分析——原理?方法?程序[M].北京:中国水利水电出版社, 2003.
    [120] (日)山田刚正等著.滑坡和斜坡崩塌及其防治[M].北京:科学出版社, 1980.
    [121]彭振斌主编.锚固工程设计计算与施工[M].武汉:中国地质大学出版社, 1997.
    [122]水利部水利水电规划设计总院主编.预应力锚固技术[M].北京:中国水利水电出版社, 2001.
    [123]中华人民共和国行业标准.水工预应力锚固设计规范(SL212-98)[S].北京:中国水利水电出版社, 1998.
    [124]何开胜,沈珠江.结构性土的微观变形和机理研究[J].河海大学学报(自然科学版). 2003, (02): 161-165.
    [125]陈祖煜,汪小刚,杨健等.岩质边坡稳定性分析——原理?方法?程序[M].北京:中国水利水电出版社, 2005.
    [126]《岩土工程手册》编写委员会.岩土工程手册[M].北京:中国建筑工业出版社, 1994.
    [127]贵州省地质矿产局.贵州省区域地质志[M].北京:地质出版社, 1987.
    [128]李志厚,朱合华,丁文其等.西部交通建设科技项目《连拱隧道建设关键技术的研究》研究报告[R].昆明:云南省公路规划勘察设计院. 2005.
    [129]高速公路丛书编委会.高速公路路基设计与施工[M].北京:人民交通出版社, 1998.
    [130]吕建红,袁宝远,杨志法等.边坡监测与快速反馈分析[J].河海大学学报, 1999, 27(06): 98-102.
    [131]崔政权,李宁编著.边坡工程——理论与时间最新发展[M].北京:中国水利电力出版社, 1999.
    [132]中华人民共和国国家标准.建筑边坡工程技术规范(GB50330-2002)[S].北京:中国建筑出版社, 2002.
    [133]马永潮编著.滑坡整治及防治工程养护[M].北京:中国铁道出版社, 1996.
    [134]杨林德等著.岩土工程问题的反演理论与岩土工程实践[M].北京:科学出版社, 1999.
    [135]长江三峡地质灾害监测中心.崩滑地质灾害预测预报[Z].北京:国土资源部网站, 2003.
    [136]边馥苓主编.地理信息系统原理和方法[M].北京:测绘出版社, 1996.
    [137]杨学意.滑坡及岩土边坡工程测试技术[A].中国地质灾害研究会防治工程专业委员会第六届会议交流论文[C].桂林: 2003.
    [138]张咸恭,王思敬,李智毅主编.工程地质学概论[M].北京:地震出版社, 2005.
    [139]铁道部第一勘测设计院主编.铁路工程地质手册[M].北京:中国铁道出版社, 2002.
    [140]陈文亮,唐克丽. SR型野外人工模拟降雨装置[J].水土保持研究, 2000, 7(4): 106~110.
    [141]李红刚. TDR技术在滑坡变形监测中的适宜性试验研究[硕士学位论文D].武汉:中国地质大学, 2009.
    [142]二滩水电开发有限责任公司编.岩土工程安全监测手册[M].北京:中国水利水电出版社, 1999.
    [143]杨志法,齐俊修,刘大安等著.岩土工程监测技术及监测系统问题[M].北京:海洋出版社, 2004.
    [144]中华人民共和国行业标准.《铁路路基支挡结构设计规范》(TB 10025-2001 J127-2001)[S].北京:中国铁道出版社社, 2002.
    [145]中华人民共和国国家标准.《建筑边坡工程技术规范》(GB50330 -2002)[S].北京:中国建筑工业出版社, 2002.
    [146]中华人民共和国国家标准.《建筑地基基础设计规范》(GB50007 -2002)[S].北京:中国建筑工业出版社, 2002.
    [147]李海光等编著.新型支挡结构设计与工程实例[M].北京:人民交通出版社, 2004.
    [148]宋学安,安孟康.路堑高边坡稳定性分析的方法[A].滑坡文集(第十五集)[C].北京:中国铁道出版社, 2002.
    [149]郑静.深圳经济特区滑坡的成因及其分布规律[A].滑坡文集(第十五集)[C].北京:中国铁道出版社, 2002.
    [150] Hirotaka Ochiai, Yasuhiko Okada, Gen Furuya et al. . Afluidized landslide on a natural slope by artificial rainfall[J]. Original Article, 2004, (01): 211~219.
    [151]李爱国,岳中琦,谭国焕等.土体含水率和吸力量测及其对边坡稳定性的影响[J].岩土工程学报, 2003, 25(03): 278~282.
    [152]詹良通,吴宏伟,包承纲等.降雨入渗条件下饱和膨胀土边坡原位监测[J].岩土力学, 2003, 24(02): 151~158.
    [153]胡明鉴,张平仓,汪稔.降雨对滑坡的激发作用试验研究.水土保持学报[J], 2001, 15(05): 116~118.
    [154]黎志恒.兰州黄土滑坡与地表水入渗变形关系分析——以皋兰山滑坡降雨入渗试验研究为例.甘肃科学学报[J], 2003, (S1): 131~134.
    [155]赵炼恒.边坡稳定性与加固设计的能量分析方法[博士学位论文D].长沙:中南大学, 2009.
    [156]谭捍华,罗斌,赵炼恒等.路基塌方沉陷快速修复技术研究报告[R].贵阳:贵州省交通规划勘察设计研究院, 2010.
    [157] Ausilio E, Conte E, Dente G. . Stability analysis of slopes reinforced with piles [J]. Computers and Geotechnics, ASCE, 2001, 28(8): 591-611.
    [158] Hassiotis S, Chameau J L. Gumnaratne M. Design method for stabilization of slopes with piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(04):314-323.
    [159] Li X P, He S M and Wang C H. Stability analysis of slopes reinforced with piles using limit analysis method[C]. Geo-Shanghai International Conference, Geotechnical Special Publication, 2006.
    [160]年廷凯,栾茂田,杨庆.抗滑桩加固土坡稳定性分析与桩基的简化设计[J].岩石力学与工程学报, 2005, 24(19): 3427-3433.
    [161]年廷凯.桩-土-边坡相互作用数值分析及阻滑桩简化设计方法研究[博士学位论文D].大连:大连理工大学, 2005.
    [162] Nian T K. Luan M T and Yang Q. Stability analysis of complex shore slope stabilized by pile[C]. Proc. of the Second Sino-Japanese Symposium on Geotechnical Engineering-Recent Development of Geotechnical Engineering in Soft Ground. Shangha: Tongji University Press, 2005.
    [163] Nian T K, Luan M T, Yang Q and Cui C Y. Limit analysis and optimization design of slope stabilized by piles considering pore-water pressure effect[C]. Recent Development of Geotechnical and Geoenvironmental Engineering in Asia, Dalian: Dalian University of Technology Press, 2006.
    [164] Nian T K et al. . Limit analysis of the stability of slopes reinforced with piles against landslide in nonhomogeneous and anisotropic soils [J]. Can. Geotech. J, 2008, 45(8): 1092-1103.
    [165] Hull T S, Poulos H G. Design method for stabilization of slopes with piles (discussion)[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(10): 911-913.
    [166]吴永,何思明,李新坡.地震波作用下抗滑桩的失效机理[J].四川大学学报(工程科学版), 2009, 41(03): 284-288.
    [167] Chen W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier, 1975.
    [168] Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Géotechique, 1955, 5(01): 7-17.
    [169] Zienkiewicz O C, Humpheson C and Lewis R W. Associated and Non-Associated Visco-Plasticity and Plasticity in Soil Mechanics[J]. Géotechnique, 1975, 25(04): 671-689.
    [170] Duncan J M. Limit equilibrium and finite element analysis of slopes[J]. Journal of Geotechnical Engineering, 1996, 122(07): 577-596.
    [171]童富果.降雨条件下坡面径流与饱和—非饱和渗流耦合计算模型研究[硕士学位论文D].宜昌:三峡大学, 2004.
    [172]铁道部第二勘测设计院.铁路工程设计技术手册——隧道(修订版)[M].北京:中国铁道出版社, 1999.
    [173]中国人民共和国行业标准.既有建筑地基基础加固技术规范(JGJ 123-2000)[S].北京:建筑工业出版社, 2000.
    [174]罗斌,胡厚田,卢才金等.清连公路沿线坡面冲刷研究[J].中国地质灾害与防治学报, 2000, 9(01): 48一51.
    [175]邓学钧主编.路基路面工程[M].北京:人民交通出版社, 2000.
    [176]高民欢,李辉,张新宇等编著.高等级公路边坡冲刷理论与植被防护技术[M].北京:人民交通出版社, 2005.
    [177]罗斌.路基边坡坡面冲刷研究[R].西安:长安大学博士后研究报告, 2003.
    [178]张永兴主编.边坡工程学[M].北京:中国建筑工业出版社, 2008.
    [179] Barley A. D. The single bore multiple anchor system[A]. In: proc. Ground Anchorages and Anchored Structures. London: Thomas Telford, 1997.
    [180] R.维德曼(R. Widmann).世界最新灌浆技术总结报告[Z].中国岩石锚固与灌浆技术专业委员会组织译印, 1996.
    [181] Wools R 1, Bakhordari K, The influence of bond stress distribution on ground anchor design[A]. In: proc. Ground Anchorages and Anchored Structures. London: Thomas Telford, 1997.
    [183] Yap L P, Rodger A A. A study of behaviour of vertical rock anchors using the finite element method[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr, 1984, 21(02): 47~61.
    [182]边国强,李艳等.高速公路路堑边坡软弱夹层高压灌浆加固的理论与实践[J].勘察科学技术, 1999, (06): 36-41.
    [183]程良奎,刘启琛主编.岩土锚固技术的应用与发展[M].北京:万国学术出版社, 1996.
    [184]冯德强等.铜鼓湾水库大坝防渗帷幕灌浆工程[J].探矿工程(岩土钻掘工程), 2001(03): 14~15.
    [185]傅文洵等.压力灌浆灌注桩概述[J].北京水利, 1996, (02): 35~39.
    [186]高岗荣等.十三陵蓄能电站上池边坡固结灌浆施工[J].建井技术, 1996, (04): 8~9.
    [187]龚高武.变形边坡内帷幕灌浆施工工艺—以江垭大坝右岸坝尖帷幕灌浆施工为例[J].水利水电科技进展, 2001, 21(01): 131.
    [188]龚晓南等.地基处理手册[M].北京:中国建筑工业出版社, 2000.
    [189]韩凤亭.当代灌浆技术及设备现状[J].港口工程, 1996, (03): 48~51.
    [190]洪炼治.隧道施工中的小导管灌浆技术[A].岩土锚固技术的新进展[C].北京:人民交通出版社, 2000.
    [191]李宁,张平,闫建文.灌浆的数值仿真分析模型探讨[J].岩石力学与工程学报, 2002, 21(03): 326~330.
    [192]梁炯均.锚固与灌浆技术手册[M].北京:中国电力出版社, 1999年.
    [193]彭炎华等.压力灌浆的综合应用[J].广东土木与建筑, 1999, (02): 27~29.
    [194]彭振斌.灌浆工程设计计算与施工[M].武汉:中国地质大学出版社, 1997.
    [195]王德群等.压力灌浆技术在高速公路路基病害处理中的应用[J].天津建设科技, 2002, (03): 4~6.
    [196]王刚等.用加密灌浆法加固高速公路高填方路段路基(堤)[J].公路交通科技, 2002, 19(02): 51~52.
    [197]魏束强,王树新,宋会杰.浅谈高填方路基灌浆工程[J].西部探矿工程, 2000, (03): 44~45.
    [198]熊厚金,林天健,李宁.岩土工程化学[M].北京:科学出版社, 2001.
    [199]叶林宏,何泳生,冼安如等.论化灌浆液与被灌岩土的相互作用[J].岩土工程学报, 1994, 16(06): 47~55.
    [200]中国科学院广州化学研究所.化学灌浆技术[M].北京:水利电力出版社, 1984.
    [201]中国水利水电基础工程局.水工建筑物水泥灌浆施工技术规范[S].北京:中国电力出版社, 2002.
    [202]中华人民共和国行业标准.公路隧道施工技术规范(JTJ 042-94)[S].北京:人民交通出版社, 1995.
    [203]钟峻.高压劈裂灌浆技术在建筑基坑边坡加固中的应用[J].浙江建筑, 1999, 102(05): 45~46.
    [204] Won J, You K, Jeong S et al. Coupled effects in stability analysis of pile–slope systems[J]. Computers and Geotechnics, 2005, 32(04): 304-315.
    [205] Shin E C, Patra CR and Rout A K. . Automated Stability Analysis of Slopes Stabilized with Piles[J]. KSCE Journal of Civil Engineering, 2006, 10(05): 333-338.
    [206] Hassiotis S, Chameau J L, Gunaratne M. Design method for stabilization of slopes with piles (closure)[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125 (10): 913-914.
    [207]李仁平,陈仁朋,陈云敏.阻滑桩加固土坡的极限设计方法[J].浙江大学学报, 2001, 35(6): 618-622.
    [208]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报, 2002, 21(4): 517-521.
    [209] Poulos H G. Design of reinforcing piles to increase slope stability[J]. Canadian Geotechnical Journal, 1995, 32(05): 808-818.
    [210] Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundations, 1975, 15(04): 43-59.
    [211] Ito T, Matsui T, Hong W P. Design method for the stability analysis of the slope with landing pier[J]. Soils and Foundations, 1979, 19(04): 43-57.
    [212] Ito T, Matsui T, Hong W P. Design method for stabilizing piles against landslide-one row of piles[J]. Soils and Foundations, 1981, 21(01): 21-37.
    [213] Matsui T, Hong W P, Ito T. Earth pressure on piles in a row due to lateral soil movements[J]. Soils and Foundations, 1982, 22(02): 71-81.
    [214] Dawson E M, Roth W H. Drescher A. Slope stability analysis by strength reduction[J]. Geotechnique, 1999, 49(06): 835-840.
    [215] Donald I, Chen Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods[J]. Can Geotech J, 1997, , 34(06): 853-862.
    [217] S. Yokota, T. Fukuda, A. Lwamatsu et al. The effect of rainwater infiltration within a slope of pyroclastic deposits, recorded using automated electric rospecting. Bull Eng Geol Env, 1998, 57: 51~58.
    [218]刘培娟.鲁中南中低山丘陵典型侵蚀区水土流失规律研究[硕士学位论文D].泰安:山东农业大学, 2008.
    [219]郑粉莉.坡面降雨侵蚀和径流侵蚀研究[J].水土保持通报, 1998, 18(06): 17-21.
    [220]李东.贵州高速公路边坡加固防护形式初探[J].价值工程, 2010, (19): 117-118+119.
    [221]龙万学,周勇,孔纪名等.西部交通建设科技项目“西部地区公路地质灾害监测预报技术研究”研究报告.贵阳:贵州省交通规划勘察设计研究院, 2008.
    [222]张培文.降雨条件下饱和—非饱和土径流渗流耦合数值模拟研究[博士学位论文D].大连:大连理工大学, 2002.
    [223]刘俊新.非饱和渗流条件下红层路堤稳定性研究[博士学位论文D].成都:西南交通大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700