用户名: 密码: 验证码:
苏鲁高压—超高压变质带区域重磁场特征与地壳构造格架研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏鲁超高压变质地体被认为是目前世界上已知的最大的超高压变质带,是世界上研究陆-陆碰撞俯冲和壳幔作用的最佳地质场所,大陆动力学研究的基地。在超高压变质作用演化的研究中,超高压变质岩石的原岩和前超高压变质事件研究一直是薄弱环节。为了探讨高压-超高压变质地体的形成演化历史,有必要对前高压-超高压变质事件的历史(包括变质基底岩石的形成及其构造环境、主要构造事件的时限等问题)以及对超高压变质作用的影响与制约进行研究。目前对苏鲁高压-超高压变质带的构造研究,主要集中在建立折返构造格架、俯冲构造及流变学的重塑、俯冲与折返事件的时限,以及俯冲与折返机制的探索等。研究超高压变质带岩石的形成、折返和相应的动力学过程,需要了解该区地壳和上地慢构造。地球物理方法是研究地球内部结构与状态、岩石圈形成及演化历史的有效手段。尽管目前已有一些有关苏鲁超高压-高压变质带地区地球物理探测的研究成果报道,但是,其解释的深度,尤其是对区域重磁场进行全面深入的处理和解释还未见。地球物理位场是一种独立存在的天然场,利用位场资料进行研究,是以地壳内各种岩石间的密度或磁性差异引起的重磁异常为物理基础,探测地壳乃至岩石圈结构,特别是在研究覆盖大范围、多尺度地壳及岩石圈结构分析中起到重要作用。因此,在前人已经有的成果基础上,充分利用已有的地质、地震、大地电磁及CCSD(?)孔等资料,将区域重磁场的特征与地壳构造构造格架关系联系起来进行合理分析和解释,具有重要的科学意义与应用价值。
     本文研究结合国家973计划课题“大陆板块会聚边界深部物质物理状态的高温高压实验研究”之子课题“大陆板块会聚边界深部岩石磁性结构研究”(2003CB716506)的延续研究和国家自然科学基金重大研究计划项目“不同时空背景地幔属性与克拉通破坏过程”之子课题“壳-幔边界岩石磁性研究”(90714002)的需要选本研究主题。将以苏鲁高压超高压变质带区域重磁特征研究为主线,以前人丰富的构造地质、岩石学及地球化学与地震学研究成果为基础,以研究区重要地学问题—超高压变质岩深俯冲与折返动力学为目标,以几个具体地质问题基底性质(岩性、构造与几何形态)、重要构造界线(华北和扬子地台、深俯冲及郯庐断裂等)、Moho面与磁性下界面及地壳性质等研究为桥梁,探讨超高压变质过程区域重磁响应建立多尺度重磁场结构与地壳及岩石圈结构之间的关系,为陆陆碰撞的三维结构提供证据。
     本文研究主要内容包括:(1)调研目前地球物理位场数据处理的主要方法(包括多尺度分离与特征分析等)并进行评述;(2)地球物理非线性反演方法研究,分析传统的非线性反演算法的面临问题并提出改进思路,利用实例进行评价分析;(3)在前人已经有的成果基础上,充分利用已有的地质、地震、大地电磁及CCSD钻孔等资料,研究区几个具体地质问题:基底性质(岩性、构造与几何形态)、重要构造界线(华北地台、扬子地台、深俯冲及郯庐断裂等)、Moho面与磁性下界面性质及下地壳性质等研究为桥梁,探讨超高压变质过程的区域重磁响应,建立多尺度重磁场结构与地壳及岩石圈结构之间的关系。
     在地球物理反演计算中,特别注意到如果选择适当的初始模型,对求解非线性问题的线性化反演解法可以获得较满意的结果,而非线性全局优化方法是在模型空间中随机的或系统的搜索尝试的方法,它具有对于初始模型不依赖性,因此,如果能将非线性反演方法与线性化方法两者的优势结合起来以提高计算效果,可以成为一种地球物理非线性反演算法改进思路。本文提出几种(GA-GLS、PSO-GLS等)新的地球物理非线性反演算法,例如,GA-GLS是将遗传算法的随机全局搜索特性与广义最小二乘的局部精确搜索特性优势相结合提高计算效率。通过对理论模型数据和实测数据进行反复实验,计算结果统计显示,这些新的算法与单纯非线性反演算法相比,重复实验计算结果的统计均值较接近于真实值,统计方差较小,结果较稳定。因此,这种新的改进算法主要优点有:(1)继承了单纯的非线性优化算法所具有的全局搜索优势,(2)改善了单纯的非线性算法容易陷入局部极小的特性。其在准确性、稳定性和计算效率等方面优于单纯的非线性算法。
     分析研究区重力场特征,获得密度分布空间结构。(1)研究区岩石密度特征。元古宙的闪长岩、榴辉岩和各时代的蛇纹岩、橄榄岩为高密度,一般在2.70gcm-3以上,其中,金红石矿化榴辉岩密度值可达4.30gcm-3以上;晚白垩纪世的砾岩砂岩、砂质页岩为低密度,一般在2.45gcm-3左右;二辉榴辉岩和橄榄岩具有高波速和高密度特征,比研究区围岩片麻岩波速高出1100m/s,密度高出0.5gcm-3,在重力场上可引起正异常,因而在沿郯庐断裂附近的超高压变质带上均分布着较强的正异常。(2)通过计算获得Moho面起伏以及布格重力异常的长波长趋势特征显示,沿郯庐断裂带附近从深部往地表有正异常突起趋势,这可能是地壳地层结构存在一定程度隆起,正异常的东西两侧可能存在比较深的断裂、甚至延伸至Moho面附近。(3)在66km截止低通滤波异常图可见,莱阳盆地和沭阳盆地附近均存在一定程度的重力值下降,但在100km截止低通滤波异常图上,莱阳盆地附近重力变化已不太明显,这可能反映出莱阳盆地沉积覆盖较浅。(4)在区域重力场中,北苏鲁超高压构造片体呈现由西向东从正异常变为负异常,而南苏鲁超高压构造片则以正异常为主,这说明在南、北苏鲁超高压构造片体在地壳深部地层密度分布特征上确实存在较大差异。这里是否与南、北带主体分别属于扬子克拉通北缘带和华北克拉通南缘带存在联系需要进一步研究。
     分析区域航磁异常特征,获得超高压变质带地壳磁性结构。(1)研究区磁性岩石特征。一般规律为:中酸性岩石,如花岗岩、花岗闪长岩与花岗片麻岩区表现为低磁性特征;基性超基性岩大多分布规模小,引起的磁异常不明显;基底深变质岩表现出较强磁异常。(2)根据不同尺度磁异常特征,对研究区进行了构造分区。共划分出华北克拉通、扬子克拉通及苏鲁造山带三个级构造单元郯庐断裂带、鲁西台隆、徐淮断隆、苏北胶南地体和苏北断坳五个级构造单元。这些结果与区域地质构造基本一致。(2)研究区深部存在明显北西向分布的大尺度地质体,自鲁西台隆跨过郯庐断裂带,经胶南、日照进入黄海。磁性体顶界面埋深约为20km,在郯庐断裂以西略浅,以东略深,大致反映了西侧相对隆起,东侧相对下凹的特征。与鲁西出露的泰山群变质岩磁性相当,推测该磁性体属华北克拉通太古代变质岩,揭示了下地壳华北克拉通物质连续延伸到苏北,尽管苏北地区上地壳属扬子克拉通。(3)分析航磁异常的空间变化特征,发现苏鲁地区不同波长磁异常的场源具有空间立交桥式结构特征。自上而下依次为:上部以北东向为主的中等波长磁异常场源,中间以北西向为主的中长波长磁异常场源,下面以北东向为主的长波长磁异常场源。这种“立交桥”式的空间磁性结构,可能为两克拉通碰撞和拆离的结果,反映了扬子与华北克拉通碰撞的动力学模式。
     利用航磁资料进行磁化强度或视磁化率填图,有效地圈定磁性岩体,划分磁性地层,突出地质构造单元界线,进而研究区域地质构造。研究区苏鲁超高压-高压变质带地区,浅层有规律地断续分布有西北-东南向、东北-西南向排列的多条磁性岩带。对照苏鲁地区岩类分布,可见有侵入岩出露的地区,一般都与磁性填图中的弱磁性到较强磁性区相对应,侵入岩的分布方向与磁性填图分布特征基本一致。(a)华北板块与莱阳盆地的西北面相接处、淄博市以东南、潍坊市以南、沂源县以东、沂水县以北地区,出现西北-东南向走向串珠状异常,可能存在一些NW-SE走向隐伏断裂,该区磁性属于中等磁性;(b)北苏鲁拆离断层以北、郯庐断裂以东的莱阳盆地地区,存在的东北-西南向和东西向线性异常,这可能反映盆地边缘存在一些断裂,该区磁性属于中等磁性;(c)北苏鲁超高压构造片体,出现西北-东南走向线性异常,这可能反映北苏鲁超高压构造片体分布结构,该区磁性属于高磁性,这里可能充填的基性或超基性岩浆岩、太古一下元古代基底和中基性火山岩及高压变质岩,区内还不均匀分布着花岗岩;(d)南苏鲁超高压构造片体地区,出现南北走向线性异常,这可能反映北苏鲁超高压构造片体分布结构,该区磁性属于中等磁性,这里可能充填的基性或超基性岩浆岩;(e)苏鲁高压构造片体地区,出现东北-西南走向线性异常,这可能反映北苏鲁高压构造片体分布结构,该区磁性属于低磁性;(f)沭阳盆地地区,出现西北-东南走向线性异常,该区磁性属于低磁性;
     磁性构造层底面是地球岩石圈上部磁性壳层的底界面。这一界面深度(居里温度面)以上的磁性壳层岩石具有磁性,其下岩石磁性迅速消失。针对研究区航磁异常具有分区特征,且浅源、深源磁场分布复杂的特点,应用组合磁异常的统计功率谱分析法计算磁性构造层底面深度。利用航磁数据,计算获得了研究区磁性构造层底面深度,深度大概在18.5~27km范围内变化。研究区的磁性构造层底面的起伏趋势也表现出NE走向,表明在滤除浅源磁性体影响后,磁性构造层底面计算结果突出了深部热结构特征。研究区南部磁性构造层底面深度较浅(18.5~22km),尤其是苏北盆地,其居里点深度为18.5km。而在研究区北部,特别是胶南隆起,磁性构造层底面深度相对较深(24~27km)。诸城盆地地区磁性构造层底面深度约为23.5~25km,而胶辽附近深度为23.5~24km,苏鲁超高压变质带地区深度分别为21~21.5km。这些结果显示,磁性构造层底面起伏趋势与软流圈起伏具有明显的相关性。在中朝板块与扬子板块发生陆—陆碰撞时,扬子板块深俯冲过程中,拽动相邻的中朝板块的一部分物质向下俯冲,引起上覆板块物质遭受俯冲剥蚀,导致不对称的双向俯冲。板块俯冲受阻后,板块滞留、下沉引起地幔扰动,而地幔流又在老的构造活动所造成的地壳薄弱带上涌,从而导致该区的磁性构造层底面上隆。
     使用场源定位分析的特殊函数和欧拉反褶积方法分别对于研究区重磁资料进行场源定位,通过对比分析获得了比较准确和直观的场源空间分布情况,寻找出研究区中可能会出现的几种特殊地质体,如接触体、板状体边缘、水平线源、点源等,分析研究区构造关系。
     (a)构造指数SI=-1的垂直密度接触体空间分布特征:在研究区西北部的华北板块地区深度约为5~10km处,以西北-东南向走向为主要,水平分布紧凑;北苏鲁拆离断层以北地区地下深度约为5~7km,以处东北-西南向走向主要,水平分布宽松;苏鲁超高压构造片体深度约为5~7km处,以东北-西南向、西北-东南向等多个方向走向,空间几何形态分布复杂、纵横交错;苏鲁高压构造片体深度约为5~7km处,以东北-西南向走向为主,水平分布紧凑;沭阳盆地深度约为5~7km处,以东北-西南向和西北-东南向走向为主,水平分布均匀。
     (b)构造指数SI=0的水平密度板状体的空间分布特征:在研究区西北部的华北板块地区深度约为10~15km处,以东北-西南向走向为主要,水平分布宽松;北苏鲁拆离断层以北地区地下深度约为5~7km,以处东北-西南向走向主要,水平分布宽松;苏鲁超高压构造片体深度约为7~13处,以东北-西南向、西北-东南向等多个方向走向,空间几何形态分布复杂、纵横交错;苏鲁高压构造片体深度约为5~7km处,以东北-西南向走向为主,水平分布紧凑;沭阳盆地深度约为5~7km处,以东北-西南向走向为主,水平分布均匀。
     (c)构造指数SI=1的水平密度圆柱体的空间分布特征:在研究区西北部的华北板块地区深度约为9~12km处,反映沉积盆地边缘深部地质构造;北苏鲁拆离断层以北地区地下深度约为9~15km,以西北-东南向走向为主;苏鲁超高压构造片体深度约为12~16处,围绕郯庐大断裂带和苏鲁超高压构造片体,主要以南北向走向,这可能反映了郯庐大断裂带、苏鲁超高压构造片体边缘深部地质构造;苏鲁高压构造片体深度约为12~16km处,以东西向走向为主,反映了高压构造片体边缘构造;沭阳盆地深度约为10~13km处,以西北-东南向走向为主,围绕沭阳盆地边缘。
     (d)构造指数SI=2的密度球体的空间分布特征:在研究区西北部的华北板块地区深度约为18~20km处,以西北-东南向走向为主,反映华北板块在该区的深部构造;北苏鲁拆离断层以北地区地下深度约为13~16km,以东西向向走向为主,水平分布集中,反映了盆地边缘深部构造;北苏鲁超高压构造片体深度约为13~17km处,主要以东西向走向,这可能反映了超高压构造片体和边缘沉积盆地边缘深部构造;南苏鲁超高压构造片体地下深度约为18~20km处,围绕郯庐大断裂带和超高压构造片体,以东西向走向为主,这可能反映了郯庐大断裂带和超高压构造片体边缘深部地质构造。苏鲁高压构造片体深度约为12~17km处,围绕郯庐大断裂带和高压构造片体,主要以南北向走向;沭阳盆地地区深度约为14~17km处,以东西向走向为主,沿沭阳盆地边缘。
     (e)构造指数SI=0的垂直磁性接触体的空间分布特征:在研究区西北部的华北板块地区深度约为5~10km处,以西北-东南向走向为主,水平分布紧凑;苏鲁拆离断层以北地区地下深度约为4~7km,以东北-西南向和东西向走向为主;北苏鲁超高压构造片体深度约为4~7km处,沿郯庐大断裂带和苏鲁超高压构造片体边缘,主要呈现东北-西南向走向,空间几何形态复杂、纵横交错;苏鲁高压构造片体深度约为12~17km处,以南北向偏东北-西南向为主;沭阳盆地地区深度约为5~7km处,沿郯庐大断裂带和沭阳盆地边缘,以东西向和东北-西南向等走向交错。
     (f)构造指数SI=1的水平磁性板状体的空间分布特征:在研究区西北部的华北板块地区深度约为7~13km处,以西北-东南向为主,水平分布集中;苏鲁拆离断层以北地区地下深度约为10~12km km,以东北-西南向和东西向走向为主;北苏鲁超高压构造片体深度约为9~12km处,以东北-西南向走向为主,反映了北苏鲁超高压构造片体水平磁性板状体分布特征;南苏鲁高压构造片体深度约为5~10km处,以东北-西南向为主,水平分布紧凑;鲁高压构造片体深度约为7~12km处,沿郯庐大断裂带和苏鲁高压构造片体边缘;沭阳盆地地区深度约为17~21km处,沿郯庐大断裂带和沭阳盆地边缘,以东北-西南向、东西向走向为主。
     (f)构造指数SI=2.0的磁性水平柱体的空间分布特征:在研究区西北部的华北板块地区深度约为2~6km处,沿华北板块边缘和郯庐大断裂带,磁性水平柱体分布比较集中;北苏鲁拆离断层以北地区地下深度约为2~4km,沿沉积盆地边缘和郯庐大断裂带边缘附近,磁性水平柱体分布比较松散;苏鲁超高压构造片体深度约为2~6km处,沿苏鲁超高压构造片体和郯庐大断裂带边缘,分布集中;沭阳盆地地区深度约为3~5km处,沿郯庐大断裂带和沭阳盆地边缘,分布比较集中
     (h)构造指数SI=3.0的磁性球体的空间分布特征:在研究区西北部的华北板块地区深度约为2~6km处,沿华北板块边缘和郯庐大断裂带,分布比较集中;北苏鲁拆离断层以北地区地下深度约为2~4km,沿沉积盆地边缘和北苏鲁超高压构造片体边缘,分布比较松散;苏鲁超高压构造片体深度约为2~6km处,沿苏鲁高压构造片体边缘,磁性球体分布比较集中;沭阳盆地地区没有明显特征;
     为了详细了解研究区地下结构分布,结合地表出露地震、地震反射、大地电磁、CCSD岩石物性资料,对研究区重磁资料以剖面反演结果详细描述研究区密度、磁性空间分布特征。穿过泊里到诸城(南苏鲁超高压地区)和CCSD主孔(北苏鲁超高压地区)的两条地震反射剖面分别长约44km和139.5km。参考地震反射数据的分析结果,上地壳至上中地壳结构在我们模型中厚度小于15km,反演模型曲线很好地拟合了观测曲线,模型包含有由沉淀层、花岗岩、各种片麻岩、榴辉岩和蛇纹石化橄榄岩等以透镜体、块体、地层形式组成的上地壳-上中地壳;蛇纹石化弧前地幔位于中下地壳。它们的密度从2.50到3.45gcm-3(上地幔)范围变化,磁化强度从0到4.55A/m范围变化。结合地质背景对模型进行解释分析,推测苏鲁地区深部地壳处可能存在蛇纹石化弧前地幔,为理解大别-苏鲁地区的超高压变质过程提供新的参考见解。
The Sulu Ultra-high-pressure (UHP) metamorphic terrane is considered the world's largest known high pressure metamorphic belt, the UHP metamorphic belt formed by subduction exhumation mechanism of the continental tectonic movement of the hot spots. The Earth is insight into the Earth's internal structure and state of the lithosphere the formation and evolutionary history of a powerful tool. Through the processing and interpretation of the area regional gravity and magnetic data, an area tectonic framework, which owns the scientific value.
     In the high pressure metamorphism evolution of the study, ultrahigh pressure metamorphic rocks of the original rock and former UHP metamorphic event study has been the weak link. To explore HP-UHP metamorphic terrane formation evolution history necessary former HP-UHP metamorphic event historical (including metamorphic basement rocks formation and tectonic environment, main tectonic event time limits issues) well EHV metamorphism Impact and Constraint studied. Currently on Sulu-UHP metamorphic belt tectonic studies, mainly in the establishment of reentrant structural framework, diving structure and rheology remodeling, subduction and exhumation of the event time, and the subduction and exhumation mechanism and exploration.
     Sulu UHPM belt world research Lu a continent collision subduction and shell mantle interaction best geological place continental dynamics research base. To understand the high pressure metamorphic belt of rock formation, exhumation and the corresponding dynamic process that requires understanding of the crust and upper mantle. Even though there are some Sulu ultrahigh pressure, high-pressure metamorphic belt region geophysical research results to be reported, but its explanatory depth, especially on the regional gravity and magnetic field to conduct a comprehensive in-depth processing and interpretation have not. Therefore, in the previous already have, based on the full use of the area geology, CCSD data, will be the regional gravity and magnetic field characteristics and tectonic tectonic framework of relations linked to in-depth study is urgently needed.
     This study combined with the national 973 project on "continental plate convergence boundary deep material physical state of high temperature and pressure experimental study," the son of issues, "continental plate convergence boundary in deep rock magnetic structure" (2003CB716506) the continuation of the research needs of the election of this topic;
     This study to to Sulu hyperbaric UHP metamorphic belt regional gravity magnetic features research main line, ago people rich tectonic geological, petrology and Geochemistry and seismological research based, study area important Geological Problems-UHPM rock deep subduction and exhumation dynamics target to few specific geological problems basement properties (lithology, tectonic with geometry), important tectonic boundary (North and Yangtze platform, deep subduction and Tanlu breakage), Moho surface and magnetic next interface and crust nature study bridge explore UHPM process regional gravity magnetic response establish multi scale weight magnetic Structure and crust and lithosphere structure relations for Lu Lu collision dimensional structure provide evidence.
     The geology, geophysics, geochemistry, petrology, mathematical and physical modeling, signal processing and other issues combined to solve related problems; this study, the necessary basic theory related to geology, classical physics, computational mathematics, signal processing and other disciplines. To the known geological, geophysical prior information as constraints on regional gravity and magnetic field for geophysical inverse calculation can be carried out from qualitative to quantitative process of interpretation, highlighting the regional crustal properties of spatial distribution, identification of the study area important geological, establish important geophysical tectonic characteristic, deduced several tectonic geological model matching analysis, proves crust tectonic framework relations understanding.
     Main study includes:(1) re magnetic data processing and inversion research, focus multi scale weight magnetic Separation and Characteristics; (2) research District several specific Geology: basement properties (lithology, tectonic with geometry) important tectonic boundary (the North China platform, the Yangtze platform, deep diving and the Tan-Lu fault, etc.), Moho surface and magnetic properties of the interface under the nature and lower crust nature of research as a bridge to explore the UHP process of regional gravity and magnetic response; (3) establish multi scale weight magnetic Structure and crust and lithosphere structure relationship, propose crustal tectonic framework relationship model.
     By analyzing regional aeromagnetic anomaly characteristics and obtained UHPM belt crustal magnetic structure. (1) study area Magnetic petrology characteristics. General laws as:acidic rock like granite granodiorite and granitic gneiss area showed low magnetic characteristic; basic ultrabasic rock mostly distribution small, caused magnetic anomaly obvious; basement deep metamorphism rocks show a strong magnetic anomaly. (2) According to the different scale magnetic anomalies in the study area were constructed partition. Total divided out China craton, Yangtze craton and Sulu orogen three level tectonic units Tanlu fault, Luxi Taiwan Lung, Xuhuai fault uplift, Subei Jiaonan terrane and Subei broken Au five level tectonic units. These results with the regional geological structure is consistent. (2) The area of deep obvious North West to the distribution of large-scale geological body, from Shandong-Taiwan Lung across the fault zone, by Jiaonan sunshine into the Yellow Sea. Magnetic top interface depth of about 20km, at the Tan-Lu fault west of the somewhat shallow, east a little deep, roughly reflecting the western side of the relative uplift, east of relatively concave features. And Luxi exposed Taishan Group metamorphic magnetic considerable, suggesting that the magnetic body is a North China craton Archean metamorphic rocks, revealed lower crust North China Craton material continuously extends to the North, and although Northern Upper Crust is the Yangtze craton. (3) analysis aeromagnetic Spatial Variation found Sulu different wavelengths magnetic Anomaly Sources spatial overpass structure characteristics. Top-down order:upper north east-based middle-wavelength magnetic anomaly field source, the middle of north west-based medium and long-wavelength magnetic anomaly field source, following the north east-based long-wavelength magnetic anomaly field source. This "overpass" type of space magnetic structure may be 2 kt through collision and detachment results, reflecting the Yangtze and North China craton collision dynamics model.
引文
[1]周鼎武,刘良.造山带高压、超高压变质岩形成和折返的地球动力学研究——以中国中部为例[J].地学前缘,1995,2(1-2):59-66.
    [2]张泽明.中国大陆科学钻探工程主孔榴辉岩的岩石学研究[J].中国地质,2005,32(2).
    [3]张泽明.中国大陆科学钻探工程主孔(100~2050m)榴辉岩岩石化学研究[J].岩石学报,2004,20(1).
    [4]钟增球,索书田,杨启军,周汉文,游振东.大别—苏鲁造山带超高压—高压变质岩原位成因的构造证据[J].地质学报,2003,(03):378.
    [5]徐海军.中国大陆科学钻探工程主孔一岩心及周边地区岩石的磁化率研究:[学位论文].武汉:中国地质大学,2005.
    [6]叶凯.大别山-苏鲁超高压变质带的矿物学和岩石学研究进展[J].矿物岩石地球化学通报,2001,20(3).
    [7]刘祥文.大别—苏鲁超高压变质岩石的超显微构造研究:[学位论文].2006.
    [8]索书田,钟增球,周汉文,游振东.大别—苏鲁超高压和高压变质带构造演化[J].地学前缘,2004,(03):71-82.
    [9]索书田,钟增球,游振东.大别苏鲁超高压-高压变质带伸展构造格架及其动力学意义[J].地质学报,2001,75(1):14-21.
    [10]索书田.大别-苏鲁超高压和高压变质带碰撞后韧性伸展构造框架[J].地质学报,2001,75(2).
    [11]许志琴,张泽明,刘福来,杨经绥,李海兵,杨天南,邱海峻,李天福,孟繁聪,陈世忠,et al.苏鲁高压—超高压变质带的折返构造及折返机制[J].地质学报,2003,(04):433-450+593-594.
    [12]郭敬辉.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J].岩石学报,2005,21(4).
    [13]张泽明.苏鲁造山带超高压变质作用及其P-T-t轨迹[J].岩石学报,2005,21(2).
    [14]刘福来.苏鲁-大别超高压岩石中锆石SHRIMP U-Pb定年研究——综述和最新进展[J].岩石学报,2007,23(11).
    [15]杨文采,胡振远,程振炎等.郯城-涟水综合地球物理剖面[J].地球物理学报,1999,42(2):206-217.
    [16]杨文采,程振炎,陈国九等.苏鲁超高压变质带北部地球物理调查(Ⅰ):深反射地震[J].地球物理学报,1999,42(1):41-52.
    [17]杨文采,汪集.苏鲁地区地壳岩浆底侵的地球物理判识[J].地质学报,2002,76(5):173-179.
    [18]杨文采,方慧,程振炎等.苏鲁超高压变质带北部地球物理调查(Ⅱ):非地震方法[J].地球物理学报,1999,42(4):208-519.
    [19]杨文采,余长青.从地球物理资料看大别-苏鲁超高压变质带演化的运动学与动力学[J].地球物理学报,2001,44(3):61-75.
    [20]Cook, D. G., B. C. MacLean. The Imperial Anticline, a fault-bend fold above a bedding-parallel thrust ramp, Northwest Territories:Canada[J]. Journal of Structural Geology,1999,21:215-228.
    [21]Bush, M. D., R. A. Cayley, S. Rooney, K. Slater, M. L. Whitehead, "The geology and prospectivity of the southern margin of the Murray Basin," Geological Survey of Victoria 1995.
    [22]Moore, D. H. (2005). Swan Hill 1:250,000 and parts of Balranald and Deniliquin 1:250,000 map areas:A geological interpretation of the geophysical data. Victorian Initiative for Minerals and Petroleum. Victoria, Australia., Department of Primary Industries. Report 84.
    [23]Watts, A. (1997). Exploration for nickel in the 90s, or "Til depth us do part:". Proceedings of Fourth Decennial International Conference on Mineral Exploration[J]. A. G Gubins, Prospectors and Developers Association of Canada:1003.
    [24]Oldenburg, D. W., Y. Li, C. G Farquharson, P. Kowalczyk, T. Aravanis, A. King, P. Zhang, A. Watts. Applications of geophysical inversions in mineral exploration[J]. The Leading Edge,1998, 17(461-465).
    [25]Goussev, S. A., L. Griffith, J. Peirce, A. Cordsen (2004). Enhanced HRAM anomalies correlate faults between 2D seismic lines.74th Annual International Meeting, SEG Expanded Abstracts:730.
    [26]Wilson, M., M. Monea (2004). IEA GHG Weyburn CO2 Monitoring & Storage Project Summary Report 2000-2004. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Petroleum Technology Research Centre.
    [27]Nicolas Pinet, Denis Lavoie, Pierre Keating, Brouillette, Pierre. Gaspe belt subsurface geometry in the northern Quebec Appalachians as revealed by an integrated geophysical and geological study: 1-Potential field mapping[J]. Tectonophysics,2008,460(1-4):34-54.
    [28]K. Mert Onal, Aydin Buyuksarac, Attila Aydemir, Ates, Abdullah. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods[J]. Tectonophysics, 2008,460(1-4):186-197.
    [29]Barrere, C., Ebbing, J., L., Gernigon. Offshore prolongation of Caledonian structures and basement characterisation in the western Barents Sea from geophysical modelling[J]. Tectonophysics, 2009, In Press.
    [30]Antonio Pedrera, Jesus Galindo-Zaldivar, Ana Ruiz-Constan, Carlos Duque, Carlos Marin-Lechado, Serrano, Inmaculada. Recent large fold nucleation in the upper crust:Insight from gravity, magnetic, magnetotelluric and seismicity data (Sierra de Los Filabres-Sierra de Las Estancias, Internal Zones, Betic Cordillera)[J]. Tectonophysics,2009,463(1-4):145-160.
    [31]Dossing, A., Stemmerik, L., Dahl-Jensen, T., Schlindwein, V Segmentation of the eastern North Greenland oblique-shear margin -- Regional plate tectonic implications [J]. Earth and Planetary Science letters,2010,292(3-4):239-253.
    [32]MacLean, B. C., D. G Cook (2002). Subsurface and surface distribution of Proterozoic units, northwestern NWT:a Cambrian sub-crop map. Open File 3502, Geological Survey of Canada.
    [33]Geological Survey of Canada (2005). Canadian Aeromagnetic Data Base, Central Canada Division, Earth Sciences Sector, Natural Resources Canada.
    [34]Roy, P. S., J. Whitehouse, P. J. Cowell, G. Oakes. Mineral sands occurrences in the Murray Basin, southeastern Australia[J]. Economic Geology,2000,95:1107-1128.
    [35]Johnson, R. C., T. M. Finn, V F. Nuccio (2001). Potential for a basin-centered gas accumulation in the Albuquerque Basin, New Mexico. Bulletin 2184-C, U. S. Geological Survey.
    [36]Bartolino, J. R., J. C. Cole, "Ground-water resources of the Middle Rio Grande Basin, New Mexico," U. S. Geological Survey 2002.
    [37]Grauch, V. J. S., M. R. Hudson, S. A. Minor. Aeromagnetic expression of faults that offset basin fill, Albuquerque basin, New Mexico[J]. Geophysics,2001,66:707-720.
    [38]C. Barrere, J. Ebbing, Gernigon, L. Offshore prolongation of Caledonian structures and basement characterisation in the western Barents Sea from geophysical modelling[J]. Tectonophysics,2009, In Press.
    [39]Harm J.A. Van Avendonk, Luc L. Lavier, Donna J. Shillington, Manatschal, Gianreto. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland[J]. Tectonophysics,2009, In Press.
    [40]Katja K. Hirsch, Klaus Bauer, Scheck-Wenderoth, Magdalena. Deep structure of the western South African passive margin-Results of a combined approach of seismic, gravity and isostatic investigations[J]. Tectonophysics,2009, In Press.
    [41]Alessandro Sandrin, Lars Nielsen, Thybo, Hans. Layered crust-mantle transition zone below a large crustal intrusion in the Norwegian-Danish Basin[J]. Tectonophysics,2008, In Press.
    [42]Romanyuk, T., Mooney, W. D., Detweiler, S. Two lithospheric profiles across southern California derived from gravity and seismic data[J]. Journal of Geodynamics,2007,43(2):274-307.
    [43]Yasutaka Ikeda, Takaya Iwasaki, Ken-ichi Kano, Tanio Ito, Hiroshi Sato, Masayoshi Tajikara, Shinsuke Kikuchi, Motonori Higashinaka, Takeshi Kozawa, Kawanaka, Taku. Active nappe with a high slip rate:Seismic and gravity profiling across the southern part of the Itoigawa-Shizuoka Tectonic Line, central Japan[J]. Tectonophysics,2009, In Press.
    [44]Nicolas Pinet, Denis Lavoie, Pierre Keating, Brouillette, Pierre. Gaspc belt subsurface geometry in the northern Quebec Appalachians as revealed by an integrated geophysical and geological study: 1-Potential field mapping [J]. Tectonophysics,2008,460(1-4):34-54
    [45]Joachim Place, Yves Geraud, Marc Diraison, Warr, Laurence. North-south transfer zones and paleo-morphological reconstruction of the Xylokastro area (Corinth Gulf, Greece)[J]. Tectonophysics, 2007,440(1-4):121-139.
    [46]Ayako Okubo, Wataru Kanda, Yoshikazu Tanaka, Kazuhiro Ishihara, Daisuke Miki, Mitsuru Utsugi, Takayama, Tetsuro, Fukushima, Masayo. Apparent magnetization intensity map on Sakurajima Volcano, Kyushu, Japan, inferred from low-altitude, high-density helicopter-borne aeromagnetic surveys[J]. Tectonophysics,2009, in Press.
    [47]Lachenbruch, A. H., P. Morgan. Continental extension, magmatism, and elevation:Formal relations and rules of thumb[J]. Tectonophysics,1990,174:39-62.
    [48]Zeyen, H., M. Fernandez. Integrated lithospheric modeling Combining thermal, gravity, and local isostasy analysis:Application to the NE Spanish Geotransect[J]. J. Geophys. Res.,1994,99: 18,089-18,102.
    [49]Zeyen, H., P. Ayarza, M. Fernandez, A. Rimi. Lithospheric structure under the western African-European plate boundary:A transect across the Atlas Mountains and the Gulf of Cadiz[J]. Tectonics,2005,24:TC2001, doi 10.1029/2004TC001639.
    [50]Ebbing, J., Braitenberg, C., Gotze, H. J. The lithospheric Density structure of the Eastern Alps[J]. Tectonophysics,2006,414:145-155.
    [51]Fullea, J., M. Fernandez, H. Zeyen, J. Verges. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis:Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones[J]. Tectonophysics,2007,430:97-117.
    [52]Ritzwoller, M. H., N. M. Shapiro, S. J. Zhong. Cooling history of the Pacific lithosphere[J]. Earth Planet. Sci. Lett.,2004,226:69-84.
    [53]Deen, T. J., Griffin, W. L., Begg, G, O'Reilly, S. Y, Natapov, L. M., Hronsky, J. Thermal and compositional structure of the subcontinental lithospheric mantle:Derivation from shear wave seismic tomography [J]. Geochem. Geophys. Geosyst.,2006,7:Q07003, doi 10.1029/2005GC001120.
    [54]Priestley, K., D. McKenzie. The thermal structure of the lithosphere from shear wave velocities [J]. Earth Planet. Sci. Lett.,2006,244:285-301.
    [55]Cammarano, F., S. Goes, P. Vacher, D. Giardini. Inferring upper mantle temperatures from seismic velocities[J]. Phys. Earth Planet. Inter.,2003,138:197-222.
    [56]Lee, C. A. Compositional variation of density and seismic velocities in natural peridotites at STP conditions:Implications for seismic imaging of compositional heterogeneities in the upper mantle[J]. J. Geophys. Res.,2003,108(B9):2441, doi 10.1029/2003JB002413.
    [57]Artemieva, I., Billien, M., Leveque, J., Mooney, W. Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle[J]. Geophys. J. Int.,2004,157:607-628.
    [58]Afonso, J. C., Ranalli, G., Fernandez, M. Thermal expansivity and elastic properties of the lithospheric mantle:Results from mineral physics of composites[J]. Phys. EarthPlanet. Inter.,2005,149: 279-306.
    [59]Faul, U. H., I. Jackson. The seismological signature of temperature and grain size variations in the upper mantle[J]. Earth Planet. Sci. Lett.,2005,234:119-134.
    [60]Schutt, D. L., C. E. Lesher. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite[J]. J. Geophys. Res.,2006,111:B05401, doi 10.1029/2003JB002950.
    [61]Griffin, W. L., S. Y. O'Reilly, C. G Ryan (1999). The composition and origin of sub-continental lithospheric mantle. Mantle Petrology:Field Observations and High-Pressure Experimentation:A Tribute to Francis R(Joe) Boyd[J]. Y Fei, C. M. Berkta and B. O. Mysen, Spec. Publ. Geochem. Soc, 6:13-45.
    [62]Zhiqin Xu, Wencai Yang, Shaocheng Ji, Zeming Zhang, Jingsui Yang, Qin Wang, Tang, Zhemin. Deep root of a continent-continent collision belt:Evidence from the Chinese Continental Scientific Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure (HP-UHP) metamorphic terrane, China[J]. Tectonophysics,2009, (In press).
    [63]Reporter.苏鲁超高压变质带的结构和演化[M].北京:地质出版社,2005.
    [64]Reporter.大别-苏鲁造山带地质图[M].北京:地质出版社,2002.
    [65]Xu, Zhiqin, Yang, Wencai, Ji, Shaocheng, Zhang, Zeming, Yang, Jingsui, Wang, Qin, Tang, Zhemin. Deep root of a continent-continent collision belt:Evidence from the Chinese Continental Scientific Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure (HP-UHP) metamorphic terrane, China[J]. Tectonophysics,2009,475(2):204-219.
    [66]Liu, Qingsheng, Zeng, Qingli, Zheng, Jianping, Yang, Tao, Qiu, Ning, Liu, Zhifeng, Luo, Yinhe, Jin, Zhenmin. Magnetic properties of serpentinized garnet peridotites from the CCSD main hole in the Sulu ultrahigh-pressure metamorphic belt, eastern China[J]. J. Geophys. Res.,2010,115(B6):B06104.
    [67]Liu, Qingsheng, Liu, Qingsong, Zhang, Zeming, Xu, Haijun, Chan, Lungsang, Yang, Tao, Jin, Zhenmin. Magnetic properties of ultrahigh-pressure eclogites controlled by retrograde metamorphism: A case study from the ZK703 drillhole in Donghai, eastern China[J]. Physics of The Earth and Planetary Interiors,2007,160(3-4):181-191.
    [68]Liu, Qingsheng, Liu, Qingsong, Yang, Tao, Zeng, Qingli, Zheng, Jianping, Luo, Yinhe, Qiu, Ning, Xu, Haijun, Jin, Zhenmin. Magnetic study of the UHP eclogites from the Chinese Continental Scientific Drilling (CCSD) Project[J]. J. Geophys. Res.,2009,114(B2):B02106.
    [69]Kurahashi, Erika, Nakajima, Yoichi, Ogasawara, Yoshihide. Coesite inclusions and prograde compositional zonation of garnet in eclogite from Zekou in the Su-Lu ultrahigh-pressure terrane, eastern China[J]. Journal of Mineralogical and Petrological Sciences,2001,96(3):100-108.
    [70]Zhang, J. X., Yang, J. S., Mattinson, C. G., Xu, Z. Q., Meng, F. C., Shi, R. D. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China:Petrological and isotopic constraints[J]. Lithos,2005,84(1-2):51-76.
    [71]杨文采.东大别超高压变质带的深部构造[J].中国科学D辑,2003,33(2).
    [72]杨文采,杨午阳,程振炎.中国大陆科学钻探主孔区三维地震资料的初步解释[J].岩石学报,2004,20(1):128-134.
    [73]吴其反,路凤香,刘庆生等.苏鲁地区地壳深部太古代残留岩片:来自航磁资料的证据[J].科学通报,2003,48(3):395-399.
    [74]余钦范,姚长利,孟小红,郭友钊.苏北大陆科学钻探靶区重磁异常反演解释[J].地球物理学报,2001,44(6):825-832.
    [75]朱光明,杨文采,杨正华等.中国大陆科学钻探孔区的垂直地震剖面调查[J].地球物理学报,2008,51(2):479-490.
    [76]肖骑彬,赵国泽,王继军等.苏鲁造山带及邻区深部电性结构研究[J].中国科学(D辑:地球科学),2008,38(10):1258-1267.
    [77]Yang, Wencai. The crust and upper mantle of the Sulu UHPM belt[J]. Tectonophysics,2009, 475(2):226-234.
    [78]Yang, Wencai. Flat mantle reflectors in Eastern China:possible evidence of lithospheric thinning[J]. Tectonophysics,2003,369(3-4):219-230.
    [79]Reporter. Potential theory in gravity and magnetic applications[M]. Cambridge University Press., 1995.
    [80]Leliak, P. Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft[J]. IRE Transactions on Aerospace and Navigational Electronics,1961,8:95-106.
    [81]EG&G Geometrics, "A guide to passive magnetic compensation of aircrafts," EG&G 1970s.
    [82]Hardwick, C. D. Important design considerations for inboard airborne magnetic gradiometers[J]. Geophysics,1984,49:2004-2018.
    [83]Reporter. Introduction to geomagnetic fields[M]. Cambridge University Press,1997.
    [84]Maus, S., Macmillan, S.10th generation International Geomagnetic Reference Field[J]. EOS Transactions of the American Geophysical Union,2005,86(159).
    [85]Reford, M. S. History of geophysical exploration - Magnetic method[J]. Geophysics,1980,45: 1640-1658.
    [86]Peddie, N. W. International Geomagnetic Reference Field:The third generation[J]. Journal of Geomagnetism and Geoelectricity,1982,34:309-326.
    [87]Peddie, N. W. International Geomagnetic Reference Field-Its evolution and the difference in total field intensity between new and old models for 1965-1980[J]. Geophysics,1983,48:1691-1696.
    [88]Paterson, N. R., C. V. Reeves. Applications of gravity and magnetic surveys-The state of the art in 1985[J]. Geophysics,1985,50:2558-2594.
    [89]Langel, R. A. International Geomagnetic Reference Field:The sixth generation[J]. Journal of Geomagnetism and Geoelectricity,1992,44:679-707.
    [90]Barton, C. E. International Geomagnetic Reference Field:The seventh generation[J]. Journal of Geomagnetism and Geoelectricity,1997,49:138-148.
    [91]Macmillan, S., S. Maus, T. Bondar, A. Chambodut, V. Golovkov, R. Holme, B. Langlais. Ninth generation International Geomagnetic Reference Field released[J]. EOS Transactions of the American Geophysical Union,2003,84:503.
    [92]Sabaka, T. J., N. Olsen, R. A. Langel. A comprehensive model of the quiet-time, near-the-earth magnetic field:Phase 3[J]. Geophysical Journal International,2002,151:32-68.
    [93]Sabaka, T. J., N. Olsen, M. E. Purucker. Extending comprehensive models of the Earth's magnetic field with Oersted and Champ data[J]. Geophysical Journal International,2004,159:521-547.
    [94]Ravat, D., T. G Hildenbrand, W. Roest. New way of processing near-surface magnetic data:The utility of the Comprehensive Model of the magnetic field[J]. The Leading Edge,2003,22:784-785.
    [95]Hoylman, H. W. How to determine and remove diurnal effects precisely[J]. World Oil,1961, December:107-112.
    [96]Whitham, K., E. R. Niblett. The diurnal problem in aeromagnetic surveying in Canada[J]. Geophysics,1961,26:211-228.
    [97]Morley, L. W. The geophysics division of the Geological Survey of Canada[J]. Bulletin of the Canadian Institute of Mining Metallurgy,1963,5:358-364.
    [98]Reford, M. S., J. S. Sumner. Aeromagnetics[J]. Geophysics,1964,29:482-516.
    [99]Breiner, S. (1981). Horizontal gradient methods for airborne and marine geophysical exploration, SEG 51st Annual International Meeting:441-442.
    [100]Hansen, R. O. (1984). Two approaches to total field reconstruction from gradiometer data.54th Annual International Meeting, SEG. Expanded Abstracts:245.
    [101]O'Connell, M. D. A heuristic method of removing micropulsations from airborne magnetic data[J]. The Leading Edge,2001,20:1242-1244.
    [102]Mittal, P. K. Algorithm for error adjustment of potential-field data along a survey network[J]. Geophysics,1984,49:467-469.
    [103]Hogg, R. L. S. (1979). Illustration of a new Northway process for eliminating the "herringbone" component from problem geophysical data. Annual Meeting of Canadian Society of Exploration Geophysicists.
    [104]Urquhart, T. (1988). Decorrugation of enhanced magnetic field maps.58th Annual International Meeting, SEG.
    [105]Minty, B. R. S. Simple microlevelling for aeromagnetic data[J]. Exploration Geophysics,1991, 22:591-592.
    [106]Balsley, James R. (1952). Aeromagnetic surveying. Advances in Geophysics. H. E. Landsberg. New York, USA, Academic Press, Inc.1:313-350.
    [107]Naudy, H., H. Dreyer. Essai de filtrage non-lineaire applique aux profiles aeromagnetiques (Attempt to apply nonlinear filtering to aeromagnetic profiles)[J]. Geophysical Prospecting,1968,16: 171-178.
    [108]Hassan, H. H., J. W. Peirce, W. C. Pearson, M. J. Pearson. Cultural editing of HRAM data: Comparison of techniques[J]. Canadian Journal of Exploration Geophysics,1998,34.
    [109]Frischknecht, F. C., L. Muth, R. Grette, T. Buckley, B. Kornegay, "Geophysical methods for locating abandoned wells," U. S. Geological Survey 1983.
    [110]Boardman, J. W. Magnetic anomalies over oil fields[学位论文]Colorado School of Mines, 1985.
    [111]Dickinson, M. A search for intra-sedimentary aeromagnetic anomalies over a known oil field in the Denver Basin[学位论文]Colorado School of Mines,1986.
    [112]Pearson, W. C. (1996). Removing culture from southern Texas-A magnetic clean-up and imaging revolution:66th Annual International Meeting, SEG. Expanded Abstracts:1407-1410.
    [113]Hassan, H. H., J. W. Peirce. SAUCE:A new technique to remove cultural noise from HRAM[J]. The Leading Edge,2005,24:246-250.
    [114]Bhattacharyya, B. K. Bicubic spline interpolation as a method for treatment of potential field data[J]. Geophysics,1969,34:402-423.
    [115]Reid, A. B. Aeromagnetic survey design[J]. Geophysics,1980,45:973-976.
    [116]O'Connell, M. D., R. S. Smith, M. A. Vallee. Gridding aeromagnetic data using longitudinal and transverse gradients with the minimum curvature operator[J]. The Leading Edge,2005,24:142-145.
    [117]Hansen, R. O. Interpretative gridding by anisotropic kriging[J]. Geophysics,1993,58: 1491-1497.
    [118]Cordell, L. A scattered equivalent-source method for the interpolation and gridding of potential-field data in three dimensions[J]. Geophysics,1992,57:629-636.
    [119]Mendonca, C. A., and J. B. C. Silva,. The equivalent data concept applied to the interpolation of potential-field data[J]. Geophysics,1994,59:722-732.
    [120]Mendonca, C. A., J. B. C. Silva. Interpolation of potential-field data by equivalent layer and minimum curvature:A comparative analysis[J]. Geophysics,1995,60:399-407.
    [121]Keating, P. The fractal dimension of gravity data sets and its implication for gridding[J]. Geophysical Prospecting,1993,41:983-994.
    [122]Ridsdill-Smith, T. A. (2000). Wavelet compression of an equivalent layer.70th Annual International Meeting, SEG, Expanded Abstracts,, SEG.
    [123]Hinze, W. J. (1985). Proceedings of the International Meeting on Potential Fields in Rugged Topography, Institut de Geophysique de Universite de Lausanne. Bulletin 7.
    [124]Allingham, J. W. Low-amplitude aeromagnetic anomalies in southeastern Missouri[J]. Geophysics,1964,29:537-552.
    [125]Grauch, V. J. S. A new variable-magnetization terrain correction method for aeromagnetic data[J]. Geophysics,1987,52:94-107.
    [126]Blakely, R. J., V. J. S. Grauch. Magnetic models of crystalline terrane; accounting for the effect of topography[J]. Geophysics,1983,48:1551-1557.
    [127]Grauch, V. J. S., L. Cordell. Limitations on determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data[J]. Geophysics,1987,52:118-121.
    [128]Thompson, R., V. J. S. Grauch, D. Sawyer, M. R. Hudson. Aeromagnetic expression of volcanic rocks of the Cerros Del Rio volcanic field, Rio Grande rift, north-central New Mexico[J]. Geological Society of America, Abstracts with Programs,,2002,34:451-452.
    [129]Finn, C. A., T. W. Sisson, M. Deszcz-Pan. Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier Volcano[J]. Nature,2001,409:600-603.
    [130]Griffin, W. R. Residual gravity in theory and practice[J]. Geophysics,1949,14:39-56.
    [131]Henderson, R. G., I. Zietz. The computation of second vertical derivatives of geomagnetic fields[J]. Geophysics,1949,14:508-516.
    [132]Roy, A. Letter on residual and second derivative of gravity and magnetic maps[J]. Geophysics, 1958,23:860-861.
    [133]Agocs, W. B. Least-squares residual anomaly determination[J]. Geophysics,1951,16:686-696.
    [134]Skeels, D. C. What is residual gravity?[J]. Geophysics,1967,32:872-876.
    [135]Zurflueh, E. G. Applications of two-dimensional linear wavelength filtering[J]. Geophysics,1967, 32:1015-1035.
    [136]Agarwal, R. G., E. R. Kanasewich. Automatic trend analysis and interpretation of potential field data[J]. Geophysics,1971,36(339-348).
    [137]Gunn, P. J. Linear transformations of gravity and magnetic fields[J]. Geophysical Prospecting, 1975,23:300-312.
    [138]Syberg, F. J. R. A Fourier method for the regional-residual problem of potential fields[J]. Geophysical Prospecting,1972,20:47-75.
    [139]Guspi, F., B. Introcaso. A sparse spectrum technique for gridding and separating potential field anomalies[J]. Geophysics,2000,65:1154-1161.
    [140]Hammer, S. Deep gravity interpretation by stripping[J]. Geophysics,1963,28:369-378.
    [141]Baranov, V., Naudy, H. Numerical calculation of the formula of reduction to the magnetic pole[J]. Geophysics,1964,29:67-79.
    [142]Leu, L. Use of reduction-to-the-equator process for magnetic data interpretation[J]. Geophysics, 1982,47:445.
    [143]Pearson, W. C., C. M. Skinner (1982). Reduction-to-the-pole of low latitude magnetic anomalies. 52nd Annual International Meeting, SEG Expanded Abstracts:356.
    [144]Silva, J. B. C. Reduction to the pole as an inverse problem and its application to low-latitude anomalies[J]. Geophysics,1986,51:369-382.
    [145]Hansen, R. O., R. S. Pawlowski. Reduction-to-the-pole at low latitudes by Wiener filtering[J]. Geophysics,1989,54:1607-1613.
    [146]Mendonca, C. A., J. B. C. Silva. A stable truncated series approximation of the reduction-to-the-pole operator[J]. Geophysics,1993,58:1084-1090.
    [147]Gunn, P. J. Application of Wiener filters to transformations of gravity and magnetic fields[J]. Geophysical Prospecting,1972,20:860-871.
    [148]Gunn, P. J. An algorithm for reduction to the pole that works at all magnetic latitudes[J]. Exploration Geophysics,1995,26:247-254.
    [149]Keating, P., L. Zerbo. An improved technique for reduction to the pole at low latitudes[J]. Geophysics,1996,61:131-137.
    [150]Li, Y., D. W. Oldenburg. Separation of regional and residual magnetic field data[J]. Geophysics, 1998,63:431-439.
    [151]Li, Y., D. W. Oldenburg. Joint inversion of surface and three-component borehole magnetic data[J]. Geophysics,2000,65:540-552.
    [152]Baranov, V. A new method for interpretation of aeromagnetic maps pseudo-gravimetric anomalies[J]. Geophysics,1957,22:359-383.
    [153]Reporter. Foundations of potential theory[M]. Dover Publications,1953.
    [154]Peters, L. J. The direct approach to magnetic interpretation and its practical application[J]. Geophysics,1949,14:290-320.
    [155]Henderson, R. A comprehensive system of automatic computation in magnetic and gravity interpretation[J]. Geophysics,1960,25:569-585.
    [156]Byerly, P. E. Convolution filtering of gravity and magnetic maps[J]. Geophysics,1965,30: 281-283.
    [157]Fuller, B. D. (1967). Two-dimensional frequency analysis and design of grid operators, in Mining Geophysics, Ⅱ, Society of Exploration Geophysicists:658-708.
    [158]Dean, W. C. Frequency analysis for gravity and magnetic interpretation[J]. Geophysics,1958,23: 97-127.
    [159]Bhattacharyya, B. K. Two-dimensional harmonic analysis as a tool for magnetic interpretation[J]. Geophysics,1965,30:829-857.
    [160]Mesko, A. Some notes concerning the frequency analysis for gravity interpretation[J]. Geophysical Prospecting,1965,13:475-488.
    [161]Clarke, G. K. C. Optimum second derivative and downward continuation filters[J]. Geophysics, 1969,34:424-437.
    [162]Parker, R. L., K. D. Klitgord. Magnetic upward continuation from an uneven track[J]. Geophysics, 1972,37:662-668.
    [163]Bhattacharyya, B. K., K. C. Chan. Reduction of magnetic and gravity data on an arbitrary surface acquired in a region of high topographic relief[J]. Geophysics,1977,42:1411-1430.
    [164]Li, Y., Oldenburg, D. W. (1999). Rapid construction of equivalent sources using wavelets.60th Annual International Meeting, SEG. Expanded Abstracts:374-377.
    [165]Cordell, L. (1985). Applications and problems of analytical continuation of New Mexico aeromagnetic data between arbitrary surfaces of very high relief. Proceedings of International Meeting on Potential Fields in Rugged Topography, Institut de Geophysique de Universite de Lausanne. Bulletin 7:96-101.
    [166]Nabighian, M. N. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms - Fundamental relations[J]. Geophysics,1984,49:780-786.
    [167]Vacquier, V., N C. Steenland, R. G Henderson, I. Zietz, "Interpretation of aeromagnetic maps," Geological Society of America 1951.
    [168]Andreasen, G E., I. Zietz, "Magnetic fields for a 4×6 prismatic model," U. S. Geological Survey 1969.
    [169]Gunn, P. J., D. FitzGerald, N. Yassi. Complex attributes:New tools for enhancing aeromagnetic data[J]. Australian Geological Survey Organization (AGSO) Research Newsletter,1996,25:16-17.
    [170]Cordell, L. (1979). Gravimetric expression of graben faulting in Santa Fe County and the Espanola Basin, New Mexico. Guidebook to Santa Fe County:30th Field Conference. R. V. Ingersoll, New Mexico Geological Society:59-64.
    [171]Cordell, L., V. J. S. Grauch (1982). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico.52nd Annual International Meeting, SEG. Expanded Abstracts:269-247.
    [172]Cordell, L., V. J. S. Grauch (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin New Mexico. Utility of regional gravity and magnetic maps. W. J. Hinze, SEG:181-197.
    [173]Phillips, J. D. (2000). Locating magnetic contacts:A comparison of the horizontal gradient, analytic signal, and local wavenumber methods.70th Annual International Meeting, SEG.
    [174]Blakely, R. J., R. W. Simpson. Approximating edges of source bodies from magnetic or gravity anomalies[J]. Geophysics,1986,51:1494-1498.
    [175]Pilkington, M., P. Keating. Contact mapping from gridded magnetic data-A comparison of techniques [J]. Exploration Geophysics,2004,35:306-311.
    [176]Grauch, V. J. S., C. S. Johnston (2002). Gradient window method:A simple way to separate regional from local horizontal gradients in gridded potential-field data.72nd Annual International Meeting, SEG. Expanded Abstracts:762-765.
    [177]Nabighian, M. N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section - Its properties and use for automated anomaly interpretation[J]. Geophysics,1972,37: 507-517.
    [178]Nabighian, M. N. Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section[J]. Geophysics,1974,39:85-92.
    [179]Craig, M. Analytic signals for multivariate data[J]. Mathematical Geology,1996,28:315-329.
    [180]Roest, W. R., J. Verhoef, M. Pilkington. Magnetic interpretation using the 3D analytic signal[J]. Geophysics,1992,57:116-125.
    [181]Haney, M., C., Johnston, Y. Li, M. Nabighian (2003). Envelopes of 2D and 3D magnetic data and their relationship to the analytic signal:Preliminary results.73rd Annual International Meeting, SEG. Expanded Abstracts:596-599.
    [182]Roest, W. R., M. Pilkington. Identifying remanent magnetization effects in magnetic data[J]. Geophysics,1993,58:653-659.
    [183]Huang, D., P. A. Versnel (2000). Depth estimation algorithm applied to FTG data.70th Annual International Meeting, SEG. Expanded Abstracts:394-397.
    [184]Goussev, S. A., R. A. Charters, J. W. Peirce, W. E. Glenn. Jackpine magnetic anomaly: Identification of a buried meteorite impact structure[J]. The Leading Edge,2003,22:740-741.
    [185]Jacobsen, B. A case for upward continuation as a standard separation filter for potential-field maps[J]. Geophysics,1987,52:1138-1148.
    [186]Goupillaud, P. L., A. Grossmann, J. Morlet. Cycle-octave and related transforms in seismic signal analysis[J]. Geoexploration,1984,23:85-102.
    [187]Li, Y., D. W. Oldenburg. Fast inversion of large-scale magnetic data using wavelet transforms and logarithmic barrier method[J]. Geophysical Journal International,2003,152:251-265.
    [188]Nettleton, L. L. Gravity and magnetic calculations[J]. Geophysics,1942,7:293-310.
    [189]Talwani, M., J. R. Heirtzler (1964). Computation of magnetic anomalies caused by two-dimensional structures of arbitrary shape. Stanford University Publications of the Geological Sciences, Computers in the Mineral Industries.
    [190]Bott, M. H. P. Two methods applicable to computers for evaluating magnetic anomalies due to finite three dimensional bodies[J]. Geophysical Prospecting,1963,11:292-299.
    [191]Bhattacharyya, B. K. Magnetic anomalies due to prism-shaped bodies with arbitrary polarization[J]. Geophysics,1964,29:517-531.
    [192]Talwani, M. Computation with the help of a digital computer of magnetic anomalies caused by bodies of arbitrary shape[J]. Geophysics,1965,30:797-817.
    [193]Shuey, R. T., A. S. Pasquale. End corrections in magnetic profile interpretation[J]. Geophysics, 1973,38:507-512.
    [194]Rasmussen, R., L. B. Pedersen. End corrections in potential field modeling[J]. Geophysical Prospecting,1979,27:749-760.
    [195]Cady, J. W. Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms[J]. Geophysics,1980,45:1507-1512.
    [196]Saltus, R. W., R. J. Blakely, "HYPERMAG, an interactive, two-dimensional gravity and magnetic modeling program," U. S. Geological Survey 1983.
    [197]Saltus, R. W., R. J. Blakely, "HYPERMAG, an interactive,2- and 2-1/2-dimensional gravity and magnetic modeling program, version 3.5," U. S. Geological Survey 1993.
    [198]Webring, M., "SAKI, A Fortran program for generalized linear inversion of gravity and magnetic profiles," U. S. Geological Survey 1985.
    [199]Plouff, D. (1975). Derivation of formulas and FORTRAN programs to compute magnetic anomalies of prisms. National Technical Information Service. U. S. D. o. Commerce:PB-243-525.
    [200]Plouff, D. Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections[J]. Geophysics,1976,41:727-741.
    [201]Barnett, C. T. Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body[J]. Geophysics,1976,41:1353-1364.
    [202]Okabe, M. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies[J]. Geophysics,1979,44:730-741.
    [203]Holstein, H. Gravimagnetic similarity in anomaly formulas for uniform polyhedra[J]. Geophysics, 2002,67:1126-1133.
    [204]Holstein, H. Invariance in gravimagnetic anomaly formulas for uniform polyhedra[J]. Geophysics, 2002,67:1134-1137.
    [205]Bhattacharyya, B. K. Continuous spectrum of the total-magnetic-field anomaly due to a rectangular prismatic body[J]. Geophysics,1966,31:97-121.
    [206]Spector, A., B. K. Bhattacharyya. Energy density spectrum and autocorrelation function of anomalies due to simple magnetic models[J]. Geophysical Prospecting,1966,14:242-272.
    [207]Pedersen, L. B. Wavenumber domain expressions for potential fields from arbitrary 2-,2-1/2, and 3-dimensional bodies[J]. Geophysics,1978,43:626-630.
    [208]Jessell, M. W., R. K. Valenta, G Jung, J. P. Cull, A. Gerio. Structural geophysics [J]. Exploration Geophysics,1993,24:599-602.
    [209]Jessell, M. W., R. K. Valenta (1996). Structural geophysics:Integrated structural and geophysical mapping. Structural geology and personal computers[J]. D. DePaor, Elsevier Science Publishing Co.: 303-324.
    [210]Jessell, M. W. Three-dimensional modeling of potential-field data[J]. Computers & Geosciences, 2001,27:455-465.
    [211]Jessell, M. W., Fractal Geophysics Pty Ltd. An atlas of structural geophysics Ⅱ[J]. Journal of the Virtual Explorer,2002,5.
    [212]Henderson, R. G, I. Zietz. Analysis of total magnetic intensity anomalies produced by point and line sources[J]. Geophysics,1948,13:428-436.
    [213]Smellie, D. W. Elementary approximations in aeromagnetic interpretation[J]. Geophysics,1956, 21:1021-1040.
    [214]Hutchison, R. D. Magnetic analysis by logarithmic curves[J]. Geophysics,1958,23:749-769.
    [215]Grant, F. S., L. Martin. Interpretation of aeromagnetic anomalies by the use of characteristic curves[J]. Geophysics,1966,31:135-148.
    [216]Koulomzine, T., Y. Lamontagne, A. Nadeau. New methods for the direct interpretation of magnetic anomalies caused by inclined dikes of infinite length[J]. Geophysics,1970,35:912-930.
    [217]Barongo, J. O. Method for depth estimation and aeromagnetic vertical gradient anomalies[J]. Geophysics,1985,50:963-968.
    [218]Smith, R. A. Some depth formulae for local magnetic and gravity anomalies[J]. Geophysical Prospecting,1959,7:55-63.
    [219]Werner, S. (1955). Interpretation of magnetic anomalies of sheet-like bodies. Series C, Arsbok 43,, Sveriges Geologiska Undersokning. No.6.
    [220]Thompson, D. T. EULDPH-A new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics,1982,47:31-37.
    [221]Reid, A. B., J. M. Allsop, H. Granser, A. J. Millett, I. W. Somerton. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics,1990,55:80-91.
    [222]Mushayandebvu, M., A. Reid, D. Fairhead (2000). Grid Euler deconvolution with constraints for 2-D structures.70th Annual International Meeting, SEG. Expanded Abstracts:398-401.
    [223]Silva, J. B. C., V. C. F. Barbosa. Euler deconvolution:Theoretical basis for automatically selecting good solutions[J]. Geophysics,2003,68:1962-1968.
    [224]Mushayandebvu, M. F., P. van Driel, A. B. Reid, J. D. Fairhead. Magnetic source parameters of two-dimensional structures using extended Euler deconvolution[J]. Geophysics,2001,66:814-823.
    [225]Nabighian, M. N., R. O. Hansen. Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform[J]. Geophysics,2001,66:1805-1810.
    [226]Stavrev, P. Y. Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies[J]. Geophysical Prospecting,1997,45:207-246.
    [227]Gerovska, D., M. J. Arauzo-Bravo. Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index[J]. Computers & Geosciences,2003,29:949-960.
    [228]Fitzgerald, D., A. Reid, P. McInerney (2003). New discrimination techniques for Euler deconvolution.8th South African Geophysical Association (SAGA) Biennial Technical Meeting and Exhibition.
    [229]Spector, A., F. Grant. Statistical models for interpreting aeromagnetic data[J]. Geophysics,1970, 35:3293-3302.
    [230]Treitel, S., W. G Clement, R. K. Kaul. The spectral determination of depths to buried magnetic basement rocks[J]. Geophysical Journal of the Royal Astronomical Society,1971,24:415-428.
    [231]Spector, A., F. Grant. Reply to the discussion by G Gudmunddson on "Statistical models for interpreting aeromagnetic data"[J]. Geophysics,1974,39:112-113.
    [232]Pilkington, M., M. E. Gregotski, J. P. Todoeschuck. Using fractal crustal magnetization models in magnetic interpretation[J]. Geophysical Prospecting,1994, (42):677-692.
    [233]Cordell, L., A. E. McCafferty. A terracing operator for physical property mapping with potential field data[J]. Geophysics,1989,54:621-634.
    [234]Parker, R. L., S. P. Huestis. Inversion of magnetic anomalies in the presence of topography [J]. Journal of Geophysical Research,1974,79:1587-1593.
    [235]Macdonald, K. C., S. P. Miller, S. P. Huestis, F. N. Spiess. Three-dimensional modeling of a magnetic reversal boundary from inversion of deep-tow measurements[J]. Journal of Geophysical Research,1980,85:3670-3680.
    [236]Silva, J. B. C., G W. Hohmann. Airborne magnetic susceptibility mapping[J].Exploration Geophysics,1984,15:1-13.
    [237]Misener, D. J., F. S. Grant, P. Walker (1984). Variable depth, space-domain magnetic susceptibility mapping.54th Annual International Meeting, SEG. Expanded Abstracts:237.
    [238]Bott, M. H. P. The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins[J]. Geophysical Journal of the Royal Astronomical Society,1960,3:63-67.
    [239]Pedersen, L. B. Interpretation of potential field data-A generalized inverse approach[J]. Geophysical Prospecting,1977,25:199-230.
    [240]Whitehill, D. E. Automated interpretation of magnetic anomalies using the vertical prism model[J]. Geophysics,1973,38:1070-1087.
    [241]Ballantyne Jr., E. J. Magnetic curve fit for a thin dike-Calculator program (TI-59)[J]. Geophysics, 1980,45:447-455.
    [242]Bhattacharyya, B. K. A generalized multibody model for inversion of magnetic anomalies[J]. Geophysics,1980,45:255-270.
    [243]Silva, J. B. C., G. W. Hohmann. Nonlinear magnetic inversion using a random search method[J]. Geophysics,1983,48:1645-1658.
    [244]Pedersen, L. B. Constrained inversion of potential field data[J]. Geophysical Prospecting,1979, 27:726-748.
    [245]Wang, X., R. O. Hansen. Inversion for magnetic anomalies of arbitrary three-dimensional bodies[J]. Geophysics,1990,55:1321-1326.
    [246]Cribb, J. Application of the generalized linear inverse to the inversion of static potential data[J]. Geophysics,1976,41:1365-1369.
    [247]Steenland, N. C. Reflecting on exploration in the North Sea in the 1960s[J]. The Leading Edge, 1998,17:479-482.
    [248]Reporter. Elementary gravity and magnetics for geologists and seismologists[M]. SEG,1971.
    [249]Steenland, N. C. An evaluation of the Peace River aeromagnetic interpretation[J]. Geophysics, 1963,28:745-755.
    [250]Stearn, N. H. A background for the application of geomagnetics to exploration[J]. Transactions of the American Institute of Mining and Metallurgical Engineers,1929,81:315-345.
    [251]Gunn, P. J. Application of aeromagnetic surveys to sedimentary basin studies[J]. AGSO Journal of Australian Geology and Geophysics,1997,17:133-144.
    [252]Davies, J., M. F. Mushayandebvu, R. Smith (2004). Magnetic detection and characterization of Tertiary and Quaternary buried channels.74th Annual International Meeting, SEG:734.
    [253]Gay Jr., S. P. Glacial till:A troublesome source of near-surface magnetic anomalies[J]. The Leading Edge,2004,23:542-547.
    [254]Langenheim, V. E., R. C. Jachens, D. M. Morton, R. W. Kistler, J. C. Matti. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California[J]. Geological Society of America Bulletin,2004,116: 1143-1157.
    [255]Hildenbrand, T. G, G. Raines, "Need for aeromagnetic data and a national airborne geophysics program," U. S. Geological Survey 1990.
    [256]Modisi, M. P., E. A. Atekwana, A. B. Kampunzu, T. H. Ngwisanyi. Rift kinematics during the incipient stages of continental extension:Evidence from the nascent Okavango rift basin, northwest Botswana[J]. Geology,2000,28:939-942.
    [257]Books, K. G Remanent magnetism as a contributor to some aeromagnetic anomalies[J]. Geophysics,1962,27:359-375.
    [258]Grauch, V. J. S., D. A. Sawyer, C. J. Fridrich, M. R. Hudson, "Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications," U. S. Geological Survey 1999.
    [259]Airo, M.-L. Aeromagnetic and aeroradiometric response to hydrothermal alteration[J]. Surveys in Geophysics,2002,23:273-302.
    [260]M. N. Nabighian, V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J. W. Peirce, J. D. Phillips, Ruder, M. E. The historical development of the magnetic method in exploration[J]. Geophysics,2005 70(6):33ND-61ND.
    [261]Reporter. Geophysical Inverse Theory[M]. Princeton, New Jersey:Princeton University Press, 1994.
    [262]Chen, J., Kemna, A., Hubbard, S. S. A comparison between Gauss-Newton and Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for Cole-Cole parameters[J]. Geophysics,2008,73(6):F247-F259.
    [263]Kelbert, A., Egbert, G D., Schultz, A. Non-linear conjugate gradient inversion for global EM induction:resolution studies[J]. Geophysical Journal International,2008,173(2):365-381.
    [264]L R Lines, S Treitel. A review of least-squares inversion and its application to geophysical problems[J]. Geophysical Prospecting,1984,32(2):159-186.
    [265]Marquardt, DW. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics,1963,11(2):431-441.
    [266]Bosch, M., Meza, R., Jimenez, R., Honig, A. Joint gravity and magnetic inversion in 3D using Monte Carlo methods[J]. Geophysics,2006,71(4):G153-G156.
    [267]Sambridge, M. Geophysical inversion with a neighbourhood algorithm-Ⅱ. Appraising the ensemble[J]. Geophysical Journal International,1999,138(3):727-746.
    [268]Pei, D. H., Louie, J. N., Pullammanappallil, S. K. Application of simulated annealing inversion on high-frequency fundamental-mode Rayleigh wave dispersion curves[J]. Geophysics,2007,72(5): R77-R85.
    [269]Beaty, K. S., Schmitt, D. R., Sacchi, M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International,2002,151(2): 622-631.
    [270]van der Baan, M., Jutten, C. Neural networks in geophysical applications[J]. Geophysics,2000, 65(4):1032-1047.
    [271]Calderon-Macias, C., Sen, M. K., Stoffa, P. L. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting,2000,48(1):21-47.
    [272]Osman, O., Albora, A. M., Ucan, O. N. Forward modeling with forced neural networks for gravity anomaly profile[J]. Mathematical Geology,2007,39(6):593-605.
    [273]姚长利,郝天珧,管志宁,张聿文.重磁遗传算法三维反演中高速计算及有效存储方法技术[J].地球物理学报,2003,46(2):252-258.
    [274]Currenti, G., Del Negro, C., Nunnari, G Inverse modelling of volcanomagnetic fields using a genetic algorithm technique[J]. Geophysical Journal International,2005,163(1):403-418.
    [275]Shaw, R., Srivastava, S. Particle swarm optimization:A new tool to invert geophysical data[J]. Geophysics,2007,72(2):F75-F83.
    [276]岳碧波,彭真明,洪余刚等.基于粒子群优化算法的叠前角道集子波反演[J].地球物理学报,2009,52(12):3116-3123.
    [277]师学明,肖敏,范建柯等.大地电磁阻尼粒子群优化反演法研究[J].地球物理学报,2009,52(4):1114-1120.
    [278]Reporter. Adaptation in Natural and Artificial Systems[M]. Ann Arbor:University of Michigan Press,1975.
    [279]Yao, C. L., Hao, T., Guan, Z. N., Zhang, Y. W. High-speed computation and efficient storage in 3-D gravity and magnetic inversion based on genetic algorithms[J]. Chinese Journal of Geophysics-Chinese Edition,2003,46(2):252-258.
    [280]Chen, C., Liu, J. P., Yu, F. The inversion of gravity data by using hybrid encoding genetic algorithm[J]. Chinese Journal of Geophysics-Chinese Edition,2004,47(1):119-126.
    [281]Kennedy, J., Eberhart, R. (1995). Particle swarm optimization.1995 Ieee International Conference on Neural Networks Proceedings, Vols 1-6:1942-1948.
    [282]M Wax, J Sheinvald, AJ Weiss. Detection and localization in colored noise via generalized least squares[J]. IEEE Transactions on Signal Processing,1996 44(7):1734-1743.
    [283]A M Mathai, R S Katiyar. A new algorithm for nonlinear least squares[J]. Journal of Mathematical Sciences,1993,207:2454-2463.
    [284]Albert Tarantola, Bernard Valette. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion[J]. Reviews of Geophysics and Space Physics,1982,20(2):219-233.
    [285]Kennedy, J., Eberhart, R. (1995). Particle swarm optimization.1995 IEEE International Conference on Neural Networks Proceedings
    [286]R May. Simple mathematical models with very complicated dynamics[J]. Nature,1976, 261(459-467).
    [287]Liu, B., Wang, L., Jin, Y H., Tang, F., Huang, D. X. Improved particle swarm optimization combined with chaos[J]. Chaos Solitons & Fractals,2005,25(5):1261-1271.
    [288]National Geophysical Data Center (2005). The World Magnetic Model, National Oceanic & Atmospheric Administration, USA.
    [289]Spector, A. Spectral analysis of aeromagnetic data:[学位论文]. University of Toronto,1968.
    [290]Ridsdill-Smith, T. A. (1998). Separating aeromagnetic anomalies using wavelet matched filters. 68th Annual International Meeting, SEG.
    [291]Ridsdill-Smith, T. A. Separation filtering of aeromagnetic data using filter banks [J]. Exploration Geophysics,1998,29 577-583.
    [292]Phillips, J. D. (2001). Designing matched bandpass and azimuthal filters for the separation of potential-field anomalies by source region and source type.15th Geophysical Conference and Exhibition, Australian Society of Exploration Geophysicists.
    [293]Smith, R. S., J. G Thurston, T.-F. Dai, I. N. MacLeod. ISPITM-the improved source parameter imaging method[J]. Geophysical Prospecting,1998,46:141-151.
    [294]Thurston, J. B., R. S. Smith. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPITM method[J]. Geophysics,1997,62:807-813.
    [295]Phillips, J.D., Hansen, R.O., Blakely, R.J. The use of curvature in potential-field interpretation^]. Exploration Geophysics,2007,38(2):111-119.
    [296]Reid, A. B., Allsop, J. M., Granser, H., Millet, A. J., Somerton, I. W. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics,1990,55(1):80-91.
    [297]Fairhead, J. D., Bennet, K. J., Gordon, D. R. H., Huang, D. (1994). Euler:Beyond the "Black Box".64th Ann. Internat. Mtg. Soc. Expl. Geophys.
    [298]Stavrev, Petar Y. Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies[J]. Geophysical Prospecting,1997,45(2):207-246.
    [299]Barbosa, V.C.F., Silva, J.B.C., Medeiros, W.E. Stability analysis and improvement of structural index estimation in Euler deconvolution[J]. Geophysics,1999,61(1):48-60.
    [300]Mushayandebvu, Martin F., Driel, P. van, Reid, Alan B., Fairhead, James Derek. Magnetic source parameters of two-dimensional structures using extended Euler deconvolution[J]. Geophysics,2001, 66(3):814-823.
    [301]Hsu, Shu-Kun. Imaging magnetic sources using Euler's equation[J]. Geophysical Prospecting, 2002,50(1):15-25.
    [302]Doo, Wen-Bin, Hsu, Shu-Kun, Yeh, Yi-Ching. A derivative-based interpretation approach to estimating source parameters of simple 2D magnetic sources from Euler deconvolution, the analytic-signal method and analytical expressions of the anomalies[J]. Geophysical Prospecting,2007, 55(2):255-264.
    [303]Parker, R.L. The rapid calculation of potential anomalies[J]. Geophysical Journal of the Royal Astronomical Society,1973,31(447-455).
    [304]Oldenburg, D.W. The inversion and interpretation of gravity anomalies[J]. Geophysics,1974, 39(4):526-536.
    [305]Qingqing, Qiao, Qingsheng, Liu, Ning, Qiu, Yuanyuan, Fu, Sutao, Zhao, Yao, Wu, Tao, Yang, Zhenmin, Jin. Investigation of Curie Point Depth in Sulu Ultrahigh-Pressure Metamorphic Belt, Eastern China[J]. Journal of China University of Geosciences,2008,19(3):282-291.
    [306]中国地质调查局发展研究中心(2002).中华人民共和国1:250万数字地图空间数据库.北京,中国地质调查局.
    [307]Liu, Qingsheng, Liu, Qingsong, Yang, Tao, Zeng, Qingli, Zheng, Jianping, Luo, Yinhe, Qiu, Ning, Xu, Haijun, Jin, Zhenmin. Magnetic study of the UHP eclogites from the Chinese Continental Scientific Drilling (CCSD) Project[J]. Journal of Geophysical Research,2009,114(B2):B02106.
    [308]Liu, Qingsheng, Zeng, Qingli, Zheng, Jianping, Yang, Tao, Qiu, Ning, Liu, Zhifeng, Luo, Yinhe, Jin, Zhenmin. Magnetic properties of serpentinized garnet peridotites from the CCSD main hole in the Sulu ultrahigh-pressure metamorphic belt, eastern China[J]. Journal of Geophysical Research,2010, 115(B6):B06104.
    [309]Reporter. Regional Geophysics and Crust-Mantle interaction in Sulu-Dabie Orogenic Belt[M]. Beijing:Geology Press,2005.
    [310]Yang, Wencai. Geophysical profiling across the Sulu ultra-high-pressure metamorphic belt, eastern China[J]. Tectonophysics,2002,354(3-4):277-288.
    [311]Blakely, Richard J., Brocher, Thomas M., Wells, Ray E.. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle[J]. Geology,2005,33(6):445-448.
    [312]Toft, P. B., Scowen, P. A. H., Arkani-Hamed, J., Francis, D. Demagnetization by hydration in deep-crustal rocks in the Grenville province of Quebec, Canada:Implications for magnetic anomalies of continental collision zones[J]. Geology,1993,21(11):999-1002.
    [313]Yang, J, Godard, G, Kienast, J R, Lu, Y, Sun, J. Ultrahigh-pressure (60 kbar) magnesite-bearing garnet peridotites from northeastern Jiangsu, China[J]. The Journal of Geology,1993 101:541-554.
    [314]Zhang, R. Y, Liou, J. G, Yang, J. S., Yui, T.F. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central ChinafJ]. Journal of Metamorphic Geology,2000,18(2):149-166.
    [315]Yang, Jahn. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China[J]. Journal of Metamorphic Geology,2000,18:167-180.
    [316]Ye, Kai, Song, Yan Ru, Chen, Yi, Xu, Hai Jin, Liu, Jing Bo, Sun, Min. Multistage metamorphism of orogenic garnet-lherzolite from Zhimafang, Sulu UHP terrane, E. China:Implications for mantle wedge convection during progressive oceanic and continental subduction[J]. Lithos,2009,109(3-4): 155-175.
    [317]He, Lijuan, Hu, Shengbiao, Yang, Wencai, Wang, Jiyang. Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt[J]. Earth and Planetary Science Letters,2009, 277(3-4):525-538.
    [318]Qiao, Qingqing, Liu, Qingsheng, Qiu, Ning, Fu, Yuanyuan, Zhao, Sutao, Wu, Yao, Yang, Tao, Jin, Zhenmin. Investigation of Curie Point Depth in Sulu Ultrahigh-Pressure Metamorphic Belt, Eastern China[J]. Journal of China University of Geosciences,2008,19(3):282-291.
    [319]Wang, Qin, Ji, Shaocheng, Salisbury, Matthew H., Xia, Bin, Pan, Mingbao, Xu, Zhiqin. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China):Implications for seismic properties of subducted slabs and origin of mantle reflections[J]. Tectonophysics,2005,398(1-2):67-99.
    [320]Kern, Hartmut, Jin, Zhenmin, Gao, Shan, Popp, Till, Xu, Zhiqin. Physical properties of ultrahigh-pressure metamorphic rocks from the Sulu terrain, eastern central China:implications for the seismic structure at the Donghai (CCSD) drilling site[J]. Tectonophysics,2002,354(3-4):315-330.
    [321]Kern, Hartmut, Gao, Shan, Jin, Zhengmin, Popp, Till, Jin, Shuyan. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China:implications for the composition and delamination of the lower crust[J]. Tectonophysics,1999,301(3-4):191-215.
    [322]Yu, Qinfan, Yao, Changli, Meng, Xiaohong, Guo, Youzhao. Interpretation of gravity and magnetic anomalies obtained at continental scientific drilling site in Subei[J]. Chinese Journal of Geophysics, 2001,44(6):825-832.
    [323]Wu, Qifan. Study on the lithosphere structure along the middle part of Tanlu fault zone[学位论文]Wuhan:China University of Geosciences,2001.
    [324]Zhang, R. Y., Liou, J. G., Yang, J. S., Ye, K. Ultrahigh-pressure metamorphism in the forbidden zone:the Xugou garnet peridotite, Sulu terrane, eastern China[J]. Journal of Metamorphic Geology, 2003,21(6):539-550.
    [325]Liu, YiCan, Li, ShuGuang. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks:Evidence from the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin,2008,53(20):3105-3119.
    [326]Pilchin, A. The role of serpentinization in exhumation of high- to ultra-high-pressure metamorphic rocks[J]. Earth and Planetary Science Letters,2005,237(3-4):815-828.
    [327]Hermann, J., Muntener, O., Scambelluri, M. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust[J]. Tectonophysics,2000,327(3-4):225-238.
    [328]Ernst, W. G. Preservation/exhumation of ultrahigh-pressure subduction complexes[J]. Lithos, 2006,92(3-4):321-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700