用户名: 密码: 验证码:
滇东、黔西晚二叠世煤的沉积学特征及古环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以中国滇东、黔西地区晚二叠世含煤岩系为对象,运用沉积学、煤岩学、信号处理技术和碳、硫同位素地球化学等方法,从多角度和尺度揭示其沉积学特征和古环境意义。以四级层序为基本层序的高分辨率层序地层学研究将区内上二叠统划分为三个三级复合层序和十六个四级层序,并认为层序格架内的煤层发育受到不同古地理背景下的物源输入速率的影响;研究发现煤层中富含源于火焚事件的惰质组,说明当时的大气氧含量充足且泥炭地中火灾频发;对反映煤层灰分变化的物理测井曲线进行了频谱分析,成功发现其中蕴含的米兰科维奇旋回信息,并认为晚二叠世泥炭地生产力受到大气中较高氧含量的影响;在煤层的有机碳、硫同位素剖面中发现了能和全球同期剖面对比的偏移现象,说明扰乱全球碳、硫循环的机制之间联系密切,且海、陆相生物危机的发生时间不一致。这些认识有力地证明了煤层保存古环境信息的能力,并对研究晚二叠世的古环境以及生物危机事件在陆相的表现有重要意义。
The sedimentological characteristics and palaeo-environmental bearings of the Upper Permian coal measures in sw China are studied employing sedimentology, coal petrology, signal analysis and isotopic geochemistry of carbon and sulfur. High resolution sequence stratigraphic analyses delineate the Upper Permian into three 3rd-order composite sequences and sixteen 4th-order sequences. Inertinite, which is largely the by-product of palaeo-fire, accounts for a significant portion of the coal macerals, suggesting the temporal atmosphere was enriched in O2 and the peatland was suffered from frequent wildfires. Spectral analysis of geophysical loggings, which reflects the ash varations in the coal, reveals that the coal deposition was influenced by Milankovitch cycles. Calculations of NPP and carbon accumulation rate of coal-forming peatland support that the productivity in the peatland was strongly influenced by the high content of the temporal O2. A13Corg andδ34Sorg of Late Permian coals show shifts which are correlative with the phenomenon in global marine and terrestrial sections, suggesting inherent links between mechanisms which perturbed the temporal C and S cycles, and the crisis on land was later than the sea. All these knowledges confirm the feasibility of using coal as a media for palacoenvironmental study, and are of great importance to improve our understanding towards the behavior of terrestrial system in the Late Permian event.
引文
[1]Retallack, G. J., Veevers, J. J., Morante, R., Global coal gap between permian-triassic extinction and middle triassic recovery of peat-forming plants. Geological Society of America Bulletin,1996,108 (2):195-207.
    [2]Faure, K., Dewit, M. J., Willis, J. P., Late Permian global coal hiatus linked to δ13c-depleted co2 flux into the atmosphere during the final consolidation of pangea. Geology,1995,23 (6):507-510.
    [3]Shao, L., Zhang, P., Dou, J. et al., Carbon isotope compositions of the Late Permian carbonate rocks in southern China:their variations between the Wujiaping and Changxing formations. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,161: 179-192.
    [4]Greb, S. F., DiMichele, W. A., Gastaldo, R. A., Evolution and importance of wetlands in earth history, in Wetlands through Time., Greb, S.F., DiMichele, W.A., Eds.2006: Boulder:1-40.
    [5]韩德馨,杨起,中国煤田地质学(下册).1980,北京:煤炭工业出版社.261.
    [6]Large, D. J., Kelly, S., Spiro, B. et al., Silica-volatile interaction and the geological cause of the Xuanwei lung cancer epidemic. Environmental Science & Technology,2009,43 (23):9016-9021.
    [7]Diessel, C. F. K., Utility of Coal Petrology for sequence stratigraphic analysis. International Journal of Coal Geology,2007,70 (1-3):3-34.
    [8]Diessel, C. F. K., The Stratigraphic distribution of inertinite. International Journal of Coal Geology,2010,81 (4):251-268.
    [9]Wang, H., Shao, L., Large, D. J. et al., Constraints on carbon accumulation rate and net primary production in Late Permian tropical peatland in sw China. Palaeogeography Palaeoclimatology Palaeoecology,2011,300:152-157.
    [10]Benton, M. J., Twitchett, R. J., How to kill (almost) all life:The end-Permian extinction event. Trends in Ecology & Evolution,2003,18 (7):358-365.
    [11]殷鸿福,黄思骥,华南二叠纪—三叠纪之交的火山活动及其对生物绝火的影响.地质学报,1989,63(2):169-180.
    [12]Hallam, A., Wignall, P., Mass Extinctions and Their Aftermath.1997, Oxford:Oxford University Press.320.
    [13]Berner, R. A., examination of hypotheses for the Permo-Triassic Boundary extinction by carbon cycle modeling. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (7):4172-4177.
    [14]Erwin, D. H., The end-Permian mass extinction. Annual Review of Ecology and Systematics,1990,21 (1):69-91.
    [15]Huey, R. B., Ward, P. D., Hypoxia, Global warming, and terrestrial Late Permian extinctions. Science,2005,308 (5720):398-401.
    [16]Kaiho, K., Kajiwara, Y., Chen, Z.Q. et al., A sulfur isotope event at the end of the Permian. Chemical Geology,2006,235 (1-2):33-47
    [17]Retallack, G. J., Greenhouse crises of the past 300 million years. Geological Society of America Bulletin,2009,121 (9-10):1441-1455.
    [18]Wignall, P. B., Twitchett, R. J., Oceanic anoxia and the end Permian mass extinction. Science,1996,272(5265):1155-1158.
    [19]Grasby, S. E., Sanei, H., Beauchamp, B. (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Natural Geoscience, DOI: 10.1038/ngeo1069.
    [20]de Wit, M. J., Ghosh, J. G., de Villiers, S. et al., Multiple organic carbon isotope reversals across the Permo-Triassic Boundary of terrestrial Gondwana sequences:Clues to extinction patterns and delayed ecosystem recovery. The Journal of Geology,2002,110 (2):227-240.
    [21]Yin, H., Feng, Q., Lai, X. et al., The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic Boundary. Global and Planetary Change,2007, 55(1-3):1-20.
    [22]Xie, S., Pancost, R. D., Huang, J. et al., Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic Crisis. Geology,2007,35 (12):1083-1086.
    [23]杨逢清,殷鸿福,喻建新等,贵州威宁岔河陆相二叠系-三叠系界线地层研究.中国科学D辑地球科学,2005,35(6):519-529.
    [24]Cao, C., Wang, W., Liu, L. et al., Two episodes of 13C-depletion in organic carbon in the latest Permian:Evidence from the terrestrial sequences in northern Xinjiang, China. Earth and Planetary Science Letters,2008,270 (3-4):251-257.
    [25]Yin, H., Zhang, K., Tong, J. et al., The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes,2001,24 (2):102-114.
    [26]Jin, Y., Shen, S., Henderson, C. M. et al., The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 2006,29 (4):253-262.
    [27]Jin, Y., Wang, Y., Henderson, C. et al., The Global Stratotype Section and Point (GSSP) for the base of the Changhsingian Stage (Upper Permian). Episodes,2006,24 (3): 175-182.
    [28]Xie, S., Pancost, R. D., Wang, Y. et al., Cyanobacterial blooms tied to volcanism during the 5 M.Y. Permo-Triassic biotic crisis. Geology,2010,38 (5):447-450.
    [29]Wignall, P. B., Vedrine, S., Bond, D. P. G. et al., Facies analysis and sea-level change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and its bearing on the End-Guadalupian mass extinction. Journal of the Geological Society,2009,166 (4): 655-666.
    [30]Wignall, P. B., Sun, Y., Bond, D. P. G. et al., Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science,2009,324 (5931):1179-1182.
    [31]Yang, Z., Wu, S., Yin, H. et al., Permo-Triassic Events of South China.1992, Beijing: Geological Publishing House.183.
    [32]Luo, G., Kump, L. R., Wang, Y. et al., Isotopic evidence for an anomalously low oceanic sulfate concentration following End-Permian mass extinction. Earth and Planetary Science Letters,2010,300(1-2):101-111.
    [33]彭元桥,殷鸿福,杨逢清,陆相二叠系—三叠系界线研究进展.地球科学进展,2001,16(6):769-776.
    [34]Yu, J., Peng, Y., Zhang, S. et al., Terrestrial events across the Permian-Triassic Boundary along the Yunnan-Guizhou Border, sw China. Global and Planetary Change, 2007,55(1-3):193-208.
    [35]Yu, J., Li, H., Zhang, S. et al., Timing of the terrestrial Permian-Triassic Boundary biotic crisis:Implications from U-Pb dating of authigenic zircons. Science in China Series D: Earth Sciences,2008,51 (11):1633-1645.
    [36]Yin, H., Yang, F., Yu, J. et al., An accurately delineated Permian-Triassic Boundary in continental successions. Science in China Series D:Earth Sciences,2007,50:1281-1292.
    [37]Peng, Y, Zhang, S., Yu, T. et al., High-resolution terrestrial Permian-Triassic eventostratigraphic boundary in Western Guizhou and Eastern Yunnan, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,215 (3-4):285-295.
    [38]Peng, Y, Yu, J., Gao, Y. et al., Palynological assemblages of non-marine rocks at the Permian-Triassic Boundary, Western Guizhou and Eastern Yunnan, South China. Journal of Asian Earth Sciences,2006,28 (4-6):291-305.
    [39]王尚彦,殷鸿福,滇东黔西地区陆相二叠—三叠系界线粘土岩特征.中国地质,2002,29(2):155-160.
    [40]工尚彦,殷鸿福,滇黔地区陆相二叠系—三叠系界线附近粘土岩中发现微球粒.地质论评,2001,47(4):411-414.
    [41]王尚彦,殷鸿福,华南陆相二叠—三叠系界线地层研究新进展.中国地质,2001,28(7):16-21.
    [42]王尚彦,殷鸿福,滇东黔西陆相二叠纪-三叠纪界线地层研究.2001,武汉:中国地质大学出版社.102.
    [43]王尚彦,再论卡以头组.地层学杂志,2002,26(3):238-240.
    [44]王尚彦,论卡以头组.地层学杂志,2001,25(2):24-149.
    [45]张素新,喻建新,杨逢清等,黔西滇东地区浅海、滨海及海陆交互相二叠系-三叠系界线附近粘土岩研究.矿物岩石,2004,24(4):81-86.
    [46]Greb, S., DiMichele, W., Wetlands through Time.2006, London:Geological Society of America.304.
    [47]邵龙义,上扬子地区晚二叠世沉积演化及聚煤.沉积学报,1998,16(2):55-60.
    [48]田宝霖,张鹏匕,邵龙义等,川南、黔西、滇东晚二叠世煤田分布规律与沉积环境,in中国矿业大学研究生部内部研究报告.1990,中国矿业大学研究生部:北京.
    [49]王小川,黔西川南滇东晚二叠世含煤岩系沉积环境与聚煤规律.1996,重庆:重庆大学出版社.362.
    [50]贵州煤田地质局,贵州晚二叠世含煤岩系沉积环境与聚煤规律.1994:贵州煤田地质局地测大队印刷厂.357.
    [51]郝黎明,邵龙义,时宗波等,旋回频率曲线在幕式聚煤作用研究中的应用—以西南地区上二叠统为例.古地理学报,2000,2(4):12-19.
    [52]郝黎明,克拉通盆地含煤岩系高分辨率层序地层学研究--以贵州西部上二叠统为例.2000,中国矿业大学(北京)博士论文:北京.126.
    [53]Shao, L., Hao, L., Yang, L. et al.. High resolution sequence stratigraphy of the Late Permian coal measures in Southwestern China. in Mining Science and Technology 99. 1999. Beijing:Balkema.
    [54]邵龙义,鲁静,汪浩等,中国含煤岩系层序地层学研究进展.沉积学报,2009,27(5):904-914.
    [55]邵龙义,鲁静,汪浩等,近海型含煤岩系沉积学及层序地层学研究进展.古地理学报,2008,10(6):561-570.
    [56]Forster, W., A treatise on the section of the strata from Newcastle-Upon-Tyne to Cross Fell. Revised and Corrected by the Rev. W. Nall, with a Memoir of the Author's Life. 1809, Newcastle:Davis. Rprt 208.
    [57]McCabe, P. J., Depositional environments of coal and coal-bearing strata, in Sedimentology of Coal and Coal-Bearing Sequences:IAS Special Publication 7, Rahmani, R.A., Flores, R.M., Eds.1984, International Association of Sedimentologists: New York:11-42.
    [58]Miall, A. D., Whither Stratigraphy? Sedimentary Geology,1995,100:5-20.
    [59]Payton, C. E., Seismic stratigraphy-application to hydrocarbon exploration:Association of Petroleum Geologists Memoir 26.1977, New York:American Association of Petroleum Geologists 516.
    [60]Catuneanu, O., Sequence stratigraphy of clastic systems:Concepts, merits, and pitfalls. Journal of African Earth Sciences,2002,35 (1):1-43.
    [61]Catuneanu, O., Principles of Sequence Stratigraphy.2006, London:Elsevier.375.
    [62]Barrell, J., Rhythms and the measurements of geological time. Geological Society of America Bulletin,1917,28:745-904.
    [63]Sloss, L. L., Krumbein, W. C., Dapples, E. C., Integrated facies analysis. In sedimentary facies in geologic history, Geological Society of America Memoir 39, Longwell, C.R., Ed.1949, Geological Society of America Boulder:91-124.
    [64]Sloss, L. L., Sequences in the cratonic interior of North America. Geological Society of America Bulletin,1963,74:93-114.
    [65]Wheeler, H. E., Base Level, Lithosphere surface, and time-stratigraphy. Geological Society of America Bulletin,1964,75:599-610.
    [66]Mitchum Jr, R. M., Seismic stratigraphy and global changes of sea level, Part 11: Glossary of terms used in seismic stratigraphy, Association of Petroleum Geologists Memoir 26, in Seismic Stratigraphy—Applications to Hydrocarbon Exploration: American Association of Petroleum Geologists Memoir 26, Payton, C.E., Ed.1977, Oklahoma:Tulsa:205-212.
    [67]Vail, P., Mitchum Jr, R., Thompson, S., Seismic stratigraphy and global changes of sea level, Part 4:global cycles of relative changes of sea level, in Seismic Stratigraphy—Applications to Hydrocarbon Exploration:American Association of Petroleum Geologists Memoir 26, Payton, C.E., Ed.1977, Oklahoma:Tulsa:83-97.
    [68]Miall, A. D., Exxon global cycle chart:an event for every occasion? Geology and Geostatistics,1992,20:787-790.
    [69]Hunt, D., Tucker, M. E., Stranded parasequences and the forced regressive wedge systems tract:deposition during base-level fall. Sedimentary Geology,1992,81 (1-2): 1-9.
    [70]Posamentier, H. W., James, D. P., Sequence stratigraphy uses and abuses, in Sequence Stratigraphy and Facies Associations, Posamentier, H.W., Summerhayes, C.P., Haq, B.U. et al., Eds.1993, Blackwell Publishing Ltd.:Oxford:3-18.
    [71]Posamentier, H. W., Allen, G. P., Siliciclastic sequence stratigraphy:concepts and applications. SEPM Concepts in Sedimentology and Paleontology,1999,7:210.
    [72]Hallam, A., Wignall, P. B., Mass extinctions and sea-level changes. Earth-Science Reviews,1999,48 (4):217-250.
    [73]Diessel, C., Boyd, R., Wadsworth, J. et al., On Balanced and unbalanced accommodation/peat accumulation ratios in the Cretaceous coals from Gates Formation, Western Canada, and their sequence-stratigraphic significance. International Journal of Coal Geology,2000,43 (1-4):143-186.
    [74]Diessel, C. F. K., Coal Bearing Depositional System.1992, New York:Springer-Verlag. 721.
    [75]Bohacs, K., Suter, J., Sequence stratigraphic distribution of coaly rocks:fundamental controls and paralic examples. American Association of Petroleum Geologists,1997,81 (10):1612-1639.
    [76]Holz, M., Kalkreuth, W., Banerjee, I., Sequence stratigraphy of paralic coal-bearing strata:an overview. International Journal of Coal Geology,2002,48 (3-4):147-179.
    [77]Hamilton, D. S., Tadros, N. Z., Utility of coal seams as genetic stratigraphic sequence boundaries in nonmarine basins-an example from the Gunnedah Basin, Australia. American Association of Petroleum Geologists,1994,78 (2):267-286.
    [78]Wang, H., Shao, L., Hao, L. et al., Sedimentology and sequence stratigraphy of the Lopingian (Late Permian) coal measures in southwestern China. International Journal of Coal Geology,2011,83(1):168-183.
    [79]欧阳舒,云南富源晚二叠世—早三叠世孢子花粉组合.1986,北京:科学出版社.122.
    [80]Peng, Y, Shi, G. R., Life Crises on land across the Permian-Triassic Boundary in South China. Global and Planetary Change,2009,65 (3-4):155-165.
    [81]沈树忠,邵龙义,黔桂地区晚二叠世煤层的生物地层对比研究.煤田地质与勘探.1995,23(6):15.
    [82]Stopes, M. C., On the petrology of banded bituminous coals. Fuel,1935,14:4-13.
    [83]Stach, E., Mackowsky, M.-T., Teichmuller, M. et al., Stach's Textbook of Coal Petrology. 1982, Berlin:Gebruder Bortraeger.535.
    [84]Hacquebard, P. A., Donaldson, J. R., Carboniferous coal deposition associated with flood-plain and limnic environments in Nova Scotia, in Environments of Coal Deposition, Vol.114, Dapples, E.C., Hopkins, M.E., Eds.1969, Geological Society of America:Boulder:143-191.
    [85]Diessel, C. F. K. On the correlation between coal facies and depositional environments. in Advances in the study of the Sydney Basin.20th.1986. Newcastle, Australia
    [86]Calder, J. H., Gibling, M. R., Mukhopadhyay, P. K., Peat formation in a Westphalian B Piedmont Setting, Cumberland Basin, Nova Scotia; implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin de la Societe Geologique de France,1991,162 (2):283-298.
    [87]Scott, A. C., Observations on the nature and origin of fusain. International Journal of Coal Geology,1989,12:443-475.
    [88]Jones, T. P., Scott, A. C., Mattey, D. P., Investigations of "fusain transition fossils" from the Lower Carboniferous:comparisons with modern partially charred wood. International Journal of Coal Geology,1993,22 (1):37-59.
    [89]Scott, A. C., Coal petrology and the origin of coal macerals:a way ahead? International Journal of Coal Geology,2002,50 (1-4):119-134.
    [90]Scott, A. C., Glasspool, I. J., Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology,2007,70 (1-3): 53-66.
    [91]Wust, R., Hawke, M., Bustin, M., Comparing maceral ratios from tropical peatlands with assumptions from coal studies:do classic coal petrographic interpretation methods have to be disgarded? International Journal of Coal Geology,2001,48:115-132.
    [92]Moore, T. A., Shearer, J. C., Peat/coal type and depositional environment--are they related? International Journal of Coal Geology,2003,56 (3-4):233-252.
    [93]Diessel, C. F. K., Carbonization reactions of inertinite macerals in Australian coals. Fuel, 1983,62(8):883-892.
    [94]Diessel, C. F. K., Fluorometric analysis of inertinite. Fuel,1985,64 (11):1542-1546.
    [95]Teichmuller, M., The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology,1989,12 (1-4):1-87.
    [96]韩德馨,金奎励,毛鹤龄等,中国煤岩学.1996,北京:中国矿业大学出版社.610.
    [97]Taylor, G. H., Teichmuller, M., Davis, A. et al., Organic Petrology.1998, Berlin: Gebruder Borntraeger.704.
    [98]Jones, T. P., Chaloner, W. G., Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,97 (1-2): 39-50.
    [99]Bustin, R. M., Guo, Y., Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals. International Journal of Coal Geology,1999,38 (3-4):237-260.
    [100]Guo, Y., Bustin, R. M., FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods:implications for studies of inertinite in coals. International Journal of Coal Geology,1998,37 (1-2):29-53.
    [101]Scott, A. C., The pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,164:281-329.
    [102]Scott, A. C., Jones, T. P., The nature and influence of fire in carboniferous ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology,1994,106 (1-4):91-112.
    [103]Hower, J. C., O'Keefe, J. M. K., Volk, T. J. et al., Funginite-resinite associations in coal. International Journal of Coal Geology,2010,83 (1):64-72.
    [104]Hower, J. C., O'Keefe, J. M. K., Watt, M. A. et al., Notes on the origin of inertinite macerals in coals:observations on the importance of fungi in the origin of macrinite. International Journal of Coal Geology,2009,80 (2):135-143.
    [105]Taylor, G. H., Liu, S. Y., Diessel, C. F. K., The cold-climate origin of inertinite-rich Gondwana coals. International Journal of Coal Geology,1989,11 (1):1-22.
    [106]Glasspool, I. J., Scott, A. C. (2010) Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geosci advance online publication, DOI:10.1038/ngeo923.
    [107]Bowman, D. M. J. S., Balch, J. K., Artaxo, P. et al., Fire in the earth system. Science, 2009,324 (5926):481-484.
    [108]Scott, A. C., Glasspool, I. J., The diversification of paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (29):10861-10865.
    [109]Scott, A., Moore, J., Brayshay, B., Introduction to fire and the palaeoenvironment. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,164 (1-4):ⅶ-ⅹⅰ.
    [110]Scott, A. C., Lomax, B. H., Collinson, M. E. et al., Fire across the K-T Boundary:initial results from the Sugarite Coal, New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,164 (1-4):381-395.
    [111]Scott, A. C., Damblon, F., Charcoal and its use in palaeoenvironmental analysis. Palaeogeography Palaeoclimatology Palaeoecology,2010,291 (1-2):1-166.
    [112]Wildman, R. A., Hickey, L. J., Dickinson, M. B. et al., Burning of forest materials under Late Paleozoic high atmospheric oxygen levels. Geology,2004,32 (5):457-460.
    [113]Robinson, J. M., Phanerozoic atmospheric reconstructions:a terrestrial perspective. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,97 (1-2):51-62.
    [114]Robinson, J. M., Phanerozoic 02 variation, fire, and terrestrial ecology. Global and Planetary Change,1989,1 (3):223-240.
    [115]Belcher, C. M., McElwain, J. C., Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science,2008,321 (5893):1197-1200.
    [116]Berner, R. A., Canfield, D. E., A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science,1989,289 (4):333-361.
    [117]Zhang, H., Shen, G., He, Z., A carbon isotopic stratigraphic pattern of the Late Palaeozoic coals in the North China Platform and its palaeoclimatic implications. Acta Geologica Sinica-English Edition,1999,73 (1):111-119.
    [118]马兴祥,贵州水城晚二叠世主采煤层(C605,C409)的岩石学研究与煤相及古泥炭沼泽的演化.1988,中国矿业大学(北京)博士论文:北京.
    [119]叶道敏,岁俊文,肖文钊等,中国西南地区煤岩显微组分性质成分及其应用.1997,北京:地质出版社.109.
    [120]Retallack, G. J., Permian-Triassic life crisis on land. Science,1995,267 (5194):77-80.
    [121]Berner, R. A., Geocarbsulf:A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica Et Cosmochimica Acta,2006,70 (23):5653-5664.
    [122]Beerling, D. J., Woodward, F. I., Vegetation and the Terrestrial Carbon Cycle. Modelling the First 400 Million Years.2001, Cambridge Cambridge University Press.405.
    [123]Large, D. J., A 1.16 Ma record of carbon accumulation in Western European peatland during the Oligocene from the Ballymoney Lignite, Northern Ireland. Journal of the Geological Society,2007,164:1233-1240.
    [124]Large, D. J., Jones, T. F., Briggs, J. et al., Orbital tuning and correlation of 1.7 my of continuous carbon storage in an Early Miocene peatland. Geology,2004,32 (10):873-876.
    [125]Large, D. J., Jones, T. F., Somerfield, C. et al., High-resolution terrestrial record of orbital climate forcing in coal. Geology,2003,31 (4):303-306.
    [126]Briggs, J., Large, D. J., Snape, C. et al., Influence of climate and hydrology on carbon in an Early Miocene peatland. Earth and Planetary Science Letters,2007,253 (3-4): 445-454.
    [127]Allegre, C. J., Isotope Geology.2008, Cambridge:Cambridge University Press.512
    [128]Schwarzacher, W., Cyclostratigraphy and the Milankovitch Theory. Developments in Sedimentology. Vol.52.1993, Amsterdam:Elsevier.225.
    [129]Weedon, G. P., Time-Series Analysis and Cyclostratigraphy:Examining Stratigraphic Records of Environmental Cycles.1st Edition.2003, New York:Cambridge University Press.274.
    [130]Vanechelpoel, E., Weedon, G. P., Milankovitch cyclicity and the boom clay formation-an Oligocene siliciclastic shelf sequence in Belgium. Geological Magazine,1990,127 (6):599-604.
    [131]Weedon, G. P., The detection and illustration of regular sedimentary cycles using Walsh Power Spectra and Filtering, with examples from the Lias of Switzerland. Journal of the Geological Society,1989,146 (1):133-144.
    [132]Weedon, G. P., Coe, A. L., Gallois, R. W., Cyclostratigraphy, orbital tuning and inferred productivity for the Type Kimmeridge Clay (Late Jurassic), Southern England. Journal of the Geological Society,2004,161 (4):655-666.
    [133]Weedon, G. P., Jenkyns, H. C., Coe, A. L. et al., Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British Mudrock Formations. Philosophical Transactions:Mathematical, Physical and Engineering Sciences,1999,357 (1757):1787-1813.
    [134]Weedon, G. P., Read, W. A., Orbital-climatic forcing of namurian cyclic sedimentation from spectral analysis of the Limestone Coal Formation, Central Scotland. Geological Society, London, Special Publications,1995,85 (1):51-66.
    [135]Schwarzacher, W., Milankovitch cycles and the measurement of time. Cycles and Events in Stratigraphy,1991:855-863.
    [136]Schwarzacher, W., The stratification and cyclicity of the Dachstein Limestone in Lofer, Leogang and Steinernes Meer (Northern Calcareous Alps, Austria). Sedimentary Geology, 2005,181 (1-2):93-106.
    [137]Schwarzacher, W., Repetitions and cycles in stratigraphy. Earth-Science Reviews,2000, 50 (1-2):51-75.
    [138]Schwarzacher, W., Milankovitch cycles in the Pre-Pleistocene stratigraphic record:a review. Geological Society, London, Special Publications,1993,70 (1):187-194.
    [139]House, M. R., Gale, A. S., Orbital forcing timescales and cyclostratigraphy. Geological Society Special Publication. Vol.85.1995, London:The Geological Society.204.
    [140]Morante, R., Hallam, A., Organic carbon isotopic record across the Triassic-Jurassic Boundary in Austria and its bearing on the cause of the mass extinction. Geology,1996, 24 (5):391-394.
    [141]Korte, C., Pande, P., Kalia, P. et al., Massive volcanism at the Permian-Triassic Boundary and its impact on the isotopic composition of the ocean and atmosphere. Journal of Asian Earth Sciences,2010,37 (4):293-311.
    [142]Reichow, M. K., The timing and extent of the Eruption of the Siberian Traps Large Igneous Province:implications for the end-Permian environmental crisis. Earth Planetary Science Letter,2009,277:9-20.
    [143]Berner, R. A., The carbon and sulfur cycles and atmospheric oxygen from Middle Permian to Middle Triassic. Geochimica Et Cosmochimica Acta,2005,69 (13): 3211-3217.
    [144]Saunders, A., Reichow, M., The siberian traps and the End-Permian Mass Extinction:a critical review. Chinese Science Bulletin,2009,54 (1):20-37.
    [145]Wignall, P. B., Large igneous provinces and mass extinctions. Earth-Science Reviews, 2001,53(1-2):1-33.
    [146]Zhou, Y., Bohor, B. F., Ren, Y., Trace element geochemistry of altered volcanic ash layers (Tonsteins) in Late Permian coal-bearing formations of Eastern Yunnan and Western Guizhou Provinces, China. International Journal of Coal Geology,2000,44 (3-4):305-324.
    [147]Newton, R., Bottrell, S., Stable isotopes of carbon and sulphur as indicators of environmental change:past and present. Journal of the Geological Society,2007,164 (4): 691-708.
    [148]Bottrell, S. H., Newton, R. J., Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews,2006,75 (1-4):59-83.
    [149]刘宝珺,许效松,潘杏南等,中国南方古大陆沉积地壳演化与成矿.1993,北京:科学出版社.236.
    [150]刘本培,地史学教程.1996,北京:地质出版社.277.
    [151]何登发,董大忠,吕修祥等,克拉通盆地分析.1996,北京:石油工业出版社.178.
    [152]Wang, Y., Jin, Y, Permian palaeogeographic evolution of the Jiangnan Basin. South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,160 (1-2):35-44.
    [153]Shen, S.-Z., Wang, Y., Henderson, C. M. et al., Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China. Palaeoworld,2007, 16(1-3):120-139.
    [154]罗忠,邵龙义,姚光华等,滇东黔西上二叠统含煤岩系泥粘土矿物组成及环境意义.古地理学报,2008,10(3):297-304.
    [155]代世峰,任德贻,邵龙义等,黔西晚二叠世煤地球化学性质变异及特殊组构的火山灰成因.地球化学,2003,32(3):239-247.
    [156]邵龙义,张鹏飞,滇东黔西晚二叠世早期辫状河三角洲沉积体系中及其聚煤特征沉积学报,1994,12(4):132-139.
    [157]徐彬彬,何明德,贵州煤田地质.2003,徐州:中国矿业大学出版社.317.
    [158]周义平,任友谅,中国西南晚二要世煤田中tonstein的分布和成因.煤炭学报,1983,1:76-88.
    [159]周义平,Burger, K.,汤大忠,中国西南地区晚二叠世含煤岩系中粘土岩夹矸(Tonsteins)研究的新进展.云南地质,1988,7(3):213-228.
    [160]周义平,Burger, K.,汤大忠,滇东黔西晚二叠世含煤沉积中火山灰蚀变形成的伊利石粘土岩夹矸.沉积学报,1990,8(4):85-93.
    [161]周义平,汤大忠,任友谅,滇东晚二叠世煤田中火山灰蚀变粘土岩夹矸(Tonstein)的锆石特征.沉积学报,1992,10(2):28-38.
    [162]周义平,用tonstein的锆石形态和微量元素标志厘定层位.煤田地质与勘探,1992,20(4):15,18-23.
    [163]周义平,任友谅,滇东黔西晚二盛世煤系中火山灰蚀变粘土岩的元素地球化学特征.沉积学报,1994,12(2):123-132.
    [164]周义平,中国西南龙潭早期碱性火山灰蚀变的tonsteins煤田地质与勘探,1999,27(4):5-9.
    [165]Zhou, Y., Ren, Y., Tang, D. et al., Characteristics of zircons from volcanic ash-derived tonsteins in Late Permian coal fields of Eastern Yunnan, China. International Journal of Coal Geology,1994,25:243-264.
    [166]李星学,中国地质时期植物群.1995,广州:广州科技出版社.694.
    [167]郭英廷,贵州西部晚二叠世古气候.中国煤田地质,1990,2(003):18-20.
    [168]郭英廷,贵州西部晚二叠世含煤岩系的植物古生态.煤炭学报,1990,15(1):48-49.
    [169]郭英廷,贵州西部晚二叠世大羽羊齿类植物的生态.煤田地质与勘探,1991,2:12-15.
    [170]中科院南京古生物研究所,黔西滇东晚二叠世含煤岩系和古生物群.1980,北京:科学出版社.277.
    [171]Yu, J., Floras and the Evolutionary Dynamics across the Permian-Triassic Boundary Nearby the Border of Guizhou and Yunnan, South China.2008, University of Paris and China Univeristy of Geoscience:Wuhan.220.
    [172]王世俊,孙克勤,崔金钟等,中国煤核植物.2009,北京:高等教育出版社.222.
    [173]田宝霖,张连武,贵州水城汪家寨矿区化石图册.1980,北京:煤炭工业出版社,110.
    [174]李星学,沈光隆,田宝霖等,中国煤核植物群,在:中国地质时期植物群,李星学(主编).1995,广州科技出版社:广州:190-221.
    [175]Li, X., Wu, X., Late Paleozoic phytogeographic provinces in China and its adjacent regions. Reviews of Palaeobotany and Palynology,1996,90 (1-2):41-62.
    [176]Wang, J., Li, H., Paleo-latitude variation of Guizhou terrain from Devonian to Cretaceous. Chinese Journal of Geochemistry,1998,17 (4):356-361.
    [177]Ziegler, A. M., Scotese, C. R., McKerrow, W. S. et al.. Paleozoic paleogeography. Annual Review of Earth and Planetary Sciences,1979,7(1):473-502.
    [178]Ziegler, A. M., Phytogeographic patterns and continental configurations during the Permian period. Geological Society, London, Memoirs,1990,12 (1):363-379.
    [179]Ziegler, A. M., Hulver, M. L., Rowley, D. B., Permian world topography and climate, in Late Glacial and Postglacial Environmental Changes:Quaternary, Carboniferous-Permian, and Proterozoic, Martini, I.P., Ed.1997, Oxford University Press:New York:111-142.
    [180]. Rees, P. M., Gibbs, M. T., Ziegler, A. M. et al., Permian climates:evaluating model predictions using global paleobotanical data. Geology,1999,27 (10):891-894.
    [181]Rees, P. M., Ziegler, A. M., Gibbs, M. T. et al., Permian phytogeographic patterns and climate data/model comparisons. The Journal of Geology,2002,110 (1):1-31.
    [182]Gibbs, M. T., Rees, P. M., Kutzbach, J. E. et al., Simulations of Permian climate and comparisons with climate sensitive sediments. The Journal of Geology,2002,110 (1): 33-55.
    [183]Ziegler, A., Eshel, G., Rees, P. M. et al., Tracing the tropics across land and sea:Permian to Present. Lethaia,2003,36 (3):227-254.
    [184]陈代钊,张鹏飞,三角洲平原上网结河的发育与聚煤作用.沉积学报,1996,14(3):103-112.
    [185]周国正,贵州省织金矿区晚二叠世晚期潮坪相沉积特征.中国煤炭地质,2009,21(7):19-23.
    [186]熊孟辉,秦勇,易同生,贵州晚二叠世含煤岩系沉积格局及其构造控制.中国矿业大学学报,2006,35(6):778-782.
    [187]黄昔容,陶述平,贵州织金地区晚二叠世的沉积环境分析.贵州地质,1999,16(4):301-306.
    [188]杨瑞东,付锟,梁福凉等,贵州晚二叠世成煤环境及聚煤模式.贵州工学院院报,1990,19(4):5155.
    [189]桑惕,王立亭,叶念曾,贵州晚二叠世岩相古地理特征.贵州地质,1986,2:105-152.
    [190]Makaske, B., Anastomosing rivers:a review of their classification, origin and sedimentary products. Earth-Science Reviews,2001,53 (3-4):149-196.
    [191]Shao, L., Jones, T., Gayer, R. et al., Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, Southern China. International Journal of Coal Geology,2003,55 (1):1-26.
    [192]Shao, L., Zhang, P., Gayer, R. et al., Coal in a carbonate sequence stratigraphic framework:the Upper Permian Heshan Formation in central Guangxi, Southern China. Journal of the Geological Society,2003,160:285-298.
    [193]Shao, L., Zhang, P., Ren, D. et al., Late Permian coal-bearing carbonate successions in southern China:coal accumulation on carbonate platforms. International Journal of Coal Geology,1998,37 (3-4):235-256.
    [194]Mitchum Jr, R. M., Van Wagoner, J. C., High-frequency sequences and their stacking patterns:sequence-stratigraphic evidence of high-frequency eustatic cycles. Sedimentary Geology,1991.70(2-4):131-147.
    [195]Ramsbottom. W. H. C., Rates of transgression and regression in the carboniferous of NW Europe. Journal of the Geological Society,1979,136 (2):147-153.
    [196]Ramsbottom, W. H. C., Major cycles of transgression and regression (mesothems) in the Namurian. Proceedings of the Yorkshire Geological and Polytechnic Society,1977,41 (3):261-291.
    [197]Wanless, H. R., Weller, J. M., Correlation and extent of Pennsylvanian cyclothems. Bulletin of the Geological Society of America,1932,43 (1/4):1003-1016.
    [198]解习农,程守田,贵州织纳煤田晚二叠世海进海退旋回及煤聚积.煤田地质与勘探,1992,20(5):1-6.
    [199]Van Wagoner, J. C., Mitchum, R. M., Campion, K. M. et al., Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops.1990, Tulsa:American Association of Petroleum Geologists.55.
    [200]Best, J. L., Ashworth, P. J., Scour in large braided rivers and the recognition of sequence stratigraphic boundaries. Nature,1997,387 (6630):275-277.
    [201]Schumm, S. A., River response to baselevel change:implications for sequence stratigraphy. The Journal of Geology,1993,101 (2):279-294.
    [202]Aitken, J. F., Flint, S. S., The application of high-resolution sequence stratigraphy to fluvial systems:a case study from the Upper Carboniferous Breathitt Group, Eastern Kentucky, USA. Sedimentology,1995,42 (1):3-30.
    [203]Catuneanu, O., Abreu, V., Bhattacharya, J. P. et al., Towards the standardization of sequence stratigraphy. Earth-Science Reviews,2009,92 (1-2):1-33.
    [204]Catuneanu, O., Basement control on flexural profiles and the distribution of foreland facies:The Dwyka Group of the Karoo Basin, South Africa. Geology,2004,32 (6): 517-520.
    [205]Ross, C. A., Ross, J. R. P., Permian sequence stratigraphy., in The Permian of Northern Pangea., Scholle, P.A., Peryt, T.M., Ulmer-Scholle, D.S., Eds.1995, Springer-Verlag: Berlin:98-123.
    [206]Haq, B. U., Schutter, S. R., A chronology of paleozoic sea-level changes. Science,2008, 322 (5898):64-68.
    [207]ICS, International Stratigraphic Chart.2009, International Commission on Stratigraphy.
    [208]Allen J. R. L., The formation of coastal peat marshes under an upward tendency of relative sea-level. Journal of the Geological Society,1990,147 (5):743-745.
    [209]Nemec, W., Coal correlations and intrabasinal subsidence; a new analytical perspective., in New Perspectives in Basin Analysis., Kleinspehn, K.L., Paola, C., Eds.1988, Springer: Berlin:161-188.
    [210]Aitken, J. F., Coal in a sequence stratigraphic framework, geoscientist,1994,4 (5): 9-12.
    [211]Aitken, J. F., Utility of coal seams as genetic stratigraphic sequence boundaries in nonmarine basins-an example from the Gunnedah Basin, Australia-discussion. American Association of Petroleum Geologists,1995,79 (8):1179-1181.
    [212]Liu, G., Permo-Carboniferous paleogeography and coal accumulation and their tectonic control in the North and South China continental plates. International Journal of Coal Geology,1990,16 (1-3):73-117.
    [213]Enos, P., Permian of China, in The Permian of Northern Pangea., Scholle, P.A., Peryt, T.M., Ulmer-Scholle, D.S., Eds.1995, Springer-Verlag:Berlin:225-256.
    [214]Dai, S., Tian, L., Chou, C. et al., Mineralogical and compositional characteristics of Late Permian coals from an area of high king cancer rate in Xuan Wei, Yunnan, China: occurrence and origin of quartz and chamosite. International Journal of Coal Geology, 2008,76(4):318-327.
    [215]国家煤炭工业局,煤的显微组分组和矿物测定方法Gb/T 8899-1998.1998.
    [216]中国煤炭工业部,烟煤显微组分分类Gb/T 15588-1995.1995.
    [217]Taylor, G. H., Liu, S. Y., Micrinite—its nature, origin and significance. International Journal of Coal Geology,1989,14 (1-2):29-46.
    [218]Faraj, B. S. M., Mackinnon, I. D. R., Micrinite in southern hemisphere sub-bituminous and bituminous coals:redefined as fine grained kaolinite. Organic Geochemistry,1993, 20(6):823-841.
    [219]Glasspool, I., A maj or fire event recorded in the mesofossils and petrology of the Late Permian, Lower Whybrow coal seam, Sydney Basin, Australia. Palaeogeography Palaeoclimatology Palaeoecology,2000,164 (1-4):357-380.
    [220]Scott, A. C., Cripps, J. A., Collinson, M. E. et al., The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,164:1-31.
    [221]沈文杰,林杨挺,孙永革等,浙江省长兴县煤山剖面二叠-三叠系过渡地层中的黑碳记录及其地质意义.岩石学报,2008,24(010):2407-2414.
    [222]Shen, S., Cao, C., Henderson, C. M. et al., Rapid deforestation across the Permian-Triassic Boundary in South China. Geological Society of America Abstracts with Programs,2006,38 (7):338.
    [223]Price, C., Rind, D., Possible implications of global climate change on global lightning distributions and frequencies. Journal of Geophysical Research 1994,99 (D5): 10823-10831.
    [224]Kidder, D. L., Worsley, T. R., Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,203 (3-4): 207-237.
    [225]Glasspool, I. J., Edwards, D., Axe, L., Charcoal in the Silurian as evidence for the earliest wildfire. Geology,2004,32 (5):381-383.
    [226]Berner, R. A., Phanerozoic atmospheric oxygen:new results using the GEOCARBSULF model. American Journal of Science,2009,309 (7):603-606.
    [227]Berner, R. A., Beerling, D. J., Dudley, R. et al., Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences,2003,31:105-134.
    [228]Falkowski, P. G., Katz, M. E., Milligan, A. J. et al., The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science,2005,309 (5744): 2202-2204.
    [229]Hansen, K. W., Wallmann, K., Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2:a model perspective. American Journal of Science, 2003,303 (2):94-148.
    [230]Bergman, N. M., Lenton, T. M., Watson, A. J., Copse:A new model of biogeochemical cycling over Phanerozoic time. American Journal of Science,2004,304:397-437.
    [231]Arvidson, R. S., Mackenzie, F. T., Guidry, M., Magic:A Phanerozoic model for the geochemical cycling of major rock-forming components. American Journal of Science, 2006,306(3):135-190.
    [232]Shakesby, R. A., Doerr, S. H., Wildfire as a hydrological and geomorphological agent. Earth Science Reviews,2006,74 (3-4):269-307.
    [233]Page, S. E., Siegert, F., Rieley, J. O. et al., The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature,2002,420 (6911):61-65.
    [234]Pausas, J. G., Keeley, J. E., A burning story:the role of fire in the history of life. BioScience,2009,59 (7):593-601.
    [235]Running, S. W., Climate change:is global warming causing more, larger wildfires? Science,2006,313 (5789):927-928.
    [236]Westerling, A. L., Hidalgo, H. G., Cayan, D. R. et al., Warming and earlier spring increase western U.S. forest wildfire activity. Science,2006,313 (5789):940-943.
    [237]Finkelstein, D. B., Pratt, L. M., Brassell, S. C., Can biomass burning produce a globally significant carbon-isotope excursion in the sedimentary record?. Earth and Planetary Science Letters,2006,250 (3-4):501-510.
    [238]Shen, W., Lin, Y., Sun, Y. et al., Black carbon record across the Permian-Trassic Boudnary section at Meishan, Changhsing County, Zhejiang Province and its significance. Acta Petrologica Sinica,2008,24:2407-2414.
    [239]Hays, J. D., Imbrie, J., Shackleton, N. J., Variations in the earth's orbit:pacemaker of the ice ages. Science,1976,194(4270):1121-1132.
    [240]Rampino, M. R., Prokoph, A., Adler, A., Tempo of the end-Permian event: high-resolution cyclostratigraphy at the Permian-Triassic Boundary. Geology,2000,28 (7):643-646.
    [241]Park, J., D'Hondt, S. L., King, J. W. et al., Late Cretaceous precessional cycles in double time:a warm-earth Milankovitch response. Science,1993,261 (5127):1431 - 1434.
    [242]贵州省西能煤炭勘查开发有限公司,贵州省普安县糯东井田煤矿勘探地质报告.2005.139.
    [243]云南省煤田地质局,云南省富源县天佑煤矿勘探报告.2007.130.
    [244]Dobrin, M. B., Savit, C. H., Introduction to Geophysical Prospecting.4th edition.1988, New York:McGraw-Hill.867.
    [245]工进祥,现代煤田地质勘探、煤矿矿井物探及测井新技术新方法实用手册.2006,北京:中国煤炭工业出版社.1417.
    [246]Ghil, M., Allen, M. R., Dettinger, M. D. et al., Advanced spectral methods for climatic time series. Reviews of Geophysics,2002,40:1-41.
    [247]Berger, A., Loutre, M. F., Laskar, J., Stability of the astronomical frequencies over the earths history for paleoclimate studies. Science,1992,255 (5044):560-566.
    [248]Berger, A., Loutre, M. F., Dehant, V., Pre-Quaternary Milankovitch frequencies. Nature, 1989,342(6246):133-133.
    [249]Zaritsky, R. V., On thickness decrease of parent substance of coal, in The 7th International Congress on Carboniferous Stratigraphy and Geology, Comptes Rendus. 1975, Geologisches Landesamt Nordrhein-Westfalen:Frefeld.393-396.
    [250]Nadon, G. C., Magnitude and timing of peat-to-coal compaction. Geology,1998,26 (8): 727-730.
    [251]Clymo, R. S., Turunen, J., Tolonen, K., Carbon accumulation in peatland. Oikos,1998, 81 (2):368-388.
    [252]Cleal, C. J., Thomas, B. A., Palaeozoic tropical rainforests and their effect on global climates:is the past the key to the present? Geobiology,2005,3 (1):13-31.
    [253]Neuzil, S. G., Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits, Indonesia, in Biodiversity and Sustainability of Tropical Peatlands, Rieley, J.O., Page, S.E., Eds.1997, Samara Publishing:Cardigan:55-72.
    [254]Sorensen, K. W., Indonesian peat swamp forests and their role as a carbon sink. Chemosphere,1993,27 (6):1065-1082.
    [255]Aselmann, I., Crutzen, V., A global inventory of wetland distribution and seasonality, net primary productivity, and estimated methane emissions, in Soils and the Greenhouse Effect, Bouwman, A.F., Ed.1990, John Wiley:Chichester:441-449.
    [256]Neue, H. U., Gaunt, J. L., Wang, Z. P. et al., Carbon in tropical wetlands. Geoderma, 1997,79:163-185.
    [257]Fluteau, F., Besse, J., Broutin, J. et al., Extension of Cathaysian flora during the Permian: climatic and paleogeographic constraints. Earth and Planetary Science Letters,2001,193 (3-4):603-616.
    [258]Cowling, S. A., Paleoecology:plants and temperature--CO2 uncoupling. Science,1999, 285(5433):1500-1501.
    [259]Hilton, J., Cleal, C. J., The relationship between Euramerican and Cathaysian tropical floras in the Late Palaeozoic:palaeobiogeographical and palaeogeographical implications. Earth-Science Reviews,2007,85 (3-4):85-116.
    [260]Moore, P. D., Ecological and hydrological aspects of peat formation. Geological Society, London, Special Publications,1987,32 (1):7-15.
    [261]Frakes, L., Francis, J., Syktus, J., Climate Modes of the Phanerozoic.1992, New York: Cambridge University Press Cambridge.274.
    [262]Beerling, D. J., Berner, R. A., Impact of a Permo-Carboniferous high O2 event on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America,2000,97 (23):12428-12432.
    [263]黎彤,化学元素的地球丰度.地球化学,1976,5(3):167-174.
    [264]Tuli, J. K., ed. Nuclear Wallet Cards.1985, Brookhaven national laboratory:Natural nuclear data center,35.
    [265]郑永飞,陈江峰,稳定同位素地球化学.2000,北京:科学出版社.316.
    [266]Retallack, G. J., Krull, E. S., Carbon isotopic evidence for terminal-Permian methane outbursts and their role in extinctions of animals, plants, coral reefs, and peat swamps. Geological Society of America Special Papers,2006,399:249-268.
    [267]Krull, E. S., Retallack. G. J., Delta C13 depth profiles from paleosols across the Permian-Triassic Boundary:evidence for methane release. Geological Society of America Bulletin,2000,112 (9):1459-1472.
    [268]Foster, C. B., Logan, A., Summons, R. E. et al., Carbon isotopes, kerogen types and the Permian-Triassic Boundary in Australia:implications for exploration. APPEA Journal, 1997,37:472-489.
    [269]Degens, E. T., ed. Biogeochemistry of stable carbon isotopes. Organic Geochemistry, ed. Eglinton, G., Murphy, M.T.J.1969, Springer:New York,304-356.
    [270]Bechtel, A., Gratzer, R., Sachsenhofer, R. F. et al., Biomarker and carbon isotope variation in coal and fossil wood of central Europe through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,262 (3-4):166-175.
    [271]Rimmer, S. M., Rowe, H. D., Taulbee, D. N. et al., Influence of maceral content on δ 13C and δ15N in a Middle Pennsylvanian coal. Chemical Geology,2006,225 (1-2):77-90.
    [272]Faure, G., Principles of Isotope Geology.1977, New York:J. Wiley & Sons.608.
    [273]Smith, B. N., Epstein, S., Two categories of 13C/12C ratios for plants. Plant Physiology, 1971,47:380-384.
    [274]Farquhar, G. D., Ehleringer, J. R., Hubick, K. T., Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology,1989, 40:503-537.
    [275]Francey, R. J., Farquhar, G. D., An explanation of 13C/12C variations in tree rings. Nature, 1982,297:28-31.
    [276]Nguyen Tu, T. T., Bocherens, H., Mariotti, A. et al., Ecological distribution of Cenomanian terrestrial plants based on 13C/12C ratios. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,145 (1-3):79-93.
    [277]Arens, N. C., Jahren, A. H., Amundson, R., Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology,2000,26 (1): 137-164.
    [278]Arens, N. C., Jahren, A. H., Carbon isotope excursion in atmospheric CO2 at the Cretaceous-Tertiary Boundary:evidence from terrestrial sediments. Palaios,2000,15 (4): 314-322.
    [279]Jahren, A. H., Arens, N. C., Harbeson, S. A., Prediction of atmospheric δ13 CO2 using fossil plant tissues. Reviews of Geophysics,2008,46.
    [280]Jahren, A. H., Arens, N. C., Sarmiento, G. et al., Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology,2001,29 (2):159-162.
    [281]Farmer, A. M., The effects of dust on vegetation a review. Environmental Pollution,1993, 79:63-75.
    [282]Farquhar, G. D., Sharkey, T. D., Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology,1982,33:317-345.
    [283]Guy, R. D., Reid, D. M., Krouse, H. R., Shifts in carbon isotope ratios of two C3 Halophytes under natural and artificial conditions. Oecologia,1980,44 (2):241-247.
    [284]Novak, K., Cherubini. P., Saurer, M. et al., Ozone air pollution effects on tree-ring growth,δ13c, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species. Tree Physiology,2007,27 (7):941-949.
    [285]Saurer, M., Fuhrer, J., Siegenthaler, U., Influence of ozone on the stable carbon isotope composition, δ13C. of leaves and grain of spring wheat (Triticum Aestivum L.). Plant Physiology,1991.97 (1):313-316.
    [286]Jedrysek, M. O., Krapiec, M., Skrzypek, G. et al., Air-pollution effect and paleotemperature scale versus δ13C records in tree rings and in a peat core (Southern Poland). Water, Air, Soil Pollution,2003,145 (1):359-375.
    [287]Savard, M. M., Begin, C., Parent, M., Are industrial SO2 emissions reducing CO2 uptake by the boreal forest? Geology,2002,30 (5):403-406.
    [288]Martin, B., Bytnerowicz, A., Thorstenson, Y. R., Effects of air pollutants on the composition of stable carbon isotopes,δ13C, of leaves and wood, and on leaf injury. Plant Physiology,1988,88 (1):218-223.
    [289]黄雅娟,张成君,殷树鹏等,兰州市大气中SO2对植物碳同位素组成的影响.安徽农业科学,2008,36(34):15170-15171.
    [290]李相博,陈践发,植物碳同位素分馏作用与环境变化研究进展.地球科学进展,1998,13(3):285-290.
    [291]Baud, A., Magaritz, M., Holser, W., Permian-Triassic of the Tethys:carbon isotope studies. Geologische Rundschau,1989,78 (2):649-677.
    [292]Twitchett, R. J., Looy, C. V., Morante, R. et al., Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology,2001,29 (4):351-a-354.
    [293]Retallack, G. J., Krull, E. S., Landscape ecological shift at the Permian-Triassic Boundary in Antarctica. Australian Journal of Earth Sciences,1999,46 (5):785-812.
    [294]Jin, Y. G., Wang, Y., Wang, W. et al., Pattern of marine mass extinction near the Permian-Triassic Boundary in South China. Science,2000,289 (5478):432-436.
    [295]Renne, P. R., Black, M. T., Zichao, Z. et al., Synchrony and causal relations between Permian-Triassic Boundary crises and Siberian flood volcanism. Science,1995,269 (5229):1413-1416.
    [296]Beerling, D., Berner, R. A., Mackenzie, F. T. et al., Methane and the CH4 related greenhouse effect over the past 400 million years. The American Journal of Science, 2009,309 (2):97-113.
    [297]Retallack, G. J., Jahren, A. H., Methane Release from Igneous Intrusion of Coal During Late Permian Extinction Events. Journal of Geology,2008,116(1):1-20.
    [298]Erwin, D. H., Extinction as the Loss of Evolutionary History. Proceedings of the National Academy of Sciences of the United States of America,2008,105 (Supplement 1):11520-11527.
    [299]Knoll, A. H., Bambach, R. K., Canfield, D. E. et al., Comparative earth history and Late Permian mass extinction. Science,1996,273 (5274):452-457.
    [300]Berner, R. A., Raiswell, R., Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time:a new theory. Geochimica et Cosmochimica Acta,1983,47 (5): 855-862
    [301]Chou, C., Geochemistry of sulfur in coal, in Geochemistry of Sulfur in Fossil Fuels, Orr, W.L., White, CM., Eds.1990, American Chemical Society:30-52.
    [302]Dai, S., Ren, D., Tang, Y. et al., Distribution, isotopic variation and origin of sulfur in coals in the Wuda Coalfield, Inner Mongolia, China. International Journal of Coal Geology,2002,51 (4):237-250.
    [303]Dai, S., Ren, D., Zhou, Y. et al., Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China:evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology,2008, 255(1-2):182-194.
    [304]Bartlett, R., Bottrell, S., Coulson, J. et al.,34S tracer study of pollutant sulfate behaviour in a lowland peatland. Biogeochemistry,2009,95 (2):261-275.
    [305]Bottrell, S. H., Coulson, J. P., Preservation of environmental sulfur isotope records in maritime peats:a test of baseline pre-anthropogenic signal and diagenetic effects in a Mid-Pleistocene peat. Chemical Geology,2003,201 (3-4):185-190.
    [306]Bottrell, S. H., Hannam, J. A., Andrews, J. E. et al., Diagenesis and remobilization of carbon and sulfur in Mid-Pleistocene organic-rich freshwater sediment. Journal of Sedimentary Research,1998,68 (1):37-42.
    [307]Bottrell, S. H., Louie, P. K. K., Timpe, R. C. et al., The use of stable sulfur isotope ratio analysis to assess selectivity of chemical analyses and extractions of forms of sulfur in coal. Fuel,1994,73 (10):1578-1582.
    [308]Bottrell, S. H., Martin, N., Sulphur isotopic study of two Pristine Sphagnum bogs in the western British Isles. Journal of Ecology,1997,85 (2):125-132.
    [309]Coulson, J. P., Bottrell, S. H., Lee, J. A., Recreating atmospheric sulphur deposition histories from peat stratigraphy:diagenetic conditions required for signal preservation and reconstruction of past sulphur deposition in the Derbyshire peak district, UK. Chemical Geology,2005,218 (3-4):223-248.
    [310]Novak, M., Adamova, M., Wieder, R. K. et al., Sulfur mobility in peat. Applied Geochemistry,2005,20 (4):673-681.
    [311]Novak, M., Bottrell, S., Pfechova, E., Sulfur isotope inventories of atmospheric deposition, spruce forest floor and living sphagnum along a NW-SE transect across Europe. Biogeochemistry,2001,53 (1):23-50.
    [312]Novak, M., Bottrell, S. H., Groscheova, H. et al., Sulphur isotope characteristics of two North Bohemian forest catchments. Water, Air,& Soil Pollution,1995,85 (3): 1641-1646.
    [313]Skrzypek, G., Jezierski, P., Szynkiewicz, A., Preservation of primary stable isotope signatures of peat-forming plants during early decomposition-observation along an altitudinal transect. Chemical Geology,2010,273 (3-4):238-249.
    [314]Steinmann, P., Shotyk, W., Chemical composition, PH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerland. Geochimica et Cosmochimica Acta,1997,61 (6):1143-1163.
    [315]Trust, B. A., Fry, B., Stable sulphur isotopes in plants:a review. Plant, Cell & Environment,1992,15 (9):1105-1110.
    [316]Hackley, K. C., Anderson, T. F., Sulfur isotopic variations in low-sulfur coals from the Rocky Mountain region. Geochimica et Cosmochimica Acta,1986,50 (8):1703-1713.
    [317]Smith, J. W., Batts, B. D., The distribution and isotopic composition of sulfur in coal. Geochimica et Cosmochimica Acta,1974,38 (1):121-133.
    [318]Price, F. T., Shieli, Y. N., Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures. Chemical Geology,1979,27 (3):245-253.
    [319]Casagrande, D. J., Sulphur in peat and coal. Geological Society, London, Special Publications,1987,32 (1):87-105.
    [320]Newton, R. J., Pevitt, E. L., Wignall, P. B. et al., Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic Boundary in Northern Italy. Earth and Planetary Science Letters,2004,218 (3-4):331-345.
    [321]ASTM, Standard test method for ash in the analysis sample of coal and coke, from Coal 1.1997, ASTM:Philadelphia, PA.
    [322]Burger, K., Zhou, Y., Tang, D., Synsedimentary volcanic-ash-derived illite tonsteins in Late Permian coal-bearing formations of southwestern China. International Journal of Coal Geology,1990,15:341-356.
    [323]Nielsen, H., Pilot, J., Grinenko, L. N. et al., Lithospheric sources of sulphur, in Stable Isotopes in the Assessment of Natural and Anthropogenic Sulphur in the Environment, Krouse, H.R., Grinenko, V.A., Eds.1991, John Wiley & Sons Ltd:New York:65-132.
    [324]Gorjan, P., Kaiho, K., Kakegawa, T. et al., Paleoredox, biotic and sulfur-isotopic changes associated with the end-Permian mass extinction in the western Tethys. Chemical Geology,2007,244 (3-4):483-492.
    [325]Erwin, D. H., Bowring, S. A., Yugan, J., End-Permian mass extinctions:a review. Geological Society of America Special Papers,2002,356:363-383.
    [326]Kiehl, J. T., Shields, C. A., Climate simulation of the latest permian:implications for mass extinction. Geology,2005,33 (9):757-760.
    [327]Wignall, P. B., Twitchett, R. J., Extent, duration, and nature of the Permian-Triassic superanoxic event. Geological Society of America Special Papers,2002,356:395-413.
    [328]Grice, K., Cao, C., Love, G. D. et al., Photic zone euxinia during the Permian-Triassic superanoxic event. Science,2005,307 (5710):706-709.
    [329]Retallack, G. J., Metzger, C. A., Greaver, T. et al., Middle-Late Permian mass extinction on land. Geological Society of America Bulletin,2006,118(11-12):1398-1411.
    [330]Jiang, G., Research on quantitative models for bio-monitoring and bio-assessing air pollution by plant sulfur content methods. China Environmental Science,1995,15 (3): 208-214.
    [331]Claypool, G. E., Holser, W. T, Kaplan, I. R. et al., The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology,1980,28: 199-260.
    [332]Algeo, T. J., Shen, Y. A., Zhang, T. G. et al., Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian-Triassic Boundary:evidence for upwelling of sulfidic deep-ocean water masses. Geochemistry, Geophysics, Geosystems.2008,9:Q04025.
    [333]Zharkov, M. A., Paleozoic Salt Bearing Formations of the World.1984, Berlin:Springer. 427.
    [334]Cao, C., Love, G. D., Hays, L. E. et al., Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the End-Permian mass extinction event. Earth and Planetary Science Letters,2009,281 (3-4):188-201.
    [335]335. Hays, L. E., Beatty, T., Henderson, C. M. et al., Evidence for photic zone euxinia through the End-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld 2007,16:39-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700