用户名: 密码: 验证码:
桂北清明山铜镍硫化物矿床地质地球化学特征及找矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桂北四堡地区出露有江南最古老的元古代地层四堡群,分布大量的变镁铁质火山-沉积岩、镁铁质-超镁铁质侵入岩、中酸性侵入岩,是桂北岩浆型Cu-Ni-PGE成矿带、Sn、Cu、Pb、Zn、Sb、W、U/ Au成矿带的重要组成部分和中国南方极具潜力多金属找矿远景区之一.
     本文在详细研究区域成矿地质背景及其演化及全面收集研究区内矿床(点)的地质、物探、化探、勘探、开采资料的基础上,以区域成矿学、岩浆成矿理论为指导,以构造-岩浆-成矿作用为主线,对区域内四堡群地层、镁铁质-超镁铁质侵入岩、中酸性岩体、典型矿床-清明山铜镍硫化物矿床和Sn, Cu、Pb、Zn等矿化(床)进行深入剖析和系统研究,取得以下主要成果和认识:
     (1)桂北四堡地区处于扬子地台东南缘,中元古代早期,处于华南洋与扬子古陆的过渡环境,华南洋与扬子陆块洋-陆碰撞诱发了弧后盆地的形成,接受了大量具有浊积岩沉积特征的半深海-深海相碎屑沉积(四堡群);俯冲的大洋板片部分熔融、底辟和上侵形成镁铁质火山喷发;中元古代晚期至新元古代初期,沉积盆地裂谷化进一步演化,火山-沉积加厚,镁铁质岩浆活动主要表现为岩浆的侵入;伴随着镁铁质岩浆分异演化、混染和部分地壳重熔形成了花岗闪长岩;新元古代中晚期,随着板块汇聚运动,弧后盆地裂谷化运动结束,褶皱造山及深部岩浆热侵蚀、陆壳物质大量重熔形成了大规模的黑云母花岗岩。
     (2)四堡群为一套具有浊积岩沉积特征的深海-半深海浅变质碎屑沉积岩系夹中-基性熔岩、科马提岩、火山碎屑岩,富集Mn、Cu、Ni、Co、Cr、V, Pb、Zn等亲铁元素;丹洲群为陆相-浅海相-半深海相砾岩、砂岩、粉砂岩、碳酸盐岩建造,富集Zn、Ba等酸性元素。在四堡群中广泛分布有Cu、Ni、Co、PGE系列矿床(化),Sn、Cu、Pb、Zn、Sb、W、U、Au等矿床(化)。
     (3)镁铁质火山岩、镁铁质-超镁铁质侵入岩在空间上相伴分布,岩石地球化学特征相同,富集MgO、贫K2O、TiO2,属拉斑玄武岩系列;富集Rb、Ba, Cr, Th,亏损Nb、Ta、P等,富集轻稀土,稀土配分模式右倾、弱或无明显的Eu负异常。Th/Nb比值远高于MORB和OIB岩的Th/Nb比值,也高于扬子地块上地壳Th/Nb比值;Nb/Ta、Nb/U比值均远低于正常洋脊玄武岩和球粒陨石值;具有高87Sr/86Sr比值(>0.7033)、低143Nd/144Nd<0.5130和eNd(t)<0的特点。地质地球化学特征表明,两者的岩浆源区为位于弧后陆缘区域部分熔融地幔(EM1),两者是同源岩浆不同阶段形成的产物。
     (4)中酸性岩体花岗闪长岩与黑云母花岗岩均为过铝质岩石,微量元素均富集K、Rb、Th,亏损Ti,dEu强亏损,稀士配分模式平坦;花岗闪长岩属混合源型花岗岩,而黑云母花岗岩属重熔型花岗岩。
     (5)四堡群及其火山岩形成于中元古代,四堡群下部沉积岩时代约1190~1800Ma、火山岩时代约1190~1734Ma;丹洲群的形成于新元古代早期(822~890Ma);镁铁质-超镁铁质侵入岩形成于中元古代晚期-新元古代初(982~1088Ma);花岗闪长岩形成时代820~1064Ma,形成时间晚于镁铁质-超镁铁质侵入岩;黑云母花岗岩形成于820~898Ma;清明山铜镍矿床形成时代为1087±56 Ma。
     (6)清明山铜镍矿含矿岩体,呈镁铁质-超镁铁质侵入岩墙(岩脉)产出,分异较好,从岩体底部向顶部岩性可以划分为辉石岩-辉长辉绿岩-闪长岩等岩相。地球化学特征是:ω(SiO2)为42.68~45.84%,ω(Al2O3)为6.62~10.58%,ω(MgO)为17.87~25.12%,ω(TiO2)为0.33~0.52%,ω(K2O)为0.05~1.19%;微量元素特征富集大离子半径元素Rb等,亏损高场强元素Ta、Nb等;稀土特征SREE含量平均为40.95-63.7×10-6, SLREE/SHREE为1.82~1.93,LaN/YbN为2.92~3.29,dEu值为0.56~1.13;轻稀土相对弱富集,重稀土亏损,没有或弱Eu异常。以上特征表明,清明山地区的镁铁质岩浆及含矿岩体表现出了弧岩浆地球化学特征,壳源物质混染明显,岩性略偏酸性。
     (7)清明山铜镍矿体产于岩体底部,严格地受辉石岩相控制。含矿岩体呈东西走向,倾向南,倾角28°~52°,厚20~250m,长1.0~3.5 Km。目前控制的含矿岩体从地表往下,逐渐变大,对应的铜镍矿体变富。清明山矿床分南北两个矿区,南部清明山铜镍矿体,控制长1500m以上,延深达500m,厚0.81-3.78m,镍品位0.31%~0.49%,铜品位0.14%~0.27%,伴生钻0.008%~0.016%;北部马漕山铜镍矿体,控制长大于500 m,延深250m,厚0.8~3.5m,矿床平均镍品位0.20%~0.30%,铜品位0.10%~0.30%。主要矿石类型有浸染状矿石、斑杂状矿石、块状矿石和脉状矿石四种类型;主要金属矿物有磁黄铁矿、镍黄铁矿、黄铜矿等。铜镍矿石的d34s为-0.5%0~+3.60%0,镁铁质岩体的d34S为6.3‰~+24.9‰;矿床地质地球化学特征与Duluth铜镍矿床比较接近,与甘肃金川铜镍矿床差异较大,这与所处大地构造位置不同有关。
     (8)清明山岩浆型铜镍矿的形成主要受制于岩浆熔离作用,次为结晶分异作用。引起清明山镁铁质岩浆硫饱和而致熔离作用发生的因素,主要为同化混染四堡群文通组富硫的变火山-沉积岩及似层状黄铁矿型铜铅锌矿化,次为温度快速下降和结晶分异。
     (9)清明山矿区存在两个主要的成矿系列:Cu、Ni、Co、PGE系列形成于弧后盆地裂谷化阶段(地壳拆沉、减薄和幔源岩浆侵入),形成于中元古代晚期-新元古代早期,为镁铁质岩浆熔离形成,分布在镁铁质-超镁铁质岩体的底部;Sn、Cu、Pb、Zn、Sb、W、U、Au成矿系列形成于弧后盆地褶皱造山阶段(地壳增厚、重熔和花岗岩化),形成于新元古代中晚期,与黑云母花岗岩侵入有关。成矿主要受制于三大因素,①四堡群变火山-沉积岩系富含成矿元素,为成矿奠定了良好的物质基础和丰富的硫源环境。②板块运动、构造演化导致了地幔的部分熔融和镁铁质-超镁铁质岩的侵入;弧后裂谷盆回返、褶皱造山与镁铁质岩浆热侵蚀促使了陆壳物质的大规模重熔和黑云母花岗岩侵入;板块构造演化决定了成矿有关岩体的形成,是成矿的主导因素,是动因。③Cu、Ni、Co、PGE系列成矿直接来自镁铁质岩浆的熔离分异和岩体中成矿元素的富集;而Sn、Cu、Pb、Zn、Sb、W、U、Au成矿与黑云母花岗岩的定位、分异和岩浆期后热液循环有关,因此岩体自身的高度分异演化是成矿的关健。在此基础上,建立了清明山铜镍矿床的成矿模式。
     (10)清明山铜镍硫化物矿床控矿因素有:弧后盆地大地构造背景,四堡深源断裂旁侧次级构造-清明山复式褶皱,岩体岩相专属性,岩体底部与围岩接触的岩性界面,四堡群文通组变火山-沉积岩系。总结的找矿标志有:区域性深大断裂旁侧次级褶皱、分异较好的超镁铁质岩体、辉石岩相、矿化蚀变、铁帽及氧化矿露头、综合性物探和化探异常。
     (11)综合地质、地球物理、地球化学和矿床地质资料,预测清明山铜镍矿区具有大型以上铜镍硫化矿的找矿前景,中小型与花岗岩有关的锡铜多金属找矿前景。重点找矿方向是:探索清明山矿区深部隐伏的大规模镁铁质-超镁铁质岩体及大型岩床底部与侵入通道内的块状铜镍硫化物矿体。提出了清明山矿床3个找矿靶区:清明山矿区东南部Ⅱ号物探异常预测区,马漕山矿区东部Ⅲ号物探异常预测区,清明山矿区Ⅰ号物探异常西部预测区。
     通过研究和总结玄武岩与镁铁质侵入岩的地质、地球化学特征、两者相互关系、镁铁质岩浆成因环境和源区性质、铜镍硫化物矿床的地质和地球化学特征、矿床的形成机制、成矿规律等,阐述了铜镍矿体与玄武岩和镁铁质侵入岩成因联系、铜镍矿床地质特征,建立了铜镍硫化物矿床的成矿和及找矿模式,总结出了地质、地球物理和地球化学找矿标志,肯定了研究区的找矿前景。
Sipu group is the oldest Proterozoic stratum which exposed in Sibao region in north Guangxi, China, have large quantity of mafic volcanic rocks, mafic intrusive rocks, intermediate-acid intrusive rocks,is the important component of Cu-Ni-PGE and Sn, Cu, Pn, Zn, Sb, W, U, Au metallogenic belts in northern Guangxi province, and also one of the great potential polymetallic prospective zones in Southern China. This paper is based on the detailed research on regional geological background and its evolution, the comprehensive geological, geophysical, geochemical, survey and mining data of deposits(mineral points) in the research area. According to the guidance of regional metallogeny and volcanic mineralization theory, and to the main line of structure-magmatism-metallogenesis, it's the first time for us to do in-depth analysis and system research on typical deposit-Qingmingshan copper-nickel sulfide deposit, representative mafic intrusive rocks, mafic volcanic rocks, and Sn-Cu-Pb-Zn etc. deposits compatibly. We achieve the following main results and understanding:
     (1) Sibao region located in southeast margin of the Yangtze platform in tectonic setting, the early Mesoproterozoic, the happening tectonic movement, which ancient Huana oceanic crust nose down below the Yangtze platform, induced the forming of the basin behind island-arc, received a large number of hemipelagic sea-deep sea clastic deposition (Sibao Group); magmatic diapir and intruding which partial melting of subducted oceanic crust formed large-scale polycyclic mafic volcanic rocks; in the period of late Mesoproterozoic to early Neoproterozoic, accompanied by the further evolution of rift basins and volcanic-sedimentary thickening, mafic magmatism mainly changed as magmatic intrusion; in the same time, the differentiation and evolution of mafic magma, crustal contamination and partial melting formed a granodiorite; the late Neoproterozoic, with the plate convergence movement, the Movement of arc basin rift over, folds and deep magmatic orogenic thermal erosion, melting of continental crust formed a large number of massive biotite granite.
     (2) Sipu group are hemipelagic sea-deep sea clastic deposition with characteristics of turbidite, which consist of sandstone, arkose lithic sandstone, mudstone, and mafic volcanic rocks, which the feature of the composition of petrochemistry is rich in pro-iron elements, shch as Mn, Cu, Ni, Co, Cr, V, Pb, Zn. Danzhou group are transition facies-marine facies deposition, which consist of conglomerate, sandstone lithic sandstone and carbonatite. Which is enrichment in Zn, Ba and other acidic elements. There are widely distribution of Cu-Ni-PGE series of deposits, Sn, Cu, Pn, Zn, Sb, W, U, Au series of deposits in Sipu groups.
     (3) Mafic Intrusive rocks and volcanic rocks interdepended and associated with each other in spatial and temporal distribution, many characteristic of which include chemical composition, the feature and pattern of trace elements and rare earth elements, and the tectonic discrimination result are same, such as which is poor in TiO2 and K2O, rich in MgO, belong to tholeiite series; Trace Elements richen in large ionic radius elements Rb, Cr, Ba and Th, poor in Sr, depleted in high field strength elements Ta, Nb, P and Ti. Light rare earth slightly enriched, HREE loss, weak or no dEu aberrant, lean right in REE distribution pattern; Th/Nb ratio both are much higher than MORB and OIB rocks, Th/Nb ratio, and also higher than Th/Nb ratio of Yangtze block in the region; Nb/Ta and Nb/U ratio all much lower than normal ridge basalt and chondrite values; have the feature of higher 87Sr/86Sr ratio(> 0.7033), lower 143Nd/144Nd (<0.5130) and negative eNd(t)(<0), what mentioned above indicate that magam originated from partly melted mantle(EMI) and mixed by crust materials in continental margin near island arc, belong to the same source magma and formed in dissimilar time.
     (4) Diorite granites and biotite granites both are enriched on aluminum in the composition of petrochemistry, and trace elements enrichen in K, Rb and Th, loss of Ti, LREE enrichment, dEu significant losses, lean right in REE distribution pattern; Diorite granite is a mixed-source-type granite, and biotite granite is a remelting-type granite.
     (5) Sipu group formed in early-middle Proterozoic, about 1190-1800 Ma; Danzhou group formed in the 822-890 Ma; Proterozoic volcanic rocks formed in the mid-late Proterozoic, about 1090-1734Ma; mafic intrusive rocks formed in roughly late, about 982-1088 Ma, diorite granite formation age is about 820-1064 Ma, biotite granite formed in the 820-898 Ma. Qingmingshan Cu-Ni deposit formation age is about 1087±56Ma.
     (6) Qingmingshan's mafic intrusive rocks contained copper-nickel sulfide occurred in the form of dike, with integrated magmatic differentiation, from bottom to top of the mafic intrusive rocks lithology may divided into pyroxenite-gabbro-diabase-diorite etc.; The chemical feature of mafic-ultramafic intrusive rocksω(Si02) is 42.68~45.84%,ω(Al2O3) is 6.62~10.58%, co(MgO) is 17.87~25.12%,ω(TiO2) is 0.33~0.52%,ω(K20) is 0.05~1.19%. Trace elements rich in large ionic radius elements Rb, Depleted in high field strength elements Ta and Nb; REE rare earth elements feature SREE content is 40.95~63.7×10-6, SLREE/SHREE is 1.82~1.93, LaN/YbN is 2.92~3.2, dEu is 0.56~1.13; light rare earth is relatively slightly enriched, HREE loss, weak or no dEu aberrant, what mentioned above indicate that Qingmingshan's mafic intrusive rocks have arc-magma geochemical characteristics.
     (7) Qingmingshan copper-nickel sulfide deposits distributed the bottom of mafic-ultramafic intrusive rocks, controlled by pyroxenite lithofacies. Ore body is east-west direction, bedding output, tendency south, dip angle is 28°~52°, thickness is 20~250 m, length is 1.0~3.5 Km. From the surface to down, ore-bearing rock currently controlled by drills etc. gradually become larger in aspects of thickness, and corresponding to become rich on grade of copper-nickel ore. Qingmingshan copper-nickel sulfide deposit is divided into north and south mining area. In south mining area Qingmingshan copper-nickel sulfide orebody extend more than 1500m, thickness is 0.81~3.78m, Ni grade 0.31%~0.49%, Cu grade 0.14%~0.27%, Co 0.008%~0.016%; In north mining area Macaoshan copper-nickel orebody's surface is mostly covered by quaternary landform. Ore controlled extend more than 500 m, thickness is 0.8~3.5m, Ni grade 0.20%~0.30%, Cu grade 0.10%~0.30%. There are four mainly types of ores:disseminated ore, taxiticstructure ore, massive ore and ore vein; most of the metal minerals are pyrrhotite, pentlandite, chalcopyrite, and so on. In Copper-nickel ore d34S is-0.5%o~+3.60%o, in mafic rock d34S is 6.3%o-+24.9%o. Compareing and analyzing with the geological and geochemical on Duluth Complex Cu-Ni deposits, show that Qingmingshan copper-nickel sulfide deposit is similar to Duluth Complex on mentioned above all, have many dfferent characters contrasting with Jingchuan Cu-Ni deposits; all these are arosed by different about tectonic settint.
     (8) The formation of Cu-Ni sulfide deposits on mafic intrusive rocks in Qingmingshan area are controlled by magmatic immiscibility, then crystallization differentiation, the central factor begeting magmatic immiscibility and saturation of S are magmatic mixed by sulfur-rich volcanic-sedimentary rocks, then rapid decline in magmatic temperature and fractional crystallization.
     (9) There are two series of deposits in Qingmingshan area, Cu-Ni-PGE series formed in stage of the nosing down of ocean crust and rift valley forming of deposition-basin, formed in period between Mesoproterozoic Era and Newproterozoic Era, fomed by liquid immiscibility and differentiation from melting mafic intrusive rocks, distributed in mafic-ultra mafic rocks bottom. Sn, Cu, Pb, Zn, Sb, W, U, Au mineralization series formed in stage of deposition-basin folding, orogeny and granitizing, formed in middle-late phase of Newproterozoic Era, related to location, evolution and hydrothermal circulation of biotite granite in genesis, distributed in the peaks and fault near granite. Analyse on the cause of ore-forming of the two metallogenic series, show that abundant component of metallogenic series in Sipu group stratum is basic, the evolution on plate tectonics and tectonics is main dynamic cause, the mafic-ultramafic rock formation, segregation, differentiation and positioning, evolution and hydrothermal circulation of biotite granite is the key. On this basis, established the Qingmingshan's metallogenic model of copper-nickel deposits in genesis.
     (10) The major controlled ore-forming factors are:the tectonic setting-sea basin behind island arc, secondary structures-fold near Sipu fault (Qingmingshan double folds), lithofacies of ultramafic intrusive rocks, lithologic interface between intrusive rocks and country rocks, metamorphosed volcanic-sedimentary rocks in Sipu group. The direct and effective clues summarized for prespecting are secondary structures-fold near regional deeper and bigger fault, the bette-differentiation ultramafic rock, pyroxenite lithofacies, mineralized outcrops, integrated geophysical and geochemical anomalies.
     (11) Comprehensive geological, geophysical, geochemical and geological data deposits, indicated that there is better and bigger potential for prospecting on big-type copper-nickel sulfide deposits, middle-small type granite-related tin-polymetallic deposits. The major direction of prospecting are:to explore the the large-scale massive copper-nickel sulfide ore bodies distributed in bedrock and channel of mafic-ultramafic intrusive rocks. All analysis mentioned above suggest 3 prospecting target in Qingmingshan area:No.Ⅱgeophysical anomaly forecast district near southeastern Qingmingsahn mining area, No.Ⅲgeophysical anomaly forecast district near eastern Macaoshan mining area, and No.Ⅰgeophysical anomaly forecast district near western Qingmingsahn mining area.
引文
[1]黄汲清.中国主要地质构造单位(曾莫休和龚素玉翻译).北京:地质出版社,1954,1-168.
    [2]黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓.地质学报,1977,(2):117-135.
    [3]任纪舜,姜春发,张正坤,等.中国大地构造及其演化.北京:科学出版社,1980,1-124.
    [4]郭令智,施央申,马瑞士,等.华南大地构造格架和地壳演化,国际交流地质学术论文集(构造地质地质力学).北京:地质出版社,1980,109-116.
    [5]郭令智,施央申,马瑞士.华南板块构造.北京:地质出版社,2001,1-264.
    [6]夏斌.广西龙胜元古代二种不同成因蛇绿岩岩石地球化学及侵位方式研究.南京大学学报(自然科学版),1984,(3):554-566.
    [7]许靖华,孙枢,李继亮.是华南造山带而不是华南地台.中国科学(B辑),1987,(10):1107-1115.
    [8]许靖华.薄壳板块构造模式与冲撞型造山运动.中国科学(B辑),1980,(11):1081-1089.
    [9]刘鸿允,李日俊,郝杰.论华南的板溪群及其有关的大地构造问题.地球学报,1994,(3-4):88-96.
    [10]郭福祥.华南大地构造演化的几点认识.广西地质,1994,7(1):1,14.
    [11]候光久.江南古陆的构造属性讨论.地质科技情报,1998,17(3):1-b.
    [12]胡宁,谌建国.雪峰山地区前震旦纪大地构造演化及沉积相特征.华南地质与矿产,1999,4:10-15.
    [13]顾雪祥,刘建民.江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约.地球化学,2003,32(5):406-426.
    [14]李献华.广西北部新元古代花岗岩锆石U—Pb年代学及其构造意义.地球化学,1999,28(1):1-9.
    [15]葛文春,李献华,李正祥,等.桂北“龙胜蛇绿岩”质疑.岩石学报,2000,16(1):111-118.
    [16]葛文春,李献华,李正祥,等.桂北新元古代两类过铝花岗岩的地球化学研究.地球化学,2001,30(1):24-34.
    [17]葛文春等,李献华,梁细荣,等.桂北元宝山宝坛地区约825Ma镁铁~超镁铁岩的地球化学及其地质意义.地球化学,2001,30(2):123-130.
    [18]苏犁.中国中西部几个新元古代镁铁、超镁铁岩体研究及对Rodinia超级大陆裂解的制约:(博士论文).西安:西北大学,2004,1-105.
    [19]周继彬.桂北—湘西新元古代铁镁质岩的形成时代和成因:(博士论文).北京:中国科学院研究生院,2006.
    [20]郭令智,施央申,马瑞士,等.中国东南地体构造的研究.南京大学学报,1984,20(4):732-739.
    [21]Zhang Zhimeng, Lou J G and Coleman R G. An outline of the plate tectonics of China. Geol.Soc.Am. Bul.,1984,99:295~312.
    [22]杨丽贞.桂北中元古代的科马提岩.中国区域地质,1990,1:14-21.
    [23]毛景文,周科子,朱征.九万大山地区科马提岩及有关铜镍矿的初步研究.中国地质科学院矿床地质研究所所刊,1987,21.
    [24]毛景文,杜安道.广西宝坛地区铜镍硫化物矿石982Ma Re-0s同位素年龄及其地质意义.中国科学(D辑),2001,31(12):992-998.
    [25]毛景文.桂北九万大山—元宝山地区火成岩列和锡多金属矿成矿系列(博士论文).北京:中国科学院研究生院,2001,1-199.
    [26]唐红松,肖禧砥,刘继顺.桂北四堡群中科马提岩系及其成因类型.矿产与地质,1992,28(6):126-138.
    [27]王德滋,周新民,孙幼群.华南前寒武纪幔源花岗岩类的基本特征.冶金地质学院学报,1982,(4):1-9.
    [28]赵子杰,马大栓.桂北—前寒武纪花岗岩本洞、三防岩体的研究.宜昌地质矿产研究所南岭地质矿产科研报告集(一).武汉:武汉地质学院出版社,1987,1-27.
    [29]刘家远.华南前寒武纪花岗岩类的构造演化、成因类型及与成矿的关系.安徽地质,1994,4(1-2):39-48.
    [30]莫柱孙.南岭地区陆壳的生长和花岗岩的演化.会议论文选集(第Ⅰ卷),大地构造和前寒武纪构造,(Ⅰ)第二届全国构造地质学术.北京:地质出版社,1981,1-9.
    [31]徐克勤,孙鼎,王德滋等.华南花岗岩成因与成矿.见:徐克勤等,编.花岗岩地质和成矿关系,国际花岗岩学术讨论会论文集.南京:江苏科学技术出版社,1984,1-20.
    [32]徐夕生,周新民.华南前寒武纪S型花岗岩类及其地质意义.南京大学学报(自然科学),1992,28(3):423-430.
    [33]李志昌,赵子杰.广西晚元古代本洞和三防花岗岩类岩体Nd、Sr同位素特征.广西地质,1991,4(1):53-59.
    [34]饶冰,沈渭洲,张祖还.广西摩天岭岩体成因研究.南京大学学报(地球科学),1989,(3):45-57.
    [35]李献华.华南晋宁期造山运动一地质年代学和地球化学制约.地球物理学报,1998,41(增刊):184-194.
    [36]宋叔和,汤中立,任端进,等.中国矿床.北京:北京科学技术出版社(上册)1993,249-251.
    [37]汤中立.中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化.地学前缘,2004,1:113-119.
    [38]程裕淇,陈毓川,赵一呜.初论矿床的成矿系列问题.中国地质科学院院报,1979,(1).
    [39]程裕淇,陈毓川,赵一呜等.再论矿床的成矿系列问题.中国地质科学院院报,1983,(6).
    [40]陈毓川.华南与燕山期花岗岩有关的稀土,稀有、有色金属矿床成矿系列.矿床地质,1983,2(2).
    [41]汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿摸式及地质对比.北京地质出版社,1995,14-209.
    [42]Li X H. Geochemistry of the Longsheng ophiolite from the southern margin of the gtze Craton, SE China. Geochem. J.,1997,31:323-337.
    [43]周金城,王孝磊,邱检生等.桂北中—新元古代镁铁—超镁铁岩的岩石地球化学.岩石学报,2003,19(1):9-18.
    [44]董宝林.中国南方前寒武浅变质岩系Rb-Sr同位索年代学研究有新突破.广西区域地质,1987,(6):22.
    [45]李献华Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学,1996,31(1):97-104.
    [46]刘海臣,朱炳泉.湘板溪群及冷家溪群的时代研究.科学通报,1994,39(2):148-150.
    [47]王孝磊,周金城,邱检生等.桂北新元古代强过铝花岗岩的成因:错石年代学和Hf同位素制约.岩石学报,2006,22(02):326-342
    [48]王鸿祯.中国华南地区地壳构造发展的轮廓.见:王鸿祯,杨巍然,刘本培,编.华南地区古大陆边缘构造史.武汉:武汉地质学院出版社,1986:1-15.
    [49]任纪舜.《中国主要地质构造单位》:中国大地构造的经典著作—纪念黄汲清先生诞辰100周年.地质论评,2004(3):235-239.
    [50]张桂林.扬子陆块南缘(桂北地区)前泥盆纪构造演化的运动学和动力学研究.长沙:中南大学,2004,1-177.
    [51]邱家骧.岩浆岩石学.北京:地质出版社,1985,1-340.
    [52]陈骏,王鹤年.地球化学.北京:科学出版社,2004,1-389.
    [53]王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社,1989,1-535.
    [54]吴利仁.中国东部新生代火山岩.岩石学报,1985,1:1-23.
    [55]黄杰,刘耀辉,敬荣中,等.广西罗城县满洞地区铜镍多金属矿普查总结报告.广西:桂林矿产地质研究院,2006,1-49.
    [56]韩发,沈建中,聂凤军,等.江南古陆南缘四堡群同位素地质年代学研究.地球学报,1994,(1-2):43-50
    [57]Pearce J A and Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci. Lett.,1973,19:290~300.
    [58]Pearce J A,Harris N B W,Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,J. Petrol.,1984,25:956~983.
    [59]Pearce J A. Trace element characteristics of lavas from destructive plate boundaries. In:Thorpe R.S.(ed.). Andesits. Chichester:Wiley,1982,525~548.
    [60]Pearce J A and Gade G H. Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. Geol. Soc. Spec. Publ.,1977,7:14~24.
    [61]Garcia M O. Criteria for the identification of ancient volcanic areas. Earth Sci. Rev.,1978,14:147~165.
    [62]汤中立.金川硫化铜镍矿床成矿模式.现代地质,1990,4(4):55-64.
    [63]汤中立,李文渊.中国硫化镍矿床成矿规律的研究与展望.矿床地质,1991,1(3):193-202.
    [64]汤中立.中国岩浆硫化物矿床的主要成矿机制.地质学报,1996,70(3):237-243.
    [65]汤中立.中国岩浆硫化物矿床的主要类型.甘肃地质学报,1996,5(1):45-49.
    [66]陶琰,胡瑞忠,漆亮,等.四川力马河镁铁—超镁铁质岩体的地球化特征及成岩成矿分析[J].岩石学报,2007,23(11):2785-2798.
    [67]Hofmann A W. Mantle geochemistry:the massage from oceanic volcanism. Nature,1997,385:219~229.
    [68]Hofmann A W. Sambling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In:Holland H D,Turekian K k (ed.). Treatise on geochemistry. Amsterdan:Elsevier,2003,2:69~97.
    [69]Rollinson Hugh R. Using Geochemical Date:Evaluation,Presentation, Interpretation. Singapore. Longman Publisheres.1993,352.
    [70]Pearce J A. Role of the Sub-Continental Lithosphere in Magam Genesis at Active Continental Margins. In:Hawkesworth C J. And Norry M J. (eds.), Continental Basalts and Mantle Xenoliths. Nantwich:Shiva,1983,230~249.
    [71]陈毓川,毛景文,邹天人,等.桂北地区矿床成矿系列和成矿历史演化轨迹.南宁:广西科学技术出版社,1995,1-433.
    [72]毛景文,宋叔和,陈毓川.桂北地区火成岩系列和多金属矿床成矿系列.北京:北京科学技术出版社,1988,1-196.
    [73]甘晓春,李献华,赵风清,等.广西龙胜月一洲群细碧岩钻石U-Pb及Sm-Nd等时线年龄.地球化学,1996.25(3):270-276.
    [74]邱检生,周金城,张光辉,等.桂北前寒武纪花岗岩类岩石的地球化学成因.岩石矿物杂志,2002,21(3):198-208.
    [75]伍实.广西晚元古代本洞岩体同位素地质年代学研究.地球化学,1979,(3):187-194.
    [76]Maniar P D,Piccoli P M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull.,1989,101:635~643
    [77]黄杰,莫江平,唐红松,等.桂北地区铜镍硫化矿成矿地质条件分析及找矿方向.南方国土资源,2004,11:7-71.
    [78]汤中立,李文渊.1995.金川铜镍硫化物(含铂)矿床成矿摸式及地质对比.北京:北京地质出版社,14-209.
    [79]汤中立,闫海卿,焦建刚,等.中国小岩体镍铜(铂族)矿床的区域成矿规律[J].地学前缘,2007,5:92-103.
    [80]Kuno H. Differentiation of basalt magmas. In:Hess H. H. and Poldervaart A. (eds.). Basalts:The Poldervaart treatise on rocks of basaltic composition, Vol.2. New York:Interscience,1968,623~688.
    [81]Miyashiro A. Classification,characteristics and orgin of ophiolites. J. Geol.,1975,(83):249~281.
    [82]赵振华.微量元素地球化学原理.北京:科学出版社,1997,1-238.
    [83]闫海卿,汤中立,焦建刚,等.内蒙古野芨里镁铁质—超镁铁质岩体的岩石地球化学特征.现代地质,2005,19(4):515-521.
    [84]Ohmoto H and Rye R O. Isotopes of surfer and carbon. In:Geochemistry of hydrothermal ore deposits. John Wiley and sons,New York,1979,509~567.
    [85]彭大良,郭玉儒,邓德贵.桂北锡矿成矿作用过程及矿床成因探讨.见:彭大良等,编.《锡矿地质讨论会论文集》.北京:地质出版社,1987.1-156.
    [86]Irvine T N. A guide to the chemical classification of the common volcanic rocks. CanJ. EarthSci.,1971,8:523~548.
    [87]Mcdonnough W F, Sun S, Ringwood A E et al.. K,Rb and Cs in the earth and Moon and the Evolution of the Earth,Mantle Geochim. et Cosmochim. Acta.,Ross Taylor Symposium Volume,1992.
    [88]Stolz A J,Jochun K P,Spettel B,et al. Fluid and melt-related enrichment in the subarc mantle:evidence from Nb/Ta variations in island-arc basalts. Geology,1996,24(7):587~590.
    [89]张本仁,傅家谟,郑永飞等.地球化学进展.北京:化学工业出版社,2005,1-439.
    [90]Ionov D A,Hofmann A W. Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractions. Earth Planet Sci. Lett,1995,131:341~356.
    [91]Condie K C. Incompatible element ratios in oceanic basalts and komatiites: Tracking-deep mantle sources and continental growth rates with time. Geochemistry Geophysics Geosystems,2003,4(1):1005,doi.:10.1029/2002GC000333.
    [92]Gao S,Luo T C,Zhang B R,Zhang H F,Han Y W,Hu Y K, Zhao Z D. Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosochim Acta,1998,62:1959~1975.
    [93]Vogt J H L. Beitrage zur geenetischen classification der durch magmatische differen-tiations processe under durch previnathloyse entslandenen erzvoskommen Z. Ponkt. Geol.,1894,2:381~399.
    [94]Skinner B J and Peck D L. An immiscible sulfide melt from Hawaii. In: H B D Wilson (ed),Magmatic Ore Deposits. Econ. GeoL,1968,(4):310~322.
    [95]Rajamani V,Naldrett A J. Partitioning of Fe,Co,Ni,Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits.Economic Geology,1978,73:82~93.
    [96]Rad'ko V V. Model of dynamic differentiation of intrusive traps in the northwestern Siberian platform,Soviet. Geol. and Geophys,1991,32 (7):70~77.
    [97]Brugmann G E, N aldrett A J, Asif M et al.. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Traps in the Noril'sk Region,Russion. Geochim. Cosmochim. Acta,1993,57:2001~2018.
    [98]王瑞廷.煎茶岭与金川镍矿成矿作用比较研究:(博士论文).西安:西北大学地质系,2002.
    [99]汤中立,钱状志,姜常义,等.中国镍铜铂岩浆硫化物矿床与成矿预测.北京:地质出版社,2006,1-304.
    [100]Roedder E. Low temperature liquid immiscibility in the system K2O-FeO-Al2O3-SiO2. American Mineralogist,1951,36,282~286.
    [101]Maclean W H. Liquid phase relations in the FeS-FeO-Fe2O3-SiO2 systems and their applications in geology. Economic Geology,1969,64:865-884.
    [102]Shaw D M, Reilly G A,Muysson J R,et al.. An estimate of the chemical composition of the Canadian Precambrian shield. Canadian Journal of Earth Sciences, 1967,4:829-853.
    [103]Wedepohl H. The composition of the continental crust. Geochim. Cosmochim Acta,1995,59:1217~1239
    [104]Rudnick R and Gao S. Composition of the Continental Crust. In: Rudnic R, ed. The Crust,Treatise on Geochemistry. Amsterdam:Elsevier,2003. Vol 3: 1~64.
    [105]Keays R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos,1995,34:1~18.
    [106]Lightfoot P C and Hawkesworth C J. Flood basalts and magmatic Ni, Cu and PGE sulphide mineralization:Comparative geochemistry of the Noril'sk (Siberian Trap) and West Greenland sequences. In:Mahoney J J and Coffin M F, ed. Large igneous province. Washington D C:American Geophysical Union,1997,357~380.
    [107]Shima H and Naldrett A J. Solubility of sulfur in an ultramafic melt and the relevance of the system Fe-S-O. Econ. Geol.,1975,70:960~967.
    [108]Haughton D R, Roeder P L, Skinner B J. Solubility of copper sulfer in mafic magmas. Economic Geology,1974,69:451~467.
    [109]Holzheid A,Grove T L. Sulfur saturation limits in silicate melts and their implications for core formation scenariors for terrestrial planets. American Mineralogist,2002,87:227~237.
    [110]Irvine T N. Crystallization sequences of the Muskox intrusion and other layered intrusions:Ⅱ. Origin of chromitite layers and similar deposits of other magmaticores. Geochim. Cosmochim. Acta,1975,39:991~1020.
    [111]Vogel D C and Keays R R. The petrogenesis and platinum-group element geochemistry of the newer volcanic province,Victoria,Australia. Chem. Geol., 1997,136:181-204.
    [112]Keays R R. Requirements for the formation of giant Ni-Cu-PGE sulfide deposits:The role of magma generation. Transactions of the American Geophysical Union (EOS),1997,78:799.
    [113]李文渊.岩浆Cu-Ni-PGE矿床研究现状及发展趋势.西北地质,2007,40(2):1-28.
    [114]柴凤梅,张招崇,毛景文,等.岩浆型Cu-Ni-PGE硫化物矿床研究的几个问题探讨.矿床地质,2005,24(3):325-335.
    [115]刘民武,中国几个镍矿床的地球化学比较研究:(博士文论文).西安:西北大学,2003,1-145.
    [116]Irvine T N,Keith D W and Todd S G. The J-M platinum-palladium reef of the Stillwater Complex,Montana:Ⅱ. Origin by double diffusive convective magma mixing and implications for the Bushveld complex. Econ. Geol.,1983,78:1287~ 1334.
    [117]L i C,Ripley E M,Maier W D et al.. Olivine and sulfur isotopic compositions of the Uitkom st Ni-Cu sulf ide ore-bearing complex,South Africa: Evidence for sulfur contamination and multiple magma emplacements. Chemical Geology,2002,188:149~159.
    [118]BM马卡罗夫.铜镍矿床的成因类型(锁林译).国外地质科技,北京:地质出版社,1990,(7):53-58.
    [119]Lambert D D,Frick L R,Foster J G,et. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic sulfide system,Labrador,Canada:Ⅱ.Implications for parental magma chemistry,oregenesis,and metal redistribution. Econ Geol.,2000,95 (4):867~888.
    [120]Lambert D D and Ripley E M. Special issue,Geodynamics of giant magmatic ore systems. Lithos,1999,47:156.
    [121]Lambert D D,Foster J G,Frick L R,et al. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic ore system,Labrador, Canada, lithos,1999,47 (1-2):69~88.
    [122]L amber t,D. D. and S. B. Shirey,etc.,Re-Os and Sm-Nd isotopic systematics of lamproites and basalts from the southern U. S.midcotinent:Implications for the evolution of Proterzoic subcontinental Lithospheric mantle,Trans. Amer. Geophy. Union,1991,72,543.
    [123]Whitney J A,Naldrett A J. Ore deposition associated with magmas. Rev. Economic geology,1989,4.
    [124]Ripley E M and Li Chusi. Paragneiss assimilation in the genesis of magmatic Ni-Cu-Co sulfide mineralization at Voisey's Bay,Labrador:d34S, d13C,and Se/S evidence. Econ. Geol.,2002,97 (6):1307~1318.
    [125]Naldrett A J. Key factors in the genesis of Noril'sk, Sudbury, Jinchuan, Voisey's Bay and other world-class Cu-Ni-PGE deposits:Implication for exploration. Australian J. Earth Sci.,1997,4:281~315.
    [126]Naldrett A J, Lightfoot P C,Fedorenko V A,et al. Geology and geochemistry of intrusions and flood basalts of the Noril,sk Region,USSR, with implication for origion of the Ni-Cu ores. Econ. Geol.,1993.,87:975-1004.
    [127]Naldrett A J. Magmatic sulphide deposits. New York:Oxford Univ. Press,1989,1-186.
    [128]蒋少涌,杨竟红,赵葵东,等.金属矿床Re-Os同位素示踪与定年研究.南京大学学报(自然科学版),2000,36(6):669-677.
    [129]涂光炽.过去20年矿床事业发展的概略回顾.矿床地质,2001,20:1-9.
    [130]Ripley E M,Lightfoot P C,Li C S,etal. Sulfur isotopic studies of continental flood in the Noril'sk region:Implications for the association between lavas and ore-bearing intrusions. Geochim. Cosmochim. Acta,2003,67 (15) 2805-2817.
    [131]Edward M. Ripley. Nur Iskandar Taib. Chusi Li. Craig H. Moore. Chemical and mineralogical heterogeneity in the basal zone of the Partridge River Intrusion:implications for the origin of Cu-Ni sulfide mineralization in the Duluth Complex,midcontinent rift system. Contrib Mineral Petrol,2007,154:35-54
    [132]杜乐天.地球排气作用的重大意义及研究进展.地质评论,2005,51(2):174-179.
    [133]Mitchell A H G,Garson M S. Mineral deposits and global tectonic setting. London:Academic Press,1981.
    [134]Sawkins F J. Metal deposits in relation to plate tectonics. Berlin: Springer-Verlag,1984,1~325.
    [135]李春星.中国板块构造轮廓.中国地质科学院院报,1980,2(1):11-22.
    [136]王鸿祯.中国地壳构造发展的主要阶段.地球科学,1982(3):155-173.
    [137]刘宝君,许效松,潘杏南等.中国南方古大陆沉积地壳演化与成矿北京:科学出版社,1993,9-33.
    [138]Li W X.,Li X. H.Adakitic granites within the NE Jiangxi ophiolites, South China:geochemical and Nd isotopic evidence. Precambrian Research,122: 29~44.
    [139]田景春.桂北下震旦统杂砾岩成因之探讨.广西地质,1989,2(4):25-29.
    [140]梁国宝,桂北三防地区构造研究新进展,广西地质,1995,2:14-19.
    [141]董宝林.广西的四堡群,地层学杂志,1991,15(2):139-141.
    [142]董宝林,广西宝坛地区丹洲群层状变形带,中国区域地质,1991,2:127-130.
    [143]丘元禧,张渝昌,马文璞,等.雪峰山的构造性质与演化一个陆内造山带的形成演化模式.广州:中山大学出版社,1999,1-153.
    [144]丘元禧,马文璞,范小林,等.“雪峰古陆”加里东期的构造性质和构造演化.中国区域地质,1996,(2):150-160.
    [145]张怡侠.矿床模式导论.北京:地震出版社,1993,1-228.
    [146]陈浩琉,吴水波,傅德彬,等.镍矿床.北京:北京地质出版社,1993,1-199.
    [147]Naldrett A J. World-class Ni-Cu-PGE deposits:key factors in their genesis. Mineralium Deposita,1999,34:227~240.
    [148]Ripley EM, Lambert DD,Frick LR. Re-Os,Sn-Nd,and Pb isotopic constraints on mantle and crustal contributions to magnetic sulfide mineralization in the Duluth Complex. Geochim Cosmochim Acta,1999,62:3349-3365.
    [149]Listerud W H, Meineke D G. Mineral resources of a portion of the Duluth Complex and adjacent rocks in St. Louis and Lake counties,northeastern Minnesota. Minnesota Department of Natural Resources, Division of Minerals, Minerals Exploration Section, Report 93,1977.
    [150]张成江,滕彦国,倪师军.成矿流体地球化学界面:Ⅱ组成及标志.地质地球化学,2001,3:22-25.
    [151]滕彦国,倪师军,张成江等.成矿流体地球化学界面:Ⅲ应用实例研究.地质地球化学,2001,(3):26-31.
    [152]倪师军,张成军,李泽琴,等.地球化学原理与应用.北京:地质出版社,2008,1-225.
    [153]Ryan B,Wardle R J,Gow er C,et al.. Nickel-copper sulphide mineralization in Labrador:The Voisey's Bay discovery and its exploration implications:geological survey branch,Department of Natural Resources, Report,1995,95(l):177~204.
    [154]L i C and Naldret t A J. Melting reactions of gneissic inclusions with enclosing magma at Voisey's Bay,Labrador,Canada:Implications with respect to ore genesis. Econ. Geol.,2000,95:801~814.
    [155]邓军,吕古贤,杨立强,等.构造应力场转换与界面成矿.地球学报,1998,19(3):244-250.
    [156]韦延光,冯本智,邓军等.铜镍硫化物矿床研究进展.吉林地质,2004,23(3):20-25.
    [157]Ross JR and Travis GA. The nickel sulfide deposits in Western Australia in global prespective. Econ. Geol.,1981,76:1291~1329.
    [158]翟裕生,王建平,邓军,等.成矿系统与矿化网络研究.矿床地质,2002,20(1):106-112.
    [159]Song X Y, Zhou M F, Wang Yet al. Role of crustal contamination in the formation of the Jingchuan Ni-Cu-PGE deposit. NW China. International Geological Review.2006,38:1113~1132.
    [160]刘月星.中国铜镍硫化物矿床类型及控矿条件.矿产与地质,1998,2:86-90.
    [161]Gaal G,Schultz K. Preface:precam brian metallogeny related to plate tectonics. Precambrian Research,1992,58(1~4):Ⅶ~Ⅸ.
    [162]张臣.华北克拉通北缘中段中新元古代热-构造事件及其演化.北京大学学报(自然科学版),2004,40(2):232-240.
    ①广西宝坛地区区域地质调查报告[R].第二区调队,1987
    ②广西罗城县满洞地区铜镍多金属矿普查总结报告[R].桂林矿产研究院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700