用户名: 密码: 验证码:
华北克拉通北缘变质核杂岩韧性拆离带的应变、运动学涡度分析与韧性减薄量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北克拉通北缘发育有一系列中生代变质核杂岩,被认为是了解地壳伸展构造特征的窗口。本文选取位于华北克拉通楼子店、云蒙山、医巫闾山和辽南变质核杂岩韧性拆离带作为研究对象,以有限应变测量和运动学涡度为研究方法,精细确定拆离带的应变型式、剪切作用类型以及韧性减薄量;以此为基础,探讨华北克拉通北缘中生代以来主要核杂岩的形成机制、韧性减薄量,并为探讨地壳伸展减薄的机制、减薄量及其地球动力学背景提供依据。
     楼子店变质核杂岩位于赤峰南部,为—NE—南西向、SE倾的低角正断层系,下盘由韧性剪切带、韧-脆性剪切带以及脆性断裂带组成。韧性剪切带自下而上依次发育糜棱岩化岩石、糜棱岩和初糜棱岩。长石应变标志体的Rf/φ法有限应变测量显示,在韧性剪切带内核部糜棱岩的应变强度最大(Es=0.67-0.96),下部接近花岗岩体的糜棱岩化岩石与上部的初糜棱岩次之(Es分别为0.59-0.62和0.47-0.56)。对数付林图解与霍塞克图解显示初糜棱岩的应变类型为接近于平面应变的拉长应变(lod参数v=-0.228--0.535),糜棱岩应变类型为平面压扁应变(lod参数v-0.14-0.87)。用极摩尔圆、刚性颗粒网法测得的运动学涡度值分别为初糜棱岩0.81-0.90,平均0.85;糜棱岩0.51-0.80,平均0.66;依据最大有效力矩准则获得伸展褶劈理形成时的运动学涡度值为0.63-0.37,平均0.5。由最大有效力矩准则确定的主压应力轴σ1与拆离带边界的夹角角经历了61°、69°到75°的递进增大过程,最后趋于与拆离带边界垂直。
     云蒙山变质核杂岩发育—NE走向、SE倾向的低角拆离正断层系,其中韧性拆离断层带由靠近核部岩体的糜棱岩化岩石、初糜棱岩、糜棱岩组成。长石碎斑的Rf/φ法有限应变测量显示:糜棱岩的应变强度最大(Es=0.72-1.0),初糜棱岩次之(Es=0.70-0.86),糜棱岩化岩石最小(Es=0.66-0.70)。付林图解与霍塞克图解显示应变类型为压扁型(lod参数v=0.29-0.91)。极摩尔圆获得的平均运动学涡度为0.76,显示早期糜棱岩面理与线理记录了以单剪为主的一般剪切作用;演化后期伸展褶劈理记录的平均运动学涡度为0.613,显示以纯剪为主的一般剪切作用。依据运动学涡度与有限应变获得的瓦子峪拆离带内韧性剪切带的韧性减薄量介于330-430m之间。
     医巫闾山变质核杂岩为—NE走向、NW-NNW倾向的低角正断层系,瓦子峪拆离断层带自下而上依次由韧性剪切带(糜棱岩带)、韧脆性剪切带(碎裂岩带)以及脆性拆离断层面组成。其中韧性剪切带由下而上由糜棱岩化花岗片麻岩以及糜棱岩组成。韧—脆性剪切带主要表现为脆性构造发育并对先存韧性剪切带的叠加改造。脆性拆离断层面主要表现为断层泥与断层角砾岩发育。基于石英颗粒的Rf/中有限应变测量显示糜棱岩的应变强度Es=0.51-1.0。付林图解显示应变类型为压扁应变(lod参数v=0.47-0.90);霍塞克图解显示随应变强度增大罗德参数也逐渐加大。基于极摩尔圆、石英条带斜交面理以及有限应变法估算的运动学涡度显示,韧性剪切带内糜棱岩面理和线理形成时记录了以单剪为主的一般剪切作用,运动学涡度Wk=0.61-0.96,平均为0.80;伸展褶劈理记录了以纯剪为主的一般剪切作用,Wk=0.24-0.53,平均为0.37。依据运动学涡度与有限应变获得的瓦子峪拆离带内韧性剪切带的韧性减薄量介于320-520m之间。我们选择石英作为应变标志体,主要因为在医巫间山变质岩区,样品手标本及薄片下中长石的含量较少、石英的变形强烈成拔丝状,更能代表岩石应变。
     辽南变质核杂岩为—NNE走向、NWW倾向的低角正断层系,其组成从下往上依次为糜棱岩化花岗片麻岩、韧性剪切带、绿泥石化带、脆性拆离断层面以及上盘未变质的元古代-古生代-中生代岩石组成。其中韧性剪切带由位于下部的糜棱岩化花岗片麻岩以及糜棱岩组成。糜棱岩中的所有运动学指向标志都指示上盘向NWW的拆离。基于长石的Rf/Φ有限应变测量显示糜棱岩的应变强度介于0.36-1.0、平均为0.75。付林图解与霍塞克图解显示应变类型为压扁型(lod参数v=0.11-0.98)。用极摩尔圆法与有限应变法获得的糜棱面理与线理形成时的运动学涡度介于0.74-0.96之间,平均为0.85;依据最大有效力矩准则获得伸展褶劈理或C′形成时的运动学涡度介于0.10-0.84,平均0.58。依据运动学涡度与有限应变获得的拆离带的韧性减薄量为水源地395m、董家沟705m、大李家屯212m、三十里铺387m、普兰店437m、瓦房店原台130m。
     野外观察发现,上述拆离带内的韧性剪切带(糜棱岩带)内的糜棱岩发育两种组构,其一为由石英与长石碎斑定向排列构成S-C组构和拉伸线理。其二为以小角度切割和错断透入性糜棱面理并使之发生弯曲且剪切指向与糜棱状岩石的剪切指向一致的伸展褶劈理或C′。研究发现,伸展褶劈理或C′带内残存的早期面理发生了转动,而带外面理则保持其初始方位;这些说明伸展褶劈理或C′是在同一递进变形过程中的较晚的增量应变期间形成的。
     基于不同的运动学涡度估算方法对糜棱面理与伸展褶劈理或C′进行计算可知:糜棱面理与线理记录了单剪为主的一般剪切作用、伸展褶劈理或C′记录了纯剪为主的一般剪切作用;结合糜棱面理与伸展褶劈理或C′发育的先后顺序,认为研究区拆离带内糜棱岩经历了早期单剪为主、晚期纯剪为主的一般剪切作用。该研究结果精细刻画了拆离带形成的剪切变形机制,并从变形机制角度进一步证明,研究区地壳伸展作用发生后,以糜棱面理与线理发育为代表的早期单剪为主的一般剪切、以伸展褶劈理发育为代表的晚期纯剪为主的一般剪切的剪切模式在变质核杂岩及其拆离带的形成中可能具有普遍意义:与之对应,以简单剪切为代表的地壳伸展与以纯剪切为代表的岩浆底侵是制约变质核杂岩及其拆离带形成的主导因素。本研究表明,华北克拉通核杂岩拆离带演化过程可能是地壳缩短加厚到伸展减薄这一构造体制转折的反映。
     依据应变与运动学涡度估算的韧性减薄量表明,拆离带在形成演化过程中存在韧性减薄,减薄量因剪切带的厚度不同而有差异,虽然韧性减薄对地壳的总体减薄量贡献不大,但韧性减薄确实存在,且对于丰富中生代以来华北克拉通伸展减薄研究仍具有重要的启示意义。需要说明的是,以长石为应变标志体时其应变小于全岩应变,以石英为应变标志体时其应变可能大于全岩应变;再者,由于没有获得拆离带内局部细小的强变形岩石的应变参数:因此,我们估算出的拆离带内的减薄量为最小的韧性减薄量。本研究说明,在估算变质核杂岩伸展拆离对地壳减薄量贡献时,不应仅仅依据主拆离带位移(主要为刚性位移)量,也应考虑韧性变形的效应和减薄量,以便更准确估算构造变形对华北岩石圈和地壳减薄的贡献。
     本文与国内外诸多研究成果相一致,比较典型的有中蒙边界区中生代亚干大型拆离断层系以及希腊西奈山Chelmos剪切带,共同特征是早期单剪为主、伴随伸展引发岩浆侵入逐步转化到晚期纯剪为主的构造体制,且两者共同作用制约着研究区变质核杂岩及其拆离带的形成与演化。目前,以有限应变测量为基础,对变质核杂岩及其拆离带进行精细的应变与运动学涡度解析,在国际上类似的研究还不多见,由此推算拆离带韧性减薄量的研究更少。本文是这方面研究的初步探讨,说明该研究思路、方法可行。
A series of metamorphic core complex are located at the northern margin of the North China Craton, and regarded as a window to understand the crust extension. We choose the Louzidian, Yunmengshan, Yiwulvshan and Liaonan as the research objects; and select strain measurement and kinematic vorticity as research methods; and determine the strain types, shear types and ductile thinning of metamorphic core complex and its detachment fault zone. Based on these, we can investigate the formation mechanism, ductile thinning of these metamorphic core complex, and further provide the evidences of mechanism of crust extension and thinning, quantification of thinning and geodynamic background of the North China Craton.
     The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipped, low angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault zone. The ductile shear zone consists of, from bottom to top, mylonitic rocks, protomylonites and mylonites. Finite strain measurement of feldspar strain markers from those rocks using the Rf/φmethod shows strain intensities (Es) increase from 0.47-0.56 to 0.59-0.62 and to 0.67-0.96, respectively, and the strain types of the protomylonites and mylonties are flattening strain (lod parameter of protomylonites v=-0.228——0.535; lod parameter of mylonites v=0.14-0.87), respectively. The kinematic vorticity values (Wk) estimated by the Polar Mohr diagram and the Rigid Grain Net range from 0.81 to 0.90 with an average of 0.85 for the protomylonites, and from 0.51 to 0.80 with 0.66 on average for the mylonites; W(?) values of the extensional crenulation cleavage (i.e. C') estimated by C method range from 0.63 to 0.37 with an average of 0.50. Dip angles of the maximum principle stress determined using the Maximum effective moment criterion evolved from 61°to 69°and to 75°, and finally normal to shear direction.
     The Yunmengshan metamorphic core complex is a NE trend, SE-dipped, low-angle normal fault system. It is composed mainly of, from bottom to top, mylonitic rocks, protomylonites and mylonites. Finite strain measurement of feldspar strain markers f using the Rf/φmethod suggests strain intensities increase from mylonitic rocks (Es=0.66-0.70), proto mylonite (Es=0.70-0.86) and mylonite (Es=0.72-1.0). Fulin and Hossack diagrams indicate strain types is close to flattening strain(lod parameter v=0.29-0.91). Kinematic vorticity measurements using Mohr diagram method suggest that foliations and lineation of mylonite (0.63     The Yiwulvshan metamorphic core complex is a NE trend, NW-NNW-dipped, low-angle normal fault system. It is composed mainly of, from bottom to top, ductile shear zone (mylonite zone), ductile-brittle shear zone and brittle detachment fault plane. Ductile shear zone consists of mylonitic gneiss which lies at the bottom, and mylonite which locates at the top. Ductile-brittle shear zone performs as brittle structure overprinting the pre-existed ductile shear zone. Brittle detachment fault plane registers as fault gouge and fault breccia. Finite strain measurement of quartz strain markers using the Rf/φmethod suggests strain intensities of mylonite chang from 0.51 to 1.12. Fulin and Hossack diagrams indicate strain types is close to flattening strain (lod parameter v=0.47-0.90). Kinematic vorticity measurements using Mohr diagram method, oblique foliation in quartz ribbons and finite strain method suggest that foliations and lineation of mylonite record a bulk simple-dominated general shearing, the Kinematic vorticity ranges from 0.61 to 0.96 with an average of 0.80; and Extensional crenulation cleavage recorded a bulk pure-dominated general shearing, and its Kinematic vorticity changes from 0.24 to 0.53 with 0.37 on average. Based on the strain measurement and kinematic vorticity, we estimate the quantification of thinning ranging from 320 to 520m.
     The Liaonan metamorphic core complex is a NE trend, NNW-dipped, low-angle normal fault system. It is composed mainly of, from bottom to top, mylonitic granitic gneiss, ductile shear zone, chloritized zone, brittle detachment fault plane and the non-metamorphosed rocks within upper plate ranging from Proterozoic to Paleozoic, and to Mesozoic. Ductile shear zone consists of mylonitic granitic gneiss and mylonites. Finite strain measurement of feldspar strain markers using the Rf/φmethod suggests strain intensities of mylonite changing from 0.36 to 1.0 with an average of 0.75. Fulin and Hossack diagrams indicate strain types is close to flattening strain(lod parameter v=0.11-0.98). Kinematic vorticity measurements using Mohr diagram method, and finite strain method suggest that foliations and lineation of mylonite record a bulk simple-dominated general shearing, the Kinematic vorticity ranges from 0.74 to 0.96 with an average of 0.85; and Extensional crenulation cleavage recorded a bulk pure-dominated general shearing, and its Kinematic vorticity changes from 0.10 to 0.84 with 0.58 on average. Based on the strain measurement and kinematic vorticity, we estimate the quantification of thinning of Shuiyuandi, Dongjiagou, Dalijiatun, Sanshilipu, Pulandian and Yuantai, and their quantification of thinning are 395m,705m,212m, 387m,437m and 130m, respectively.
     Based on the field observations, we find there are two types of fabrics in the studying mylonites, one is S/C fabric defined by orientational quartz and feldspar; the other is extensional crenulation cleavage (ecc) or C', and it is characterized by discrete sub-parallel minor shear bands; they transect and displace the mylonitic foliation and stretching lineation at a small angle and cause previous foliations rotation. These suggest that the ecc formed during relatively later increments of the same progressive deformation.
     The research of kinematic vorticity indicate that foliation and lineation of mylonites record a bulk simple-dominated general shearing, and extensional crenulation cleavage recorded a bulk pure-dominated general shearing; together with the sequence of foliation and extensional crenulation cleavage of mylonites, we consider that the mylonites in study area experience simple-dominated at early period, and pure-dominated at later period during mylonites formation. This result depicts subtly the mechanism of deformation of detachment fault zone, and further demonstrates that simple shear at the early stage and pure shear at the late stage in the formation of metamorphic core complex has probably general significance. Crust extension represented by simple shear and magma intrusion represented by pure shear are dominated factors that control the formation of metamorphic core complex and its detachment fault zone. Strain and kinematic vorticity researches are the effective methods to reveal the dynamics of tectonic regime transition and lithospheric thinning in North China during Late Mesozoic.
     The quantification of ductile thinning estimated by strain and kinematic vorticity indicate that there really existed ductile thinning during the formation and evolution of detachment fault zone; although the quantification of ductile thinning is a little, it helps us understand preferably the extension and thinning of the North China Craton. There are some problems need to express clearly that the strain of feldspar is lower than the whole rock strain, whereas the strain of quartz can represent the whole rock strain; the veins which are characterized by locality and strong deformation are not consideration; so, the quantification of ductile thinning estimated by us is the minimum.
     This paper further confirm that there is a tectonic regime transition from crust thickening to crust extension thinning in the North China Craton at Mesozoic, and demonstrate the Maximum effective moment criterion is an effective method to interpret the low angle normal fault system.
     This conclusion coincides with other classical studies, such as the Yagan detachment fault in the Sino-Mongolian border area and the Chelmos shear zone of External Hellenides Greece. These shear zone are characterized by a transition of tectonic regime from simple-dominated shear at early stage to pure-dominated shear at a late stage which produced by magma intrusion.
引文
Bobyarchick A R. The eigenvalues of steady state flow in Mohr space. Tectonophysics,1986,122:35-51
    Bretherton F P. The motion of rigid particles in shear flow at low Reynolds number. Jour Fluid Mechanics,1962,14:284-301.
    Brian J. DARBY, Gregory A. DAVIS.The newly discovered Waziyu metamorphic core complex, YiwuliiShan, western Liaoning Province, Northwest China. Earth Science Frontiers,2004,11 (3) 145-155
    Brodie, K.Variations in mineral chemistry across a shear zone.J Struct Geol,1980,2:265-272
    Coney P J, Harms T A. Cordilleran metamorphic core complexes:Cenozoic extensional relics of Mesozoic compression. Geology,1984,12:550-554
    Coney P J. Cordilleran metamorphic core complexes:An overview. Mem Geol Soc Am,1980,122:35-51
    Compton, R.R.,1980. Fabrics and strain in quartzites of metamorphic core complex, Raft River Mountains, Utah. In Crittenden, M.D. Jr., Coney, P.J., and Davis, G.H. (ed.)Cordilleran Metamorphic core complexes. Geological Societof America Memoir,153:385-398.
    Davis G H, Coney P J. Geologic development of the Cordilleran metamorphic core complexes. Geology, 1979,7:120~124
    Davis G H. Shear-zone model for the origin of metamorphic core complexes. Geology,1983,11:342~347
    Davis J, Hawkeswo rth C J. The pet rogenesis of 20-30Ma basic and intermediate volcanics from theMoo
    llon-Datil volcanic field,New Mexico,USA. Contrib. Mineral. Petrol.,1993,115:165-183
    Davis G A, Qian Xianglin, Zheng Yadong, et al.1996. Mesozoic deformation and plutonism in the Yunmeng Shan:a metamorphic core complex north of Beijing, China [A]. Yin An and Harrison M.Rubey Volume"The Tectonic Evolution of Asia" [C]. Cambridg Univ. Press,253~280.
    Davis,G.A. and Lister,GS..1988. Detachment faulting in continental extension:perspectives from the
    southern U.S.Cordillera.Geol.Soc.America Spec.Paper,18:133-159.
    Davis G A, Zheng Y, Wang, C, et al. Mesozoic tectonic evolution of Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Geol. Soc America Memoir,2001,194
    Dewey J F. Extensional collapse of orogens. Tectonics,1988,7:1123~1139
    De Paor. Rf/φf strain analysis using an orientation net.J Struct Geol,1988,10 (4):323-333
    Davis.GH...Characteristic of metamorphic core complex,southern Arizona. Abstr. With programs,Geol. Soc. Am.1977 9:944.
    Dunnet D. A technique of finite strain analysis using elliptical particles. Tectonophysics,1969,7:117-136.
    Enkin R Z, Yang Z, Chen Y, Courtillot V. Paleomagnetic constraint s on t he geodynamic history of main Chinese blocks from t he Permian to t he present:a review. Journal of Geophysical Research,1992, 97:13953-13989
    Forte A M, Bailey C M.Testing the utility of the Porphyroclast hyperbolic distribution method of kinematic vorticity analysis.Jour Struct Geol,2007,29:983-1001
    Fry N. Randam point distribution and strain measurements in rocks. Tectonophysics,1979,60:89-105.
    Gilder S, Courtillot V. Timing of the north-south China collision from new Middle to Late Mesozoic paleomagnetic data from the North China Block. Journal of Geophysical Research,1997,102: 17713-17727.
    HanBF, Zheng Y D, Gang J W, et al.The louzidian normal fault near Chifeng, Inner Mongolia:Master fault of a quasi-metamorphic core complex. Int Geol Rev,2001,43:254-264
    Jin-Hui Yang、Fu-Yuan Wu. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton.Geological Society of America,2007,1405-1414
    Jessup M J,, Law R D,, Frassi C.The Rigid Net (RGN):An alternative method for estimating mean kinematic vorticity number.J Struct Geol,2007,29:411-421
    Klepeis K A, Daczko N R, Clarke G L. Kinematic vorticity and tectonic significance of superposed mylonites in a major lower crustal shear zone, northern Fiordland, New Zealand[J]. Jour Struct Geol, 1999,21:1385-1405.
    Keith A. Klepeis, Nathan R. Daczko, Geo.rey L.Clarke. Kinematic vorticity and tectonic significance of superposed mylonites in a major lower crustal shear zone, northern Fiordland, New Zealand.J Struct Geol,1999,21:385-1405
    Lee, J., Miller, E.L., and Sutter, J.F.,1987. Ductile strain and metamorphism in an extensional tectonic setting:a case study from the northern Snake Range, Nevada, U.S.A. In:Coward, M.P., Dewey, J.F. and Hancock, P.L. (ed.), Continental Extensional Tectonics. Blackwell Scientific Publication,267-289.
    Lister, G. S.Discussion:crossed girdle c-axes fabrics in quartzites plastically deformed by plane strain and progressive simple shear. Tectonophysics,1977,39:51-54
    Lister G S, Davis G A. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A.J Struct Geol,1989,11 (1):65-94
    Liu Junlai, Gregory A Davis, Lin Zhiyong, Wu Fuyuan,2005. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China:A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areasTectonophysics 407:65-80
    McKenzie D P.Some remarks on the development of sediment basins.Earth Planet Sci Lett,1978,40:25-32
    Meng Q R.What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 2003,369:155-174
    Means W D, Hobbs B E, Lister G S, et al.Vorticity and non-coaxiality in progressive deformation. J Struct Geol,1980,2:371-378
    Passchier C W. Analysis of deformation paths in shear zones. Geologische Rundschau,1988,77:309-318.
    Passchier C W. Stable posisions of rigid objects in non-coaxial flow-a study in vorticity analysis. Jour Struct Geol,1987,9:671-690.
    Reynolds, J., and Rehrig, W.A.,1980. Mid-Tertiary plutonism and mylonitization, South Mountains, central Arizona. In:Crittenden, M.D. Jr., Coney, P.J., and Davis, G.H. (ed.),Cordilleran metamorphic core complexes. Geological Societyof America Memoir,153:159-176.
    Simpson C, De Paor D G. Practical analysis of general shear zones using porphyroclasts hyperbolic distribution method:an example from the Scandinavian Caledonides. In:Sengupta S (Ed.), Rvolution of Geological Structures in Micro-to Macro-scales. Chapman and Hall, London, pp.169-184.
    Simpson C, De Paor D G. Strain and kinematic analysis in general shear zones.J. Struct Geo,1993,15 (1):1-20
    Sibson. R. H. Fault rocks and fault mechanisms.J Struct Geol,1977,133:191-213
    Sonder L J, England P C, Wernicke B P. A physical model for Cenozoic extension of western North America. In:Coward M P, Dewey J F, Hancock P L, eds. Continental Extensional Tectonics. Geol Soc Lon Sp Pub 1987,28:187-201
    Snoke, A.W.,1980. Transition from infrastructure to suprastructure in the northern Ruby Mountains, Nevada. In:Crittenden, M. D. Jr., Coney, P.J., and Davis, G.H. (ed.), Cordilleran Metamorphic core complexes. Geological Society of America Memoir,153:87-334.
    Tikoff B, Fossen H. The limitations of three dimensional kinematic vorticity analysis. Jour Struct Geol, 1995,17:1771-1784.
    Wang T, Wang X, Li W. Evaluation of multiple emplacement mechanisms:the Huichizi granite pluton, Qinling orogenic belt, central China.J Struct Geol,2000,22:505-518
    Wang X S, Zheng Y D, Jia W.Extensional stages of Louzidian metamorphic core complex and Development of the Supradetachment basin south of Chifeng, Inner Mongolia, China. Acta Geol Sin-Engl Ed,2004,78 (1):237-245
    Wallis S R, Platt J P, Knott S D. Recognition of sunconvergence extension in accretionary wedges with examples from the Calabrian Arc and the Eastern Alps. American Journal of Science,1993,293: 463-495.
    Wallis S R. Vorticity analysis and recognition of ductile deformation in the Sanbagawa Belt, SW Japan. Jour Struct Geol,1995,17:1077-1093.
    Wallis S R. Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan Jour Struct Geol,1992, 14:271-280.
    Weijermars R. The role of stress in ductile deformation. Jour Struct Geol,1991,13:1061-1078.
    Weijermars R.Taylor-mill analogues for patterns of flow and deformation in rocks. Jour Struct Geol,1998, 20:77-92.
    Wernicke B. Low-angle normal faults in the Basin and Range province-Nappe tectonics in an extending orogen. Nature,1981,291:645~648
    Xypolias P,Doutsos T.Kinematics of rock flow in a crustal-scale shear zone:implication for the orogenic evolution of southwesten Hellenides.Geol. Mag,2000,137(1):81-69
    Xypolias P, Doutsos T. Kinematics vorticity and strain rate patterns associated with ductile extrusion in the Chelmos shear zone (External Hellenides, Greece.Tectonophysics,2001,338:69-77
    Zhang J J, Zheng Y D. Polar Mohr constructions of strain analysis in general shear zone.J Struct Geol, 1997,19 (5):745-748
    Zhang J J, Zheng Y D, Liu S W. Application of general shear theory to the study of formation mechanism of the metamorphic core complex:a case study of Xiaoqinling in central China. Acta Geologica Sinica,2000,74:19-28.
    Zheng Y D, Wang T, Ma M B, et al. Maximum effective moment criterion and the origin of low-angle normal faults. J Struct Geol,2004,24:271-285 Zheng Y D, Wang T, Ma M B, et al. Maximum effective moment criterion and the origin of low-angle normal faults. J Struct Geol,2004,24:271-285
    Zhang J J, Zheng Y D. Polar Mohr constructions of strain analysis in general shear zone.J Struct Geol, 1997,19 (5):745-748
    Zheng YD, Wang T, Zhang J J.Comment on "Structural analysis of mylonitic rocks" in the Cougar Creek Complex, Oregon-Idaho using the porphyroclast hyperbolic distribution method, and potential use of SC'-type extensional shear bands as quantitative vorticity indicators.J Struct Geol,2009,31:541-543.
    Zheng Y, Zhang Q, Wang Y, et al. Great thrust sheets in Beishan (North Mountains)-Gobi areas of China and southern Mongolia. J Struct Geol,1996,18 (9):111-126
    Davis,G.A和郑亚东.2002.变质和杂岩的定义、类型及构造背景.地质通报,21(4-5):85-192.
    邓晋福,苏尚国,刘翠,赵国春,赵兴国,周肃,吴宗絮,2006.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代?地学前缘,13(2):105-119
    邓晋福,赵国春,赵海玲,罗照华,戴圣潜,李凯明,2000.中国东部燕山期火成岩构造组合与造山-深部过程,地质论评,46(1):41-48
    邓晋福,赵海玲,莫宣学,吴宗絮,罗照华,1996.中国大陆根-柱构造-大陆动力学的钥匙,北京:地质出版社
    邓兆伦,曹书静,崔新省.运用遥感和地学信息探讨华北地台北缘边界断裂.国土资源遥感,1995,24(2):15-22
    杜建军、马寅生、赵越、王彦斌.辽西医巫闾山花岗岩锆石SHRIMPU-Pb测年及其地质意义.中国地质,2007,34(1)26-33
    董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释.地质学报,2007,81(11):1449-1461
    董树文,张岳桥,陈宣华等.晚侏罗世东亚多向汇聚构造体系的形成与变形特征.地球科学,2008,29(3):306-317
    傅昭仁,李德威,李先福,王显达.变质核杂岩及剥离断层的控矿构造解析,武汉:中国地质大学出版社,1992
    郭春丽、吴福元等.中国东部早白垩世岩浆作用的伸展构造性质-以辽东半岛南部饮马湾山岩体为例.岩石学报,2004,20(5)1193-1203
    高山,章军锋,许文良,等.拆沉作用与华北克拉通破坏.科学通报,2009,54(14):1962-1973
    韩宝福,加加美宽雄,李惠民.河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义,岩石学报,2004,020(06):1375-1388
    洪大卫,王涛,童英,王晓霞.华北地台和秦岭-大别-苏鲁造山带中生代花岗岩与深部地球动力学过程,地学前缘,2003,10(3):231-256
    洪作民等,辽东半岛南部前寒武系地质,北京,地质出版社
    姬广义、汪洋、孙永华.北京云蒙山岩浆杂岩体的岩石和构造变形特征,北京地质,2004,16(3):1-11
    纪沫,胡玲,刘俊来,等.辽南变质核杂岩主拆离断层的波瓦状构造及其成因.地质科学,2008,43(1):12-22
    纪沫,刘俊来,胡玲,等.辽南变质核杂岩饮马湾山和赵房岩体锆石SHRIMP U-Pb年龄及其地质意义.岩石学报,2009,25(1):173-181
    姜耀辉,蒋少涌,赵葵东,倪培,凌洪飞,刘敦一,2005.辽东半岛煌斑岩SHRIMP锆石U-Pb及其对中国东部岩石圈减薄开始时间的制约,科学通报,50(19):2167-2168
    刘翠,邓晋福,苏尚国,等.2004.北京云蒙山片麻状花岗岩锆石SHRIMP定年及其地质意义.岩石矿物学杂志,23:141-146
    刘德民,2003.中国变质核杂岩的基本特征,现代地质,17(2):125-130
    路凤香,郑建平,李伍平,等,2000.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型,地学前缘,7(1):97-117
    路凤香,郑建平,邵济安,张瑞生,陈美华,淳梅,2006.华北东部中生代晚期-新生代软流圈上涌与岩石圈减薄,地学前缘,13(2):86-92
    刘俊来,关会梅,纪沫,胡玲,2006.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束,自然科学进展,16(1):21-26
    刘俊来,关会梅,纪沫,等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机,地质学报,25
    刘伟,杨进辉,李潮峰,2003.内蒙赤峰地区若干断裂带的构造热年代学,岩石学报,19(4):717-728
    刘正宏,徐仲元,2002.杨振升阴山中生代地壳逆冲推覆与伸展变形作用,地质通报,21(4-5):246-250
    罗镇宽、苗来成、关康、裘有守.辽宁阜新排山楼金矿区岩浆岩锆石SHRIMP定年及其意义.地球化学,2001,30(5)483-490
    刘俊来、关会梅,辽南变质核杂岩的结构与演化,
    马寅生,崔盛芹、吴淦国等,医巫闾山变质核杂岩构造特征.地球学报,1999,20(4)385-391
    孟宪刚、冯向阳、邵兆刚.辽西医巫间山变质核杂岩构造系统及其对金矿的控制.地质通报,2002,21(12)841-847
    牛树银.太行山阜平、赞皇隆起是中新生代变质核杂岩,地质科技情报,1994,13(2):15-16
    牛树银,孙爱群,张建珍,等.华北地台北缘中段构造演化及成矿控矿作用.河北地质学院学报,1996,19(3-4):236-246
    任继舜,王作勋,陈炳蔚,等.中国及邻区大地构造图(1:500万).北京:地质出版社,1997
    单文琅,付昭仁,葛孟春.北京西山的褶叠层与”顺层”固态流变群落,地质科学,1984,25(2):33-40
    邵济安,牟保磊,张履桥.华北东部中生代构造格局转换过程中的深部与浅部响应,地质论评,2000,46(1):32-40
    邵济安,张履桥,牟保磊.大兴安岭中南段中生代的构造演化,中国科学,1998,28(3):193-200
    邵济安.中朝板块边缘中段构造演化.北京:北京大学出版社,1991
    邵济安,韩庆军,张履桥,等.内蒙古东部早中生代堆积杂岩捕虏体的发现.科学通报,1999,44(5):178-485
    邵济安,张履桥,贾文,等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨.岩石学报,2001
    舒良树,孙岩,王德滋.华南武功山中生代伸展构造,中国科学,1998,28(5):431-438
    孙冬胜,刘池阳,杨明慧,杜金虎,张以明,张锐锋.冀中坳陷中区中生代中晚期大型拆离滑覆构造的确定,大地构造与成矿学,2004,28(2):126-133
    宋鸿林.变质核杂岩研究进展及成因探讨,地学前缘,1995,2(1-2):103-111
    宋鸿林.北京房山变质核杂岩的基本特征及其成因探讨,现代地质,1996,10:149-158
    宋鸿林.关于变质核杂岩构造特征的几个问题,地质通报,2002,21(5):193-197
    索书田,钟增球,游振东.大别地块超高压变质期后伸展变形及超高压变质岩石折返过程,2000,中国科学,30(1):9-17
    王桂梁,刘桂建,邹海,等.华北地台北缘中生代盆-山耦合转移及其动力学分析.煤田地质与勘探,1999,27(6):14-17
    王巧云、颜丹平、苏本勋、周密、胡瑞忠.京北云蒙山变质核杂岩南东侧剥离断层带的构造热事件.地质通报,2006,25(4)448-453
    王涛,张宗清,王晓霞,王彦斌,张成立.秦岭造山带新元古代同碰撞花岗岩变形及其时代限定—强变形岩体与弱变形脉体的锆石SHRIMP年龄证据,地质学报,2005,79(2):220-231.
    王涛,郑亚东.中蒙边界中生代上部推覆与下部伸展的同时同向递进转换的可能性:一种地壳尺度的切向剪切构造,地质通报,2002,21(4-5):232-237.
    王涛,郑亚东,李天斌,高永军.中蒙边界亚干变质核杂岩的组成与结构,地质科学,2002,37(1):79 -85.
    王涛,郑亚东,张进江,等.华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义.地质通报,2007,26(9):1154-1166
    吴福元、杨进辉.辽西东南部中生代花岗岩时代,岩石学报,2006,22(2)315-325
    吴福元,葛文春,孙德育,等.中国东部岩石圈减薄研究中的几个问题.地学前缘,2003,10(3):51-60
    王新社,郑亚东,王涛.内蒙赤峰南部楼子店韧性剪切带应变与剪切作用类型.中国科学D辑:地球科学,2007,37(2):160-166
    王新社,郑亚东,张进江,等.呼和浩特变质核杂岩伸展运动学特征及剪切作用类型.地质通报,2002,21(4-5):238-243
    王新社,张尚坤,张富中,等.鲁西青邑韧性剪切带运动学涡度及剪切作用类型.地球学报,2005,26(5):423-428
    王新社,郑亚东,刘玉琳,等.内蒙赤峰南部楼子店拆离断层系绿泥石化带的形成时代.自然科学进展,2006,16(7):902-906
    王新社,郑亚东.楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束.地质论评,2005,51(5):574-581
    王瑜.内蒙古-燕山造山带晚古生代-中生代造山带的造山作用过程.北京,地质出版社:1996
    王玉芳,崔文元,孙承志.内蒙赤峰南部楼子店-大城子拆离断层及其构造演变.钱祥麟,等编伸展构造专辑.北京:地质出版社,1994:99-108
    许志琴,李海兵,王宗秀,等.辽南地壳的收缩作用及伸展作用.地质论评,1991,37(3):193-202.
    许志琴等,辽南地壳的收缩作用及伸展作用.地质论评,1991,8(2)20-31
    许继峰、王人镜、杨淑荣.北京云蒙山花岗岩基的岩石变形及其成因.地球科学,1994,19(6)805
    -814
    阎国翰,牟保磊,许保良,等.燕辽-阴山三叠纪碱性侵入岩年代学和Sr-Nd-Pb同位素特征及意义.中国科学D辑:地球科学,2000,30(4):383-387
    杨进辉,吴福元,钟孙霖等.华北东部早白垩世花岗岩侵位的伸展地球动力学背景:激光40Ar/39Ar年代学证据.岩石学报,2008,24(6):1175-1184.
    杨中柱,孟庆成,江江,韩小平.辽南变质核杂岩构造.辽宁地质,1996,4:242-250
    张波,张进江.北喜马拉雅穹隆带雅拉香波变质核杂岩拆离断层系中糜棱岩带构造特征及变形分析.自然科学进展,2005,15(3):692-698
    张进江,郑亚东.运动学涡度、极摩尔圆及其在一般剪切带定量分析中的应用.地质力学学报,1995,1(3):56-64
    张进江,郑亚东.运动学涡度和极摩尔圆的基本原理与应用.地质科技情报,1997,16(3)33-39
    张家声、C W Passchier、J Konopasek、牛向龙、黄雄南.云蒙山变质核杂岩抬升过程中伸展拆离和岩浆底辟联合作用的证据.地学前缘,2007,14(4)26-39
    张建新,曾令森,邱小平.北京云蒙山地区花岗岩穹隆及伸展构造的探讨.地质论评,1997,43:232-240.
    张晓晖,李铁胜,蒲志平,等.内蒙古赤峰娄子店-大城子韧性剪切带的40Ar/39Ar年龄及其构造意义.科学通报,2002,47(12):951-956
    张晓晖,李铁胜,蒲志平等.辽西医巫闾山两条韧性剪切带的40Ar/39Ar年龄:中生代构造热事件的年代学约束.科学通报,2002,47(19):697-701
    张炯飞,祝洪臣.关于蓟县型中-上元古界沉积环境及内蒙地轴的性质.吉林地质,2000,19(2)11-16
    翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限.中国科学D辑:地球科学,2003,33(10):913-920
    翟明国,孟庆任,刘建明,等.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨.地学前缘,2004,11(3):285-296
    周新华,张国辉,杨进辉,等.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义.地球化学,2001,30(1):10-23
    曾令森,李海兵.辽南金州隆起区构造变形与流体作用.高校地质学报,1996,2(2):155-165
    朱大岗,孟宪刚,马寅生等.辽西医巫闾山变质核杂岩构造特征及其对金矿床的控制作用,大地构造与成矿学.2002,26(2)156-161
    朱大岗、崔盛芹、吴珍汉、马寅生、冯向阳.北京云蒙山地区挤压-伸展体系构造特征及其岩石组构的动力学分析.地球学报,2000,21(4)337-344
    郑亚东,Davis G.A,王琮,等.燕山代中生代主要构造事件与板块构造背景问题.地质学报,2000,74(4):290-301
    郑亚东,王涛.中蒙边界区中生代推覆构造与伸展垮塌作用的运动学和动力学分析.中国科学D辑:地球科学,2005,35(4):291-303
    郑亚东.亚干变质核杂岩的运动学涡度与剪切作用类型.地质科学,1999,34(3):273-280
    郑亚东,曾令森,李建波,等.辽南中生代造山作用与晚造山伸展垮塌作用.地质科学,2009,44(3):811-824
    郑亚东,王士政,王玉芳.中蒙边境区新发现的特大型推覆构造及伸展变质核杂岩.中国科学(B辑),1990,12:1299-1305
    郑亚东,王涛,王新社.世纪构造地质学与力学的新理论-最大有效力矩准则.自然科学进展,2005,15(2):142-148
    郑亚东,王涛,王新社.最大有效力矩准则及相关地质构造.地学前缘,2007,14(4):49-60
    郑亚东,王涛,王新社.最大有效力矩准则的理论与实践.北京大学学报(自然科学版),2007,43(3):145-156
    郑亚东,王涛,王新社.神秘的109.4°-共轭变形带的夹角.地质科学,2007,42(1):1-9
    郑亚东,王涛,张进江.运动学涡度的理论与实践.地学前缘,2008,15(3):209-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700