用户名: 密码: 验证码:
子北油田理79井区长6油层组储层特征及油气成藏规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以鄂尔多斯盆地子北油田理79井区长6油层组为研究对象,以沉积学、石油地质学、地球化学和测井学理论为指导,在收集大量地质、钻井、测井、试油等资料的基础上,将地质、地球物理、地球化学方法相结合,野外地质调查与室内地质研究相结合,采用多种测试方法及分析手段,对子北油田长6油层组地层、构造、沉积、储层及油藏特征进行了深入研究,在此基础上总结了油气富集规律及控制因素。取得的主要认识与结论如下:
     (1)依据“标志层,旋回对比,分级控制”进行地层精细划分与对比,将研究区延长组长6油层组划分为长61、长62和长63三个亚组,依据次级旋回将长61划分为长611、长612、长613,长62划分为长621、长622,进而建立了研究区详细的地层格架。通过各层段顶面构造图的编制与分析,认为本区总体构造格局为一个宽缓的西倾单斜,东高西低,其各期构造具有一定的继承性。
     (2)根据岩石类型及其特征、沉积结构和构造、古生物和测井相等相标志,采用相分析的方法,确定了研究区长6油层组为三角洲平原相沉积。在区域沉积背景的基础上,结合地质特征和测井相分析,对该区砂体厚度及砂地比值在平面上的分布规律进行了综合分析,将本区沉积相进一步划分为分流河道、漫滩沼泽两种沉积微相。
     (3)从“四性”关系研究出发,以试油结果和岩心地质参数统计结果为依据,建立了本区长6油藏的油水层评价判别标准,给出了孔隙度和原始含油饱和度的解释方程,确定了油层有效厚度下限标准。
     (4)本文用多参数流动单元的方法对储层进行表征和综合评价,选用孔隙度、渗透率、流动层带指数、储层质量指数、标准化孔隙度共5个参数采用聚类分析的方法定量地对流动单元进行划分,使不同的流动单元对应不同质量的储层,其划分标准更加合理,因此可以用流动单元来表征和评价储层。这种评价方法不仅充分考虑到了油藏的地质本质,也考虑到了油藏的工程特征,更有利于储层的综合评价和油田的精细开发。
     (5)根据研究区薄片、粒度、物性等测试资料研究结果表明,研究区长6油层组储层砂岩主要为细粒长石砂岩。储层砂岩已达晚成岩A期。孔隙类型主要为粒间孔隙,孔喉组合以小孔微细喉型为主。储层属于低孔—特低渗~特低孔—超低渗型储层。储层非均质性强,沉积相是控制储层物性的主要因素。
     (6)油水性质等分析测试结果显示,研究区长6油藏原油属低密度、中等粘度、中等凝固点、低含硫量的陆相原油。地层水水型为CaCl2型水,地层水的总矿化度较高,储层砂岩表现为亲水。油层高压物性测试结果显示,圈闭类型为岩性圈闭,属于常温低压系统,驱动类型为弹性-溶解气驱油藏。
     (7)通过包裹体测温、盆地热史、伊利石测年等多种方法确定了子北油田中生界长6油藏成藏为早白垩世,特别是应用伊利石测年方法取得了子北油田中生界成藏年代定量性新成果,这是鄂尔多斯盆地中生界油藏首次取得的成藏年代定量性新成果,深化了油气成藏年代学研究。
     (8)概括总结了长6油藏油气富集的规律:认为长6油藏油气分布主要受三角洲平原分流河道控制,分流河道发育区一般为油气的主要富集区,研究区长4+5河漫滩相的优质区域盖层亦为其油气的储集提供了良好的遮挡与封盖条件。
     (9)根据本区发育的油藏类型及其空间分布特点等,结合前人研究结果,总结出本区长6油藏主要有两种成藏模式:区域构造背景下的砂岩透镜体油藏成藏模式和上倾尖灭油藏成藏模式。
Chang-6 member of Li-79 block in ZI-bei Oil Field in Ordos Basin is taken as the study object in this thesis. Under the guidance of theories of sedimentology、petroleum geology、geochemistry and well logging geophysics, on the basis of abundant data from geology、drilling、logging、oil testing, adopting the combination of geology、geophysics、geochemistry and technique methods of academic researeh indoors combined with practice research and investigations in the field, using many testing methods and analytical techniques, Chang-6 member of Li-79 block of ZI-bei Oil Field is deeply studied in strata、structure、sediment、and characteristic of reservoir and oil storage. Based on these methods, the paper discusses the regularity and controlling factors of the distribution and accumulation of oil - gas systerm in the study area. The main understanding and conclusions are as follows:
     (1) Acording to "marker layer、cyclic correlation、step control", Chang-6 group is divided into 3 sub- groups,:Chang-61、Chang-62 and Chang-63. Acording to the secondary cyclic correlation, Chang 61 and Chang 62 sub-groups are divided into Chang-611、Chang-612、Chang-619 and Chang-621、Chang-622 respectively, and then the detailed stratigraphic framework of the whole region is builded. The establishment and analysis of top surface structural maps show that the study area is a broad west-dip monocline, and the structure characteristics of each period has a certain continuity.
     (2) According to the analysis of facies signs, such as rock types and features, sedimentary structure, fossils, logging facies and other criteria in the study area, the deposition system of Chang-6 member is a delta plain sedimentary system. Based on the sedimentary background of study area, and using the analysis of geology characteristics and logging facies, the distribution pattern of sandstone thickness and sandstone percentage in the plane section are discussed comprehensively, and furtherly Chang-6 deposition system is divided into two sedimentary microfacies:distributary channel and flood plain swamp.
     (3) Starting from the four Properties relations study, based on well testing results and statistical results of geological parameters of the core, the recognition criterion of oil and water reservoir is concluded, the interpretation equation on porosity and initial oil saturation is builded, and the low criterion of effective thickness is defined.
     (4) The method of multi-parameters clustering eanalysis is adopted for reservoir token and synthetical evaluation in this paper, which makes the criteria more reasonable.The parameters include porosity、permeability、flowing interval exponent、reservoir quality、normalizing porosity. Different flow unit corresponds to different quality reservoir, so flow unit can be used for evaluating and tokening reservoir. This evaluation method not only takes full account of the geological nature of the reservoir, but also takes the characteristics of the reservoir project into consideration,which is more conducive to the synthetical evaluation of reservoir and the meticulous exploitation of oil field.
     (5) The research on granularity、flakes、properties.etc show that the sandstone of reservoir in the study area is mainly fine-graded feldspar sandstone and the reservoir sandstone has reached the late diagenesis A period. The type of porosity is mainly intergranular pore, and the composition of pore-throat is the small pore with micro-throat type. In general, the type of reservoir is low porosity-extra-special low permeability-extra low porosity-ultra-low-permeability reservoir. The research on unhomogeneity of reservoir also shows the unhomogenenity is strong. Analyzing the controlling factors to reservoir, sedimentary microfacies is the main factor controlling and affecting the distribution of reservoir in the study area.
     (6) The result of analysis on property of oil, water.etc show that the oil of Chang-6 member in the study area belongs to the conventional oil from terrestrial facies with low density, medium viscosity, medium freezing point and low sulfur content. And the type of formation water in the study area belongs to calcium chloride(CaCl2).The total saltiness of formation water is comparatively high and the sandstones of reservoir act as water-wet.The results of high pressure properties of the reservoir show that the type of trap is lithologic trap which belongs to normal temperature and low pressure system with the elastic-soluble gas driving oil.
     (7) Through the study of inclusion thermometry thermal history of the basin、illite dating and other methods, it can be confirmed that the forming date of Chang-6 reservoir of Zl-bei Oil Field is Early Crataceous, and especially the application of illite dating methods is a new quantitative result, which is the first quantitative outcome in Mesozoic reservoirs in the Ordos Basin and deepens the study on chronology of Hydrocarbon accumulation futher more.
     (8) The research also concludes the regularity of the accumulation of Chang-6 reservoir., which shows that the study reservoir is controlled by delta plain distributary channel where is considered as the most important deposition area. The fine regional cap rock of Chang4+5 also supplys the good barrier conditions.
     (9) According to the type and distribution of Chang-6 reservoir, based on the previous studies, the research concludes that there are two oil-gas accumulation models:one is the sandstone lens reservoir,the other is sandstone updipping wedge-out reservoir.
引文
[1]蔡春芳,梅博文,马亭等.塔里木盆地流体—岩石相互作用研究[M].北京:地质出版社,1997.
    [2]陈烨菲,彭仕宓,宋桂茹.流动单元的井间预测及剩余油分布规律研究[J].石油学报,2003,24(3):74-77.
    [3]陈章明,徐竞祯.油气圈闭评价方法[M].哈尔滨工业大学出版社,1998.
    [4]邓玉珍.胜坨油田浅水浊积相储集层流动单元研究[J].石油勘探与开发,2003,30(1):96-98
    [5]邸领军,张东阳,王宏科.鄂尔多斯盆地喜山期构造运动与油气成藏[J].石油学报,2003,24(2):37-40.
    [6]段毅、吴保祥、郑朝阳等.鄂尔多斯盆地西峰油田油气成藏动力学特征[J],石油学报,200526 (4):29-32.
    [7]冯增昭,王英华,刘焕杰等.中国沉积学[M].北京:石油工业出版社,1994.
    [8]高博禹,彭仕宓,陈烨菲.储层动态流动单元及剩余油分布规律[J].吉林大学学报(地球科学版),2005,35(2):182-187.
    [9]何更生.油层物理[M].北京:石油工业出版社,1994:292-295.
    [10]何自新.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社.2003.
    [11]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [12]金之钧,王清晨.中国典型叠合盆地与油气成藏新进展-以塔里木盆地为例[J].中国科学D辑,地球科学,1994,34(增刊1):1-12.
    [13]兰朝利,吴峻,李继亮,等.靖安油田长6段层序地层分析[J].石油与天然气地质,2001,22(4):362-366.
    [14]李道隧,张宗林,徐晓蓉.鄂尔多斯盆地中部古地貌与构造对气藏的控制作用[J].石油勘探与开发,1994,21(3):9-14.
    [15]李凤杰,王多云,徐旭辉.鄂尔多斯盆地陇东地区三叠系延长组储层特征及影响因素分析[J].石油实验地质,2005,27(4):365-369.
    [16]李凤杰,王多云,张庆龙等.鄂尔多斯盆地陇东地区延长组沉积相特征与层序地层分析[J].沉积学报,2006,24(4):549-554.
    [17]李明诚,单秀琴,马成华等.油气成藏期探讨[J].新疆石油地质,2005,26(5):587-591.
    [18]李怒军,吴志宇,张金亮.安塞油田王窑区长6油层储层地质[J],西安石油学院学报(自然科学版)[J],1998年第04期,33-37.
    [19]李荣西,席胜利,邸领军,用储层油气包裹体岩相学确定油气成藏期次——以鄂尔多斯盆地陇东油田为例[J].石油与天然气地质,2006,27(2):194-199.
    [20]李文厚,柳益群,冯乔.川口油田长6段油层组储集层特征与油气富集规律[J].岩石学报, 1998,14(1):57-61.
    [21]李兴国.应用微型构造和储层沉积微相研究油层剩余油分布[J].油气采收率,1994,1(1):68-80
    [22]蔺景龙,许少华,孙文德.沉积微相测井识别[J].大庆石油地质与开发,1997,16(2):72-74.
    [23]刘斌,黄郑等.低渗透储层成岩作用及其对物性的影响[]J.特种油气藏,2005,12(3):18-21
    [24]刘池洋,鄂尔多斯盆地演化改造的时空坐标及其成藏(矿)响应[J],地质学报,2006,80(5),617-638.
    [25]刘建清,成岩作用的研究现状及进展[J],石油试验地质,2006,28(1),65-72.
    [26]刘林玉,曲志浩,孙卫.新疆骊鄯善油田碎屑岩中的粘上矿物特征[J].西北大学学报(自然科学版),1998,28(5):443-446.
    [27]刘绍龙.华北地区大型三叠纪原始沉积盆地的存在[J].地质学报,1986,2:128-138.
    [28]刘池阳.盆地多种能源矿产共存富集成藏(矿)研究进展[M].北京:科学出版社,2002.
    [29]刘小洪等,鄂尔多斯盆地陕北地区上三叠统延长组长6油层组的成岩相与储层分布[J],地质通报,2008,27(5),626-632.
    [30]刘勇,孙冬胜,雷天成.陕西子长油田成藏地质特征[J].西北地质科学,1996,17(2):70-74.
    [31]柳益群,李文厚.陕甘宁盆地上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报,1996,14(3):87-96.
    [32]罗静兰,Marcelo J Ketzer,李文厚,等.延长油区侏罗系—上三叠统层序地层与生储盖组合[J].石油与天然气地质,2001,22(4):337-341.
    [33]罗静兰等,成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J],地质学报,2006,80(5),664-673.
    [34]马正.应用自然电位测井曲线解释沉积环境,石油与天然气地质[J],1982年01期,44-47.
    [35]梅志超,林晋炎.湖泊三角洲的地层模式和骨架砂体的特征[J].沉积学报,1991,9(4):1-10.
    [36]梅志超,彭荣华,杨华,刘国江,曾少华.陕北上三叠统延长组含油砂体的沉积环境[J].石油与天然气地质,1988,9(3):260-267.
    [37]梅志超.沉积相与古地理重建[M].西北大学出版社,1994.
    [38]彭仕宓,尹志军,常学军,等.陆相储集层流动单元定量研究新方法[J].石油勘探与开发,2001,28(5):68-70.
    [39]裘怿楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,1997.
    [40]任战利,张盛、高胜利等,鄂尔多斯盆地热演化程度分布区及形成时期[J],地质学报,2006,80(5),674-684.
    [41]任战利,赵重远.鄂尔多斯盆地古地温研究[J].沉积学报,1994,12(1):56-64.
    [42]任战利、张盛、高胜利等,鄂尔多斯盆地构造热演化史及其成藏成矿意义[J],中国科学D辑地球科学,2007,37卷增刊Ⅰ:23-32.
    [43]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-24.
    [44]任战利.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史[J].地球物理学报,1995,38(37):339-349.
    [45]任战利.中国北方沉积盆地构造热演化史研究[M].北京:石油工业出版社,1999.
    [46]史成恩,解伟,孙卫,等.靖安油田盘古梁长6油藏流动单元的定量划分[J].石油与天然气地质,2006,27(2):239-243.
    [47]宋成辉等,储层成岩-储集作用相划分方法[J],天然气工业,2004,24(10),27-29.
    [48]Sllseth J K.流动单元油藏描述对模拟水驱动态的影响[J].李彦平,译.石油勘探开发情报,1994,6(1):82-90.
    [49]孙国凡,谢秋元等.鄂尔多斯盆地的演化叠加与含油气性[J].石油与天然气地质,1986,7(4):356-367.
    [50]W.V.恩格尔哈特.沉积物和沉积岩的成因[M].北京:地质出版社,1982.
    [51]王宝清,蒋继辉等.鄂尔多斯盆地白于山地区三叠统延长组长4+5储层特征[J].西安石油大学学报(自然科学版),2005,20(2):1-5.
    [52]王飞宇、何萍、张水昌等,利用自生伊利石K-Ar定年分析烃类进入储层的时间[J],地质论评,1997,43(5):540-546.
    [53]王琪等.鄂尔多斯盆地盐池—姬源地区三叠系长+45砂岩成岩演化特征与优质储层分布[J].沉积学报,2005,23(3):397-404.
    [54]王锡福,陈安福.鄂尔多斯盆地非地震油气勘探[M].地质出版社,1992.
    [55]王渝明,姜在兴,许运新等,陆相沉积地层油层对比方法[M],北京:石油工业出版社,2001.
    [56]王志高,靳彦新.动态法划分流动单元-以现河状油田为例[J].石油与天然气地质,2005,26(1):53-56.
    [57]魏斌,陈建文,郑浚茂,等.储集层流动单元水驱油实验研究[J].石油勘探与开发.2002,29(6):72-74.
    [58]吴胜和,王仲林.陆相储层流动单元研究的新思路[J].沉积学报,1999,17(2):252-256.
    [59]吴胜和,熊琦华.油气储层地质学[M],第一版.北京:石油工业出版社,1998.
    [60]吴素娟,黄思静等.鄂尔多斯盆地三叠系延长组砂岩中的白云石胶结物及形成机制[J].成都理工大学学报(自然科学版),2005,32(6):570-574.
    [61]武富礼,李文厚,李玉宏,席胜利.鄂尔多斯盆地上三叠统延长组三角洲沉积及演化[J].古地理学报,2004,6(3):307-315.
    [62]武明辉,张刘平,罗晓容等.西峰油田延长组长8段储层流体作用期次分析[J],石油与天然气地质,2006,27(1):33-36.
    [63]肖贤明,刘祖发,刘德汉,等,应用储层流体包裹体信息研究天然气气藏的成藏时间[J].科学通报,2002,47(12):957-960.
    [64]谢庆邦,贺静.陕甘宁盆地南部延长组低渗砂岩储层评价[J].天然气工业,1994,14(3):16- 19.
    [65]谢正温,谢渊.鄂尔多斯盆地富县地区延长组主要油层组储层特征[J].石油实验地质,2005,27(6):575-581.
    [66]熊伟,石志良,高树生等.碎屑岩储层流动单元模拟实验研究[J].石油学报,2005,26(2):88-91.
    [67]杨华,付金华,喻建.陕北地区大型三角洲油藏富集规律及勘探技术应用[J].石油学报,2003,24(3):6-10.
    [68]杨华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用[J].地球化学,2005,34(2):147-154.
    [69]杨华.刘显阳等.鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律[J].岩性油气藏,2007,19(3):1-6.
    [70]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002.
    [71]杨雷,梅志超,熊伟.陕北地区延长组层序地层划分与含油气性[J].古地理学报,2001,3(3)83-88.
    [72]杨晓萍,裘怿楠.鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系[J].沉积学报,2002,20(4):628-632.
    [73]杨晓萍,赵文智,邹才能等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-61.
    [74]杨友运.鄂尔多斯盆地南部延长组沉积体系和层序特征[J],地质通报,2005年第04期,32-36).
    [75]姚合法,林承焰,靳秀菊等.多参数判别流动单元的方法探讨[J].沉积学报,2006,24(1)90-95
    [76]叶连俊.华北地台沉积建造[M].科学出版社,1983.
    [77]尹寿鹏,王贵文.测井沉积学研究综述[J].地球科学进展,1999,14(5):440-445.
    [78]尹太举,张昌民,陈程,等.建立储层流动单元模型的新方法[J].石油与天然气地质,1999,20(2):170-175.
    [79]尹太举,张昌民,王寿平,等.濮53块流动单元评价[J].石油学报,2005,26(5):85-89.
    [80]喻建,韩永林,凌升阶.鄂尔多斯盆地三叠系延长组油田成藏地质特征及油藏类型[J].中国石油勘探,2001,6(4):13-19.
    [81]曾大乾,李淑珍.中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1):38-46.
    [82]曾少华.陕北三叠系延长统湖盆三角洲—沉积模式的建立[J].石油与天然气地质,1992,13(2):229-235.
    [83]张泓,白清昭,张笑薇等.鄂尔多斯聚煤盆地形成与演化[M].西安:陕西科学技术出版社,1995.
    [84]张金亮,司学强,梁杰等,陕甘宁盆地庆阳地区长8油层砂岩成岩作用及其对储层性质的影响 [J].沉积学报,2004,22(2):225-233.
    [85]张抗,吴紫电.鄂尔多斯断块西缘断裂带的构造特征及含油气远景评价[J].石油与天然气地质,1985,6(1):71-81.
    [86]张润合,郑兴平,徐献高等.鄂尔多斯盆地上三叠统延长组四、五段泥岩生烃潜力评价[J].西安石油学院学报(自然科学版),2003,18(2):9-13.
    [87]张文正,杨华,杨奕华,等.鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J].地球化学,2008,37(1):59-64.
    [88]张有瑜、罗修泉,油气储层自生伊利石K-Ar同位素年代学研究现状与展望[J].石油与天然气地质,2004,25(2):231-236.
    [89]赵澄林.沉积岩石学[M].北京:石油工业出版社,2001.
    [90]赵靖舟,武富礼等.陕北斜坡东部三叠系油气富集规律研究[J].石油学报,2006.27(5):24-27.
    [91]赵靖舟.油气成藏年代学研究进展及发展趋势[J].地球科学进展,2002,17(3):378-383.
    [92]赵文智,胡素云.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用[J].石油勘探与开发,2003,30(5):1-5.
    [93]赵重远.华北克拉通盆地天然气赋存的地质背景[J].地球科学进展,1990,2:39-42.
    [94]郑荣才,彭军.陕北志丹三角洲长6油层组高分辨率层序分析与等时对比[J].沉积学报,2002,20(1):92-100.
    [95]朱国华.陕甘宁盆地西南部上三叠系延长统低渗透砂体和次生孔隙砂体的形成.沉积学报,1985,3(2):1-16.
    [96]Amaefule J O, etal. Enhanced reservoir description using core and log to identify hydraulic (flow) units and predict permeability in uncored intervals ells[M]. Formation Evolution and Reservoir Geology Proceedings[C]. Omega:Society of Petroleum Enginering Annual Technical Conference and Exhibition,1993.205-220.
    [97]Alden J M, Stephen T S, Dan J H. Characterization of Petrophysical Flow Units in Carbonate Reservoirs [J]. AAPG Bulletin,1997,81(5):731-759.
    [98]Bloch S. Lander R H, Bonell L. Anomalously high porosity and permeability in deeply buried sandstones reservoirs:Origin and predictability[J]. AAPG Bulletin.2002,86: 301-328.
    [99]Canas J A, Malik E A. Characterization of flow units in sandstone reservoirs:La Cira Field, Colombia, South Amereca. Proceedings of the Permian Basin Oil Gas Recovery Conference SPE, Richardson, TX, USA,1994.886-892.
    [100]Chen L, Yi HS,Zhong H, et al. A calcareous nannofos-sils record and its geological significance in the Jurassicblack shales from the Qiangtang Basin, northern TibetanPlateau[J].Progress in Natural Science,2006,16 (13):264-273.
    [101]Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta,1995,59:2919-2940.
    [102]Ebanks W J. Flow unit concept-integrated approach to reservoir description for engineering[J]. AAPG annual meeting AAPG Bulletin,1987,71(5):551-552.
    [103]Fahad A AI-Ajmi. Stephen A Holditch. Permeability estimation using hydraulic units in a central Abaria reservoir[A]. SPE63254.2000.
    [104]Farrimond P, Stoddart D P, Jenkyns H C. An organic geochemical profile of the Toarcian anoxic event in northern Italy[J],.Chemical Geology,1994,111:17-23.
    [105]Giles M R, Marshall J D. Constraints on the development of secondary porosity in the subsurface:Reevaluation of processes [J]. Marine and Petroleum Geology,1986,3:243-255.
    [106]Guangming Ti. et al, Use of flow units as a tool for reservoir description:A^ case study [J]. SPE Formation Evaluation,1995,10(2):122-128.
    [107]Hearn C L, Ebanks W J, and Ranganath V. Geological factors influencing reservoir performance of the Hartzog Draw field, Wyoming[J]. JPT,1984.1335-1344.
    [108]Hooper E C D. Fluid migration along growth faults in compacting sediments [J]. Journal of Petroleum Geology,1991,42:161-180.
    [109]Jenkyns HC, Clayton CJ. Lower Jurassic epicontinentalcarbonates and mudstones from England and Wales:Chem-ostratigraphic signals and the early Toarcian anoxic event [J].Sedimentology,1997,44:687-706.
    [110]J. S. Reed、K. A. Eriksson、M. Kowalewski, Climatic, depositional and burial controls on diagenesis of Appalachian Carboniferous sandstones:qualitative and quantitative methods[J]. Sedimentary Geology 176 (2005) 225-246.
    [111]Kharaka Y K, Smaalley W C, Flow of water and solutes through compacted beds[J]. AAPGBulletin,1976,60:973-980.
    [112]LuoX R, Dong W L, Yang J H, et al. Overpressuring Mechanisms in the Yinggehai Basin, South China Sea[J]. AAPGBulletin,2003,87(4):629-645.
    [113]Maill A D. Principle of sedimentary basin analysis[M]. New York:Sprilager Verinag, 1984.77-111.
    [114]Maghsood Abbaszaden, Hikari Fujii. Fujio Fujimoto. Permeability prediction by hydraulic flow units-theory and applications[A]. SPE 30176,1996.
    [115]Martin A J Sclomon S T, Hartman D J. Characterization of petrophysical flow units in carbonate reservoirs[J]. AAPG Bulletin,1997,81 (6):734-759.
    [116]M. D. Wilson and E. D. pittman. Authigenic Clay in Sandstones Recognition of Influence on Reservoir Properties and Paleoenvironmental Analysis[J]. JSP,1997,47(1):324-356.
    [117]Mzxwell J C. Influence of depth, temprature, and geologic age on porosity of quartzose sandstone [J]. AAPG Bulletin,1964,48 (5):697-709.
    [118]P. Farrimond D. P. Stoddart and H. C. Jenkyns. An organic geochemical profile of the Toarcian anoxic event in northern Italy [J],. Chemical Geology,1994,111 (1-4):17-33.
    [119]Rincones J G. Delgado R, hen H, et al. Effective petrophysical fracture characterizatlon using the flow unit concept-San Juan reservoir.Orocual Field. Venezuela[A]. SPE 63072.2000.
    [120]Ravenne C. Heterogeneity and geometry of sedimentary bodies in fluvial-deltaic reservoir[J] AAPG Bulletin,1989,4(02):239-246.
    [121]Rodriguez, Maraven S. a, Facies Modeling and the Flow Unit Concept as Sedimentological Tool in Reservoir DeseriPtion:A Case Study[J]. SPE18154,1989.
    [122]Scott H, Hamlin, et al. Depositional Controls on Reservoir Properties in a Braid-Delta Sandstone, Tirrawarra Oil Field, South Australia[J]. AAPG Bulletion,1996,80(2):139-156.
    [123]Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity. R Surdam C. McDonald D A. Eds. Clastic Diagenesis[J]. America:AAPG Memoir 37, American Association of Petroleum Geologists,1984,127-149.
    [124]Salman K Lander, R H Bonnell L. Anomalously high pororsity and permeability indeeply buried sandstone reservoirs:Origin and predictability[J]. AAPG Bulletin,2002,86(2): 301-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700