用户名: 密码: 验证码:
冲击荷载作用下岩石动态损伤特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击载荷作用下岩石动态损伤力学特征问题一直是岩石动力学研究的热点问题。近几十年来,研究者在岩石动态冲击特性、本构模型、数值模拟计算等方面取得了丰硕的研究成果,但还有很多问题未能完善解决。本文简要回顾了岩石材料动态力学性能在实验和理论研究方面取得的成果和不足,主要就岩石材料动态力学特性的两个方面展开研究:一方面研究了一维应力条件下,岩石材料的动态响应特性;另一个方面研究一维应变条件下,岩石材料的动态响应特性。研究采用试验结果与理论分析相结合的方法,并对冲击荷载作用下岩石动态损伤模型进行了详细研究。具体工作内容和研究成果如下:
     (1)采用SHPB实验装置对岩石材料一维应力条件动态冲击实验进行了研究。结果表明:动态冲击加载条件下,岩石材料抗压强度和杨氏模量具有明显应变率敏感性,而初始切线模量是率无关的,它们又在一定程度上受实验装置和加载波形的影响;岩石材料抗压强度和杨氏模量与应变率表现出率敏感性更为明显,随着冲击速度增大,岩石材料杨氏模量明显增大,整体上表现为尺寸硬化效应,而其应变率变化效应更为敏感,只要很小的应变率变化就能引起抗压强度的显著增大,岩石损伤破坏形式主要是由侧向的拉伸应变引起的。
     (2)采用一级轻气炮实验装置对一维应变条件下的动态试验进行了研究。研究采用了符合实际工程背景的岩石材料,采用主动围压的方式来模拟地应力条件下的岩石受力情况。对岩石试件分别进行了无围压作用和有围压作用下冲击速度在200-400m/s范围内的平板撞击实验。利用锰铜压阻传感器测得靶板内不同位置处的应力时间曲线,采用拉氏分析方法中的路径线法对应力时间曲线进行分析,得到了其它力学参量如应变、应变率、比容、密度、质点速度等随时间的变化过程。结果表明:岩石和围压作用岩石在某些方面具有相似的力学性质,比如材料的率敏感性、应力波的弥散性和衰减性,以及应力应变关系的滞徊、流变性等,但围压的存在使得岩石材料的非线性变得不明显;强冲击载荷作用下,围压载荷的加入提高了岩石材料的刚度和延展性,使得材料的抗冲击能力得以提高。
     (3)基于岩石材料损伤机理和破坏形态的分析,构造了描述岩石材料在不同加载形式下动态损伤的本构模型。模型主要建立在以下的假设:1)假设岩石材料宏观上是一个均匀连续体,而细观上其内部包含了大量随机分布的微损伤缺陷;2)材料的损伤演化是由其内部拉应力作用下微裂纹的扩展引起的,导致材料强度和刚度的弱化;3)随着微孔洞的塌陷,材料内部产生了不可恢复的塑性变形,体积模量也相应增加,将这一过程视为微孔洞缺陷的演化发展;4)当微裂纹被激活、成核并扩展,且累积裂纹密度到某一阈值时,材料发生破坏。通过对模型预测曲线与实验曲线的比较,发现该模型能很好地描述岩石材料的本构特性。
     (4)基于复合材料力学的观点,将围压作用岩石视为一种增强型岩石复合材料,通过简化分析,提出了一个适于工程实践分析的动态本构方程。方程包括两个方面:1)围压对岩石本构特性的影响通过损伤演化方程表征;2)岩石在动态冲击过程中的力学参量突变通过应力松弛时间描述。
     (5)利用VISC2D及VISC3D计算程序,对飞片撞击多层岩石靶板的碰撞过程进行模拟,很好地分析了岩石试件的动态破坏作用机理。
The dynamic damage mechanics character of rock under impact loading is always on the focus of rock mechanics research. In the last few decades, Some scholars have achieved a series of result of the fields of rock dynamic characteristic, constructive relation model and calculation of numerical simulation, but there are still many problems unsolved. The text simply reviewed the findings and shortages about rock-material dynamic mechanic behavior on the aspects of experimental and theoretical research. The questions about it are be researched On the side of one-dimensional stress and the other side of one-dimensional strain. At the same time, the dynamic damage model of rock under impact loading is also researched in the result of experiment and theory analysis. The following is the content and the result.
     (1) The equipment of a split Hopkinson pressure bar(SHPB) is utilized in the dynamic impact loading experiment of one-dimension stress. The test result indicates that both compression strength and the young's modulus are strain rate-sensitivity, but the initial tangent modulus is strain rate-insensitivity, they are also affected by the test equipments and the mode of loading in a certain extent. The young's modulus increased obviously with growing-up impact speed. The whole material represents as a size harden effect. A little variety of strain rate can increase compression strength obviously. The cause of damnification breakage is the side direction stretch.
     (2)The research of dynamic mechanics experiment of one-dimension strain condition is investigated by single-stage-gun. The rock materials which accorded with engineering background is simulated as the ground stress conditions by the active confining pressure. The experiments of planner impact were performed to the rocks material included confining pressure and non-confining pressure with the speed of 200-400m/s, and Manganin gauges between the rock targets were used to record the stress-time curves at the different locations of target. With the measured stress histories, the complete histories of strain, strain rate, specific volume, density and particle velocity are gained by using path line principle of Lagrange Analysis. The results indicate that rock and confining pressure rock have some similar response behavior in some respects, such as the rate-sensitivity, the dispersion and attenuation effect of pressure pulse, and the stagnant-return and flow-deformation phenomena of stress-strain curves and so on, but the confining pressure decrease the nonlinear of stress-strain curves. Confining pressure can also raise the shock resistance ability, the stiffness and ductility of rock targets.
     (3) Based on the analysis of damage mechanism and failure model for material, a dynamic damage constitutive model is constructed to describe the constitutive response of rock material. The model is described briefly as the following hypothesis:1) Rock is assumed in a macroscopic view as homogenous continuum with a mass of stochastically distributed micro-damage; 2) Damage evolution is considered to be the accumulation of micro-crack growth due to the interior tension stress, which leads to a decrease of strength and stiffness of rock; 3) Compaction of rock is essence a collapse of the material voids, which produces the plastic strain and the increasing of the bulk modulus in the rock, so this process is considered as the evolution development of void damage; 4) When crack density reaches a critical value, the rock material destroy tack place. The comparison of model curves and experimental curves indicate that this model can describe the constitutive properties excellently.
     (4)Base on the point of composite material mechanics, the confining pressure rock is considered as a enhanced composite material, a dynamic constitutive equation which is suitable for engineering analysis is briefly proposed. The equation include in two aspects: 1) The effect of confining pressure on constitutive property is characterized by the damage evolution equation; 2) The mutation of mechanics parameters in the dynamic impact process is described by stress relaxation time.
     (5) Adopting VISC2D and VISC3D, the dynamic collision process of rock target impacted by flyer are simulated, and the dynamic failure mechanism is analyzed excellently.
引文
[1]蔡美峰.岩石力学与工程[M].科学出版社.北京:2002
    [2]Brace, W. F. and E. G Bomboakis, A note on brittle crack growth in compression[J], J. Geophysics. Res.,1963,68,3709-3713
    [3]Cook, N. G. W., The failure of rock[M], Int. J. Rock Mech. Min. Sci.,1965,2,389-403
    [4]徐小荷,余静.,岩石破碎学[M],煤炭工业出版社,1984
    [5]于学馥,郑颖人,刘怀恒等.,地下工程围岩稳定性分析,煤炭工业出版社,1983
    [6]朱维中,何满潮.,复杂条件下围岩稳定性与岩体动态施工力学,科学出版社,1996
    [7]杨军,黄风雷,金乾坤,岩石爆破理论模型及数值计算,1999
    [8]张宝坪,张庆明,黄风雷.爆轰物理学,兵器工业出版社,2001
    [9]李志宏.,爆生气体作用下岩石裂纹扩展机理与数值模拟[硕士学位论文].,西安理工大学.2006.3
    [10]高尔新.爆破工程.中国矿业大学出版社,1999,7
    [11]Hopkinson B. A method of measuring the pressure in the deformation of high explosives of by the impact of bullets[J]. Mathematical Physical and Engineering Sciences,1914,A213:437-452
    [12]杨军.现代爆破技术.北京理工大学出版社.,2004,8
    [13]Harries,G, A mathematical Model of Cratering and Blasting, National Symposium on Rock Fragmentation, Adelaide,41-45,1973
    [14]徐芝纶.弹性力学(第2版).北京:人民教育出版社,1979
    [15]Favreau, R. F,台阶爆破岩石位移速度,第一届国际爆破破岩会议论文集,408—417,1983
    [16]邹定祥.露天台阶爆破破碎过程的三维数学模型,爆炸与冲击,1984
    [17]Margolin, L. G and Adams, T.F, Spatial Differencing for Finite Difference Code, LA-10249 Los Alamos National Laboratory Report,1985
    [18]Machugh, S.,动力引起的破坏和破碎模拟,第一届国际爆破破岩会议论文集(译文集).1983,234~243
    [19]沈成康,解明芳.断裂力学.同济大学出版社.1996,3
    [20]余寿文,冯西桥.损伤力学.清华大学出版社.1997,12
    [21]Grady, D. E. and Kipp, M. E., Mechanisms of Dynamic Fragmentation:Factors Governing Fragment Size, SAND-84-2304c,1985
    [22]Taylor. L. M, Chen. E. P, Kuszmaul. J. S. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Comput. Meth. Appl. Mech. Eng.,1986,55(3) 301-320
    [23]Kusmaul. J. S. A New Constitutive Model for Fragmentation of Rock under Dynamic loading. Second International Symposium on Rock Fragmentation By Blasting. Colorado,U. S. A.,1987
    [24]Yang, R. L., Bawden, W, F., Katsabanis, P., Blast Damage Study by Measurement of Blasting Vibration and Damage in the Area Adjacent to Blast Hole, Rock Fragmentation by Blasting, Rossmanith(ed.), Balkema, Rotterdam.1993,137-144
    [25]谢和平.岩石混凝土损伤力学,中国矿业大学出版社,1990
    [26]杨军.岩石爆破分形损伤模型及数值模拟,北京理工大学博士后研究报告,1997
    [27]刘殿书.岩石爆破破碎的数值模拟,中国矿业大学北京研究生部博士论文,1992
    [28]金乾坤.脆性岩石冲击损伤数值模拟,北京理工大学博士后研究工作报告,1999
    [29]喻长智.岩石爆破混沌模型与条形药包爆破应力波衰减规律的研究,中南大学研究生院博士论文,2001
    [30]Rubin, A. M., Ahrens, T. J., Dynamic Tensile Failure Induced Velocity Deficits in Rock, Geophys. Res. Letter,1991,18(2),219-222
    [31]Ahrens, T. J., Rubin, A, M., Impact-Induced Tensional Failure in Rock, J. G. R.1993, 98(E1),1185-1203,1993
    [32]贺红亮.冲击波极端条件下脆性介质的力学响应特性及其细观结构破坏特征(博士学位论文),中国工程物理研究院,1997
    [33]O'Connell, R. J., Budiansky, B., Seismic Velocities in Dry and Saturated Cracked Solids, J. Geophys. Res.,1974,79,5412-5426
    [34]Cangli Liu, Ahrens,T. J., Stress Wave Attenuation in Shock-Damaged Rock. J, Geophys. Res.,1997,102(B3),5243-5250
    [35]李宁.张志强.张平等.裂隙岩样力学特性细观数值试验方法探讨[J].岩石力学与工程学报.2008.01
    [36]凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展.1994/02
    [37]王家来.徐颖.应变波对岩体的损伤作用和爆生裂纹传播[J].爆炸与冲击.1995/03
    [38].张继春.钮强.徐小荷.岩体爆破块度预测模型研究综述[J].爆破.1992/04
    [39].郭文章;冯顺山;王树仁等.节理岩体爆破研究进展[J].工程爆破.1994/04
    [40]于亚伦.岩石动力学.北京科技大学.1990
    [41]王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展.爆炸与冲击,2001,21(4):81-88
    [42]任会兰.氧化铝陶瓷力学特性及损伤本构模型研究(D).北京理工大学,2006
    [43]Attewell.P.B. Response of rocks impact. Trans. Inst. Min.Met.,71:705-724,1962
    [44]信礼田,强冲击荷载下岩石的力学性质.岩土工程学报,1996,(6):61-68
    [45]Kumar, The effect of stress rate and temperate on the strength of blalt and granite. Geophys.33,3,501-510,1968
    [46]高文学.岩石动态响应特征及损伤模型研究.北京理工大学博士论文.1999
    [47]Hopkinson. B. A method of measuring the pressure produced in the detonation of high explosive or by the impact of bullets[J]. Phil. Trans. R. Soc.,1914,213-437
    [48]Hakailehto. K. O., The behavior of rock under impulse loads-A study using the Hopkinson split bar methods, Doctor Theesis, Technical University, Otaniemi-Helsinki, A Cta polytechnica Scandinaca, No.81:1-61,1969
    [49]李夕兵,岩石冲击动力学.中南大学出版社,长沙:1994
    [50]寇绍全等,石灰岩中应力波衰减机制的试验研究.力学研究,1982,(6):582-589
    [51]Grady. D. E. and Kipp. M. E., The micromechanics of impact fracture of rock. Int.J.Rock Mech. Min. Sci. & Geomech. Abstr. Vol.16:293-302,1979
    [52]商霖.钢筋混凝土材料动态本构特征及其破坏行为的研究[D].北京:北京理工大学
    [53]Hughes B P, Gregory R. concrete subjected to high rates of loading in compression. Magazine of Concrete Research,1972,24(78):25-36
    [54]Hughes B P, Watson A J. Compressive strength and ultimate strain of concrete under impact loading, Magazine of Concrete Research,1972,30(105):189-199
    [55]Ross C A, Kuennen S T, Tedesco J W. Effects of strain rate on concrete strength. ACI Spring Concrete research in the Federal Government, Washington D C, Mach,1992
    [56]Albertini C, Condoni E and Labibes K. Study of the mechanical properties of plain concrete under dynamic loading Experimental Mechanics,1999,39(2):137-141
    [57]Gong J C, Malvern L E. Passively confined tests of axial dynamical compressive strength of concrete. Magazine of Concrete Research,1978,30(105):189-199
    [58]胡时盛,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究.工程力学,2001,18(5):115-118
    [59]王嫚,冯秋兰,孔祥斌.关于岩石单轴抗压强度影响因素的分析[J].西部探矿工程,2008,4,44-45
    [60]Foppia. Die Abhangiggkeit der Bruchgefahr von derart des Spannugszustandes[J]. Mitteilungen aus dem Mechanischen Laboratorium,1900(27):43
    [61]Brown E T. Fracture of rock under uniform biaxial compression[C]. Proceedings of the 3rd International Society for Rock Mechanics Congress.1974:111-117
    [62]Kupfer M, Hiisdorf H K, Rusch M. Behavior of concrete under biaxial stresses[J]. American Concrete Institute Journal,1969,66(2):656-666
    [63]刘剑飞,胡时盛,胡元育等,花岗岩的动态压缩实验和力学性能研究[J].岩石力学与工程学报.2000,19(5):618-621
    [64]Christensen R J, Swanson S R. Rrown W S. Split Hopkinson Pressure Bar Tests on Rocks under confining pressure[J]. Experimental Mechanics,1973,12,(12):508-513
    [65]Frew D J. Dynamic Response of Brittle Materials from Penetration and Split Hopkinson Pressure Bar Experiments[J]. Structural Mechanics,2001,3
    [66]Ozbole J, Rah K. Influence of loading rate on concrete cone failure[J]. International Journal of Fracture,2006(2)
    [67]Davis E D. Hunter S C. The dynamic compression testing of solids by the method of Split Hopkinson Bar[J]. Journal of the Mechanics and Physics of Solids,1963,11:155-179
    [68]王礼立.应力波基础(第二版).国防工业出版社,2005,8
    [69]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proc. R. Soc.1949,62:676-700
    [70]刘永强.分层介质动态力学性能的SHPB实验研究[硕士论文].中国矿业大学(北京)研究生院.2006
    [71]刘永强,张睿娟,撒玉宝等.分层介质动态力学性能的实验研究[J].工程爆破. 2008.02
    [72]高富强.岩石动态力学特性及损伤本构模型研究[博士论文].北京理工大学研究生院.2009
    [73]常列珍.SHPB实验技术应注意的几类问题[J]科技情报开发与经济,2007,17(4):169-170
    [74]王鲁明,赵坚,华安增等.脆性材料SHPB实验技术的研究[J].岩石力学与工程学报,2003,22(11):1798~1802
    [75]孟益平,胡时盛.混凝土材料冲击压缩试验中的一些问题[J].实验力学,2003,18(1):108~112
    [76]张华,杨军,高富强等,大直径SHPB压杆弥散效应实验研究[J].昆明理工大学学报(已录用).2009.10
    [77]胡刚.台阶爆破块度预测及数值模拟研究[D].北京理工大学,2005
    [78]苏翼林.材料力学(下)[M].北京:高等教育出版社,1993
    [79]黄正平.动态测试技术[M].北京理工大学内部讲义
    [80]经福谦.实验物态方程导引[M].北京:科学出版社,1999
    [81]R.Folws, R.F.Willians. Plane ware propagation in solids[J]. Journal of Applied Physics,1970,41:360
    [82]R.Folws.Conservation relationships for spherical and cylindrical stress waress[J]. Journal of Applied Physics,1970,41:2740
    [83]M.Comperthwaite, R.F.Willians. Determination of constitutive relationships with multiple gauges in nondivergent ware[J]. Journal of Applied Physics,1971,42:456
    [84]李孝兰.对一组有机玻璃粒子速度测量波形的拉格朗日分析[J].爆炸与冲击,1985,5(4):45
    [85]尚嘉兰,白以龙,沈乐天等.酚醛玻璃钢动态本构关系的实验研究[J].爆炸与冲击.1990,10(1):1
    [86]浣石,丁做.准一维拉氏分析方法及其在凝聚炸药冲击波起爆研究中的应用[J].爆炸与冲击,1991,11(3):224
    [87]白春华.惰性介质中拉氏量计的简单分析方法[J].爆炸与冲击,1987,7(4):326
    [88]柴华友,唐志平.拉格朗日分析在一维杆波研究中的应用[J].中国科学技术大学学报,1991,21(3):97
    [89]Tang Z P,Yang Band Chai H Y.Inverse Method and Consistency Examination for Lagrangian Analysis in "High Pressure Sciences and Technique" [A].Colorado Springs,U.S.A,1993
    [90]陈叶青.拉氏分析方法及强动载荷下水泥石的本构关系[D].铁道部科学研究院,1994
    [91]姜芳.钢筋混凝土材料动态力学性能的实验研究[D].北京理工大学,2003
    [92]段卓平,关志勇.冲击波中横向、纵向应力计响应初步研究[J].高压物理学报,2002,16(4):265-270
    [93]Krajcinovic D. Damage Mechanics[J].Mechanics of Materials,1989,8(2):117-197
    [94]刘军,刘汉龙,陈亮.冲击荷载下脆性材料损伤模型的研究进展[J].岩石力学与工程学报(增),2005,8
    [95]Takeda J, Tachikawa H., Deformation and fracture of concrete subjected to dynamic load[A]. In:Proceeding of the International Conference on Mechanical Behavior of materials[C]. London:[s:n] 1971.267-277
    [96]Shah S P, Chandra S. Mechanical behavior of concrete examined by ultrasonic measurements[J]. Journal of Materials, American Society for testing and Materials, 1981,5(3):550-563
    [97]Head H C. Effects of large changes in strain-rate on the experimental deformation of Yule marble[J]. journal of Geology,1982,71(2):163-172
    [98]黄筑平,材料的动态损伤和实效,力学进展,1993,23(4):433-467
    [99]J.勒迈特,损伤力学教程,科学出版社,1996
    []00]李兆霞,损伤力学及其应用,科学出版社,2002
    [101]冯西桥,准脆性材料的细观损伤力学,高等教育出版社,2002
    [102]A. M. Rajendran, M. A. Dietenberger, D. J. Grrove, A void growth based failure model to describe spoliation. Journal of Applied Physics.1989,65(4):1521-1527
    [103]A. M. Rajendran, Modeling of the impact Behavior of AD85 Ceramic under Multiaxial Loading. International Journal of Impact Engineering,1994,15(6):749-768
    [104]A. M. Rajendran, D. J. Grrove. Computational Modeling of shock and impact Response of Alumina. CMES,2002,3(3):367-380
    [105]Kachanov M. Effective elastic properties of crack solids, critical review of some basic concepts. Appl. Mech. Review,1992,45(7),304-335
    [106]Benvensite Y. On the Mori-Tanaka's method in cracked solids. Mech. Res. Comm., 1986,13(4):193-201
    [107]L. Seaman, D. R. Curran, D.A.Shock, Computational models for ductile and brittle fracture. Journal of Applied Physics.1976,47:4814-4826
    [108]夏蒙棼,韩闻生,柯孚久等.统计细观损伤力学和损伤演化诱致突变(Ⅰ).力学进展,1995,25(1):1-23
    [109]夏蒙棼,韩闻生,柯孚久等.统计细观损伤力学和损伤演化诱致突变(Ⅱ).力学进展,1995,25(2):145-159
    [110]金星男.水泥模型中裂纹速度测量[J].爆炸与冲击.1983.04
    [111]黄理兴.动载作用下岩石断裂裂纹扩展与控制.岩土力学,1989(1)
    [112]张志呈.岩体裂纹扩展速度实验研究[J].爆破器材.2000.06
    [113]张志呈.动荷载作用下岩石裂纹的起裂与扩展.全国水泥矿山情报网西南分网年会,1994
    [114]吴立.张时忠.爆炸荷载作用下材料裂纹扩展速度的实验研究[]].爆破.1998.04
    [115]Kachanov L.M. Time of the rupture process under creep condition. Ivz AN SSSR, Otd Tekhn Nauk,1958,8:26-31
    [116]Rabotnov Y.N. Creep problems in structural members. Amsterdam: North-Holland,1963
    [117]Lemaitre J. Evaluation of dissipation and damage in metals. Proceeding ICM-1, Kyoto, Japan,1971
    [118]Janson J, Hult J. Fracture mechanics and damage mechanics-acombined approach. J de Mecanique Appliquee,1977,1:69-84
    [119]郑泉水,黄克智,黄筑平,王礼立,顾元宪,胡海岩,杨挺青等.世纪之交的力学-参加第20届国际理论与应用力学大会有感,力学进展,2001,31(1):144-155
    [120]Krajcinovic D, Mastilovic S. Brittle and quasi-ductile damage at large strain rates. Theoretical and Applied Fracture Mechanics,2001,35:9-18
    [121]Budiansky B,O'Connel R J. Elastic moduli of a cracked solid. International Journal of solids and Structures,1976,12:81-97
    [122]Gurson A L. Continuum theory of ductile rupture of void nucleation and growth:partl-yield criterion and floe rules for porous ductile materials. Journal of engineering materials and technology,1977,99:2-15
    [123]Lemeitre J. A continue damage mechanics for ductile fracture. Journal of Engineering Materials and Technology,1985,107:83-89
    [124]过镇海.混凝土的强度和变形-试验基础和本构关系.北京:清华大学出版社,1997
    [125]过镇海.钢筋混凝土原理.北京;清华大学出版社,1999
    [126]Horri H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. Journal of Geophysics Research,1985,90::3105-3125
    [127]Horri H, Netmat-Nasser S. Brittle failure in compression:splitting, failure and brittle-ductile transition. Phil Trans R Soc Lond A,1986,319::337-374
    [128]白以龙.冲击载荷下材料的损伤和破坏.冲击动力学进展,合肥:中国科学技术大学出版社,1992.34-57
    [129]李永池,袁福平等.卵形头部弹丸对混凝土靶板侵彻的二维数值模拟.弹道学报,2002,14(1):14-19
    [130]Stenvens A L, Davison L, Warren W G Dynamic crack propagation, edit:G. C. Sih,Noordnoff, the Netheriands,1973
    [131]Curran D. R, Seaman L, Shockey D A. Physics Reports.1987,144:253-288
    [132]Dally. J. W, Fourney, W. L, Irwin. G R. On the uniqueness of the stress intensity factor crack velocity relationship[J]. Int.J. Fracture,1985,27,159-168.
    [133]Yang. K. H, Kobayashi. A. S. Dynamic fracture responses of alumina and two ceramic composites [J].Am. Ceram. Soc,1990,73,2309-2315.
    [134]Suresh. S. Nakamura. T. Tensile fracture toughness of ceramic materials-effects of dynamic loading and elevated temperatures. J.Am.Ceram.Soc.1973,2457-2466
    [135]Kobayashi. A. S, Emery. A F, Liaw. B.-M. Dynamic fracture of glass. In Fracture Mechanics of Ceramics.1983,Vol.6. Plenum Press, New York.
    [136]Evans. A. G. Slow crack growth in brittle materials under dynamic loading conditions. Int. J. Fracture 10,251-259
    [137]龚江宏,陶瓷材料断裂力学.清华大学出版社,2001
    [138]G Ravichandran and G Subhash. A Micromechanical Model for High Strain Rate Behavior of Ceramics. International of Journal of Solids and Structures,1995, 32(17/18):2627-2646
    [130]H.B.Li, J.Zhao, T.J.Li. Micromechanical modeling of the mechanical properties of a granite under dynamic uniaxial compressive loads. International Journal of Rock Mechanics and Mining Sciences,2000,37:923-935
    [140]Grady D E, Kipp M E. Continuum Modeling of Explosive Fracture in Oil Shale. Int. J. Rock Mech. Min. Sci. Geomech. Abstr,1980,17:147-157
    [141]Burlion N, Gatuingt F, Pijaudier-Cabot G, Daudeville L. Compaction and tensile damage in concrete:constitutive modeling and application to dynamics, Computers Methods in applies and engineering,2000,183:291-308
    [142]Lemaitre J, Chaboche J L.固体材料力学(余天庆、吴玉树译).国防工业出版社,1997
    [143]刘文韬,王肖钧,周钟,胡秀章,王峰.岩石的连续损伤本构模型及在地下爆炸波数值计算中的应用.岩石力学与工程学报,2004,23(13):2149~2156
    [144]Mackenzie J H. The elastic constants of a solid containing spherical holes. Proc Phys Soc,1950,63:2-11
    [145]Perzyna P. The constitutive equations for rate sensitive plastic materials. Quart App Math,1963,20:321-332
    [146]Colantonio L, Stainier L. Numerical integration of visco-plastic constitutive equations for porous materials. In:Desideri J-A, Le Tallec P, Onate E, et al.eds. Num Meth Eng'96. New York:Wiley Pubs,1996.28-34
    [147]Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars. J Mech Phy Solids,1984,32:461-490
    [148]Lemaitre J, Chaboche J L, Aspect phenomenologique de la rupture Par endommagement. J Mecan Appl,1978,2(3):317-365
    [149]Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rate, and high pressures. 14thInternational Symposium on Ballistics, Quebec, Canada,1993,26-29:591-600
    [150]恽寿榕,涂候杰,梁德寿等.爆炸力学计算方法.北京理工大学出版社,1995
    [151]王仲奇.面向对象的爆炸力学Euler型多物质数值方法及其应用研究.北京理工 大学机电学院,2000.08
    [152]吴开腾,宁建国.复杂边界对空中爆炸形成冲击波的减压效应的三维数值模拟.计算爆炸力学理论、方法及工程应用,北京:北京理工大学出版社,2002,08
    [153]李德元,徐国荣等.二维非定常流体力学数值方法[M].北京:科学出版社,1998,09.
    [154]吴开腾.爆炸与冲击问题的三维数值模拟及算法研究.北京理工大学机电学院,2002.08
    [155]C.E.Aanderson, Jr. An overview of the theory of hydrocodes, Int. J. Impact Engng, Vol.5,P33-59,1987
    [156]杨军,岩石爆破分形损伤模型及数值模拟研究,北京理工大学博士后研究工作报告,1997
    [157]Zhang Wenyao, Ning Jianguo. Visualization of Explosive Field. Journal of Beijing Institute of Technology,1999,08,(04)
    [158]Shen Yunling, Ning Jianguo. Numerical Simulation of the 2-D Explosive Field for the Effect of Protecttive wall's Shape. Journal of Beijing Institute of Technology,2001,10(01)
    [159]T. J. Holmquist, G. R. Johnson and W. H. Cook, A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates and High Pressure,14th Int. symp. Ballistics, Quebee, Canada,1993, P591-600
    [160]Richmyer. R. D and Morton. K. W. Difference Methods for Initial-Value Problems. Inter science, New York,1967
    [161]陈龙伟.三维弹塑性流体动力学多介质界面处理及数值模拟(博士学位论文).北京理工大学.2003.08
    [162]R. Courant, K.O. Friedrichs and H. Lewy. Mathematics Annalen, Vol.100,1928
    [163]冯圣中.混凝土侵彻与损伤的数值模拟及算法研究.北京理工大学.1997.06

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700