用户名: 密码: 验证码:
南堡凹陷复杂油气层测井响应特征与评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气勘探开发工作的深化,勘探开发目标已由原来简单的高幅度构造油气藏转向复杂油气藏。复杂油气层含油气测井响应具有复杂性和隐蔽性,导致对其测井识别评价具有极大难度。因此,研究复杂油气层有效的测井解释评价方法和技术,为勘探开发提供有力支持,具有十分重要的意义。
     南堡凹陷是复杂断块油田的典型代表,发育大量复杂油气层。它们不仅在油气储量中占有较大比例,其产能也非常可观。南堡凹陷储层岩性、物性变化大,非均质性强,地层水矿化度低且层间变化大,油气层和水层电性差异小导致测井信息对这类油气、水层的分辨能力降低,基于传统测井解释理论的油气层识别方法效果较差,符合率较低。论文以南堡凹陷馆陶组和东营组为研究目标,综合分析录井、钻井、岩心和测井等资料,深入展开了复杂油气层测井解释评价方法研究。
     通过岩石物理实验资料、测井环境以及发育的地质背景的分析,深化南堡凹陷复杂油气层的成因机制研究,梳理各种成因油气层的电测井响应特征,为南堡凹陷复杂油气层测井评价奠定基础。认为复杂水性、复杂岩性和复杂的测井环境是导致复杂油气层电性复杂的主控成因。复杂水性扰乱油气层和水层电性对比基础;复杂岩性导致高束缚水饱和度和阳离子交换量,进而增强油气层的导电性;砂泥岩薄互层降低电测井响应对储层真电阻率的敏感性;盐水泥浆侵入和斜井等复杂的测井环境进一步使电测井响应特征复杂化。
     针对复杂油气层非均质性强的特征,引入流动单元理论进行储层分类和储层测井解释模型建立。流动带指标能够反映储层岩性、物性和孔隙结构特征。采用流动带指标法,将南堡凹陷划分为4类流动单元,基于流动单元建立的渗透率模型明显提高了解释精度,说明流动单元划分合理。在取心井段应用自然伽马、声波和密度建立流动带指标模型,并将该模型应用于未取心井段,对馆陶组和东营组储层进行流动单元划分。基于流动单元建立含水饱和度模型、束缚水饱和度模型及油水层识别图版,其解释精度较以往有显著提高,现场应用效果良好。
     南堡凹陷阿尔奇参数m、n值变化范围较大,岩性、物性和水性是影响阿尔奇参数的主要因素。应用阳离子交换量、孔隙结构和地层水电阻率分层组建立了m、n值模型,完善阿尔奇参数的选取方法。
     基于三水导电模型,提出校正离心实验束缚水饱和度方法,应用半渗透隔板实验数据验证该方法的正确性和可靠性。实际应用结果表明:该方法得到的束缚水饱和度与压汞和相渗分析束缚水饱和度吻合,与校正前束缚水饱和度相比,准确性有明显提高,为建立束缚水饱和度模型提供了可靠数据。
     通过对测井和录井等资料的综合分析,采用多信息融合技术,建立油水层识别图版。针对不同的测井环境,研究反映流体性质的敏感参数,分析岩性、束缚水饱和度影响以及油层的气测特征,通过两两参数合理搭配,放大油层与水层之间差异,量化复杂油气层解释标准。针对由于盐水泥浆侵入和斜井等复杂测井环境影响电测井响应的情况,应用反演技术对电测井响应进行有效校正。实际应用表明:所建立的三种油水层识别图版均取得良好的应用效果,经反演技术校正得到的电测井响应更接近地层真电阻率,为南堡凹陷进一步勘探和开发提供了可靠的技术保障。
With the petroleum exploration and development deepening, exploration target has been diverted from simple high amplitude structural hydrocarbon reservoir to complex reservoir. The Hydrocarbon logging response of complex reservoir is character with complexity and stealthiness, which leads to great difficulty in well logging recognition and evaluation. Therefore, the research on effective well logging evaluation in complex reservoir provides advantageous support to exploration and development and has greatly important significance.
     Nanpu Sag is a typical complex faulted block oilfield and there exists a lot of complex reservoirs, which occupy a great proportion of oil and gas reserves and have considerable productivity. The reservoir in Nanpu Sag is character with great variation of lithology and physical property, strong heterogeneity, low and variable formation water salinity. The reservoir recognition ability decreases because of little electric difference between hydrocarbon layer and water layer. The recognition effect based on conventional log interpretation theory is bad and interpretation cocidence rate is low. Based on research objectives of Guantao and Dongying formation in Nanpu Sag, this paper comprehensively analyzes the data of mud logging, drilling, coring, and well logging, and further studies the interpretation and evaluation method in complex reservoir.
     The genetic mechanism of complex reservoir in Nanpu Sag is further researched and the electric logging response characteristics of various origin complex reservoirs is hackled by analyzing petrophysical experimental data, logging environment and geologic background, which lays a foundation for logging evaluation of complex reservoir in Nanpu Sag. The complex lithology, physical property and logging environment are considered as major factors that lead to complex electric property. The complex water disturbs the electric comparing basis of oil-gas layers and water layers. The complex lithology results in high bound water saturation and cation exchange capacity, and then enhances conductivity of oil-gas layers. Thin sand shale interbedding reduces the sensitivity of electric logging response to true formation resistivity. The complex logging environment, such as brine mud invasion and deviated well, further complicates electric logging response.
     According to the strong heterogeneity of complex reservoir, this paper introduces flow unit theory to classify reservoir and build logging interpretation models. The flow index reflects the lithology, physical property and pore structure characteristics. The reservoirs in Nanpu Sag are divided into four types through flow unit index method, and the permeability model based on flow unit has obviously improved interpretation precision, which indicates the rationality of flow unit classification. The flow unit index model is built with GR, AC and DEN in coring intervals, and applied into non-coring intervals to classify the flow units of Guantao and Dongying reservoir. The interpretation accuracy of water saturation model, irreducible water saturation model and oil and water layer identification chart based on flow unit are improved obviously and application effect is good.
     The Archie parameters m and n vary in a large range and the lithology, physical properties and water are key factors which affect the Archie parameters greatly. The m and n models are built on cation exchange capacity, pore structure and formation water resistivity according to different bed sets, which improves the selection method of Archie parameters. Based on three-water conduction model, this paper proposes a method to correct bound water saturation of centrifuged experiment and applies semi permeable membrane data to verify its correctness and reliability. The actual application results show that the bound water saturation calculated by this method is in good agreement with mercury injection and relative permeability results, and compared with irreducible water saturation before correction, the accuracy is obviously improved. It provides reliable data for the establishment of irreducible water model.
     Through analyzing mud logging information and well logging information comprehensively, the oil-water layer identification chart is established using multi-information fusion technology. For different logging environments, the sensible parameters reflecting fluid property are researched, and the differences between oil-gas and water layers are enlarged by reasonable collocation of characteristic parameters after analyzing the effects of lithology, irreducible water saturation and gas logging characteristic. The interpretation standards are quantified. The electric logging response is corrected effectively for complex logging environments, such as brine mud invasion, deviated well. The application shows that the three kinds of oil-water identification charts obtain good results. The electric logging responses corrected by inversion are closer to true formation resistivity. All of methods provide dependable technical support to further exploration and development in Nanpu Sag.
引文
[1]谭廷栋.测井学[M].北京:石油工业出版社,1999:23-24
    [2]高楚桥等.复杂储层测井评价方法[M].北京:石油工业出版社,2004:12-13
    [3] Archie, G.E.. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions of the AIME, 1942, 146:54-62
    [4]陈墨香.华北平原地下热水形成条件与赋存特征[J].地球科学—中国地质大学学报,1985,10(1):83-89
    [5]毛志强.中国石油低电阻油气层识别与评价及岩石物理研究进展[C].中俄测井技术交流会,2004:56-62
    [6] Greene K. R. Charge densities and heats of immersion of some clay minerals[J]. Clay Minerals Bull, 1962, 23(2): 1-8
    [7]李德生.渤海湾含油气盆地的地质构造特征与油气田分布规律[J].海洋地质研究,1981,1(1):3-19
    [8]丁次乾.矿场地球物理[M].山东:石油大学出版社,1992:37-38
    [9]范宜仁.砂岩储层电阻率物理、数值模拟方法研究及其应用[D].大港油田博士后论文,2006:12-13
    [10]冯之红.低阻油层岩石特性及流体识别方法研究[J].江汉石油职工大学学报,2005,18(2):19-21
    [11]张庚骥.电法测井(上册)[M].北京:石油工业出版社,1984:34-35
    [12]张庚骥.电法测井(下册)[M].北京:石油工业出版社,1986:56-57
    [13]丁明海,潘书民,马恩军.含水饱和度测井新方法研究[J].测井技术,2005,29(1):27-29
    [14]杨斌,匡立春,孙中春,等.基于遗传规划的储层含水饱和度预测方法[J].成都理工大学学报(自然科学版),2006,33(2):209-213
    [15]施冬,张春生,郭甲世.灰色综合评判法在低阻油气层中的应用[J].地球物理学进展,1998,13(1):73-78
    [16]徐守余.SQ油田低阻油气层测井综合解释及评价[J].石油勘探与开发,2000,27(6):74-76
    [17]匡立春,毛志强,孙中春.准噶尔盆地Lu9井区白垩系低电阻率油层束缚水饱和度控制因素研究[J].测井技术,2002,26(1):14-17
    [18]刘维林,刘江,张军龙,等.葡西地区油水层分类解释方法[J].大庆石油地质与开发,2003,22(1):57-59
    [19]王任一,李正科,郭克城,等.油水层变维分形识别方法探索[J].石油勘探与开发,2004,31(4):71-72
    [20]李浩,刘双莲,吴伯福,等.低电阻率油层研究的3个尺度及其意义[J].石油勘探与开发,2005,32(2):123-125
    [21]夏克文,董瑶,杜红.基于改进PSO算法的LS-SVM油层识别模型[J].控制与决策,2007,22(12):1385-1389
    [22]程相志,范宜仁,周灿灿,等.基于钻井液性能优化设计的低对比度油层识别新技术[J].中国石油大学学报(自然科学版),2008,32(3):50-54
    [23]胡英杰,肖承文,毛志强.塔里木盆地低阻油层阳离子交换量及含油饱和度评价[J].测井技术,2000,24(6):407-409
    [24]洪有密.测井原理与综合解释[M].东营:石油大学出版社,1993:23-24
    [25]姜恩承,王敬农,孙宝佃,等.电化学测井理论研究及其应用的新进展[J].测井技术,1999,23(5):327-333
    [26]焦养泉,周海民,刘少峰,等.断陷盆地多层次幕式裂陷作用与沉积响应—以南堡老第三纪断陷盆地为例[J].地球科学—中国地质大学学报,1996,21(6):633-636
    [27]施冬,郭甲世.模糊综合评判法在低阻油气层中的应用[J].物探化探计算技术,1998,20(2):146-150
    [28]李长喜,欧阳健,周灿灿,等.淡水钻井液侵入油层形成低电阻率环带的综合研究与应用分析[J].石油勘探与开发,2005,32(6):82-86
    [29]连承波,李汉林,钟建华,等.基于灰色关联分析的储层含油气性气测解释方法[J].中国石油大学学报(自然科学版),2008,32(1):29-32
    [30]张小莉,王凯.王集油田相对低电阻率油层成因及识别[J].石油勘探与开发,2005,31(5):60-62
    [31]邓少贵,李国欣,范宜仁,等.低电阻率油气层双侧向测井资料预处理方法[J].测井技术,2005,29(3):220-222
    [32]李国欣,刘国强,赵培华,等.中国石油天然气股份有限公司测井技术的定位、需求与发展[J].测井技术,2004,28(1):1-4
    [33]李国欣,欧阳健,周灿灿,等.中国石油低阻油层岩石物理研究与测井识别评价技术进展[J].中国石油勘探,2006,11(2):43-51
    [34]李国政,李铁.塔里木盆地桑塔木油气田低阻油气层形成机理[J].新疆地质,1999,17(1):49-53
    [35]李厚义.对油层水电阻率的思考[J].测井技术,1996,20(4):303-307
    [36]李浩,刘双莲,吴伯福,等.低电阻率油层研究的3个尺度及其意义[J].石油勘探与开发,2005,32(2):123-125
    [37]李薇,田中元,闫伟林,等.Y油田低电阻率油层形成机理及RRSR识别方法[J].石油勘探与开发,2005,32(1):61-62
    [38]陈学义,魏斌.辽河油田滩海地区低阻油层成因及精细解释[J].测井技术,2000,24(1):55-59
    [39] Clavier C, Coates GR and Dumanoir J. The Theoretical and Experimental Bases for the Dual Water Model for the Interpretation of Shaly Sands[J]. SPE, 1984, 24(2): 153-168
    [40]梁古.运用地下水流体动力系统理论研究水质问题[J].地球科学—中国地质大学学报,1991,16(1):43-50
    [41]林纯增,张舫.钻井液侵入特征的测井应用[J].测井技术,2002,26(4):341-346
    [42]刘维林,刘江,张军龙,等.葡西地区油水层分类解释方法[J].大庆石油地质与开发,2003,22(1):57-59
    [43]刘英才,余国义,韩桂芹.阿达油田低阻、低对比油层的成因与识别[J].江汉石油学院学报,2003,25(3):89-92
    [44]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:12-13
    [45]李舟波.利用测井方法识别复杂油气储层的流体性质[J].石油与天然气地质,2004,25(4):356-362
    [46]毛志强,龚富华,刘昌玉,等.塔里木盆地油气层低阻成因实验研究[J].测井技术,1999,23(4):243-245
    [47]毛志强,高楚桥.孔隙结构与含油岩石电阻率性质理论模拟研究[J].石油勘探与开发,2000,27(2):87-90
    [48]程相志,周凤鸣,彭银辉,等.W-S模型在泥质砂岩储层含油性评价中的应用[J].石油与天然气地质,2000,21(4):313-317
    [49]穆龙新,田中元,赵丽敏.A油田低电阻率油层的机理研究[J].石油学报,2004,25(2):69-73
    [50]欧阳健.渤海湾油区测井低电阻油层勘探潜力分析[J].勘探家,1998,3(4):37-42
    [51]欧阳健,张建华.渤海湾海水泥浆侵入油气层双侧向测井定量分析研究[J].测井技术,1998,22(4):256-260
    [52]欧阳健,王贵文,毛志强,等.测井地质分析与油气层定量评价[M].北京:石油工业出版社,1999:12-13
    [53]张小莉,冯乔,杨懿,等.腰英台油田中孔隙低渗透型储层测井评价[J].石油学报,2006,27(6):51-54
    [54] Waxman MH, Smits LJM. Electrical Conductivities in Oil-Bearing Shaly Sands[J]. SPE, 1967, 7(2): 107-122
    [55] Waxman MH and Smits LJM. Electrical conductivities in oil-bearing shaly sand[J]. Soc Pet Eng J, 1968: 107-122
    [56] Waxman MW, Thomas EC. Electrical Conductivities in Oil-Bearing Shaly Sands-Ⅰ. The Relation Between Hydrocarbon Saturation and Resistivity Index;Ⅱ. The Temperature Coefficient of Electrical Conductivity[J]. SPE , 1974, 14(3): 213-225
    [57] Worthington, Paul F. Recognition and Development of Low resistivity Pay Zone[J]. SPE, 1997, 37(2): 135-140
    [58]肖丽,范晓敏.泥质砂岩含水饱和度的求法[J].世界地质,2002,21(1):90-94
    [59]徐守余.SQ油田低阻油气层测井综合解释及评价[J].石油勘探与开发,2000,27(6):74-76
    [60]袁福文,李早红,常静春,等.板桥、张巨河地区低电阻油气层测井解释方法及应用.渤海湾地区低电阻率油气层测井技术与解释方法[M].北京:石油工业出版社,2000:123-135
    [61]运华运,赵文杰,周灿灿,等.利用T2分布进行岩石孔隙结构研究[J].测井技术,2002,26(1):18-21
    [62]欧阳健.油藏中饱和度—电阻率分布规律研究—深入分析低电阻油层基本成因[J].石油勘探与开发,2002,29(3):44-47
    [63] PalarS. Approaches in Evaluating Low resistivity Formations[J]. SPE, 1997, 37(3): 265-273
    [64]渠永宏,孙镇城,冯晓杰,等.冀中坳陷北部潜山地层水水文地质特征及对油气勘探的意义[J].大庆石油学院学报,1999,23(3):8-11
    [65]沙皮罗.岩石的物理—化学性质及其在石油矿场地球物理的应用[M].北京:石油工业出版社,1987:36-37
    [66]陈荣书.渤中油区地下流体动力学特征[J].石油学报,1993,11(3):20-29
    [67]沈爱新,陈守军,王黎,等.低电阻率油层中孔砂岩岩电及核磁实验研究[J].测井技术,2005,29(3):191-194
    [68]沈明道.粘土矿物及微组构与石油勘探[M].电子科技大学出版社,1993:12-13
    [69]沈平平.油层物理实验技术[M].北京:石油工业出版社,1995:27-28
    [70]施冬,张春生,郭甲世.灰色综合评判法在低阻油气层中的应用[J].地球物理学进展,1998,13(1):73-78
    [71]张庚骥,汪涵明,汪功礼.成层介质中交流电测井响应[J].地球物理学报,1995,38(6):840-849
    [72]张庚骥,汪涵明.普通电阻率测井的数值模式匹配解法[J].石油大学学报(自然科学版),1996,20(2):23-29
    [73] Zhang, G.J., Wang, G.L. and Wang, H.M. Application of Novel Basis Functions in a Hybrid Method Simulation of the Response of Induction Logging in Axisymmetrical Stratified Media[J]. Radio Science, 1999, 34(1): 19-26
    [74]张庚骥.交流电测井响应的积分方程解法[J].石油大学学报(自然科学版),2001,25(1):80-86
    [75] Zhang, J.H., Hu, Q., Ouyang J. A Method to Evaluate Reservoirs and Estimate Saturation by Dynamic Responses of Dual-Induction Logging Tools[J]. Journal of Petroleum Science and Engineering, 1998, 19(3-4): 233-240
    [76] Zhang, J.H., Hu, Q., Liu, Z.H. Estimation of True Formation Resisivity and Water Saturation with a Time-Lapse Induction Logging Method[J]. The Log Analyst, 1999, 40(2): 138-148
    [77]孙建孟,李召成,耿生臣,等.核磁共振测井T2cutoff确定方法探讨[J].测井技术,2001,25(3):175-178
    [78]莫修文,贺铎华,李舟波,等.三水导电模型及其在低阻储层解释中的应用[J].长春科技大学学报,2001,31(1):92-95
    [79] LI Zhou-bo, MO Xiu-wen. Study on the elect ric property of Shaly sand and it s interpretation method[J]. Journal of Geoscientific Research in Nort heast Asia, 1999, 2(1): 110-114
    [80]李传亮.用压汞曲线确定油藏原始含油饱和度的方法研究[J].新疆石油地质,2000,21(5):418-419
    [81] Allen D. Invasion Revisited [J]. Oilfield Review, 1991, 3(3): 10-23
    [82]郭睿,赵丽敏,褚人杰,等.委内瑞拉卡拉高莱斯合同区疑难储层测井识别方法[J].测井技术,2004,28(4):292-295
    [83]孙黎娟,吴凡,王世坤.M盆地淡水地层油层电性标准研究[J].测井技术,2001,25(3):212-214
    [84]田中元,穆龙新,孙德明,等.砂砾岩水淹层的测井特点及机理研究[J].石油学报,2002,23(6):150-158
    [85]田中元,卞德智,陈昊,等.改进的PICKETT法在Y油田低阻油层识别中的应用[J].石油学报,2005,26(4):81-84
    [86] Tobola D P, Holdtch S A. Determination of Reservoir Permeability from Repeated Induction Logging[J]. SPE, 1991, 31(1): 36-44
    [87]王家豪,王华,周海民,等.河北南堡凹陷老爷庙油田构造活动与油气富集[J].现代地质,2002,16(2):205-208
    [88]王俊林.电测井曲线形态在判断沉积相方面的应用[J].煤炭技术,2003,22(9):109-110
    [89]靳彦欣,林承焰,赵丽,等.关于用FZI划分流动单元的探讨[J].石油勘探与开发,2004,31(5):130-132
    [90] Anmefule Jude O, Altunbay M. Enhanced Reservoir description:Using core and log data to identify hydraulic(flow) units and predict permeability in uncored intervals/wells[J]. SPE ,1993, 33(1): 65-73
    [91] C.I Uguru, U.O.Onyeagoro and J.Lin, et al. Permeability prediction using genetic unit averages of flow zone indicators(FZIs) and neural networks[J]. SPE, 2005, 45(1): 45-55
    [92]焦养泉,李桢.河道储层砂体中隔挡层的成因与分布规律[J].石油勘探与开发,1995,22(4):78-81
    [93]金佩强,杨克远.国外流动单元描述与划分[J].大庆石油地质与开发,1998,17(4):49-51
    [94]张吉,张烈辉,南力亚.碎屑岩流动单元研究进展及认识[J].中国海上油气(地质),2003,17(4):284-285
    [95]陈新民.用流动层带指标划分流动单元存在的问题及改进方法[J].石油天然气学报,2007,29(3):370-373
    [96]石京平,李永军,付国民.樊家川油田储层渗流单元分析及其剩余油分布[J].沉积与特提斯地质,2002,22(4):50-54
    [97] ZemanekJ. Low Resistivity Hydrocarbon Bearing Sand Reservoirs[J]. SPE, 1989, 29(6): 515-521
    [98]曾文冲.油气藏储集层测井评价技术[M].北京:石油工业出版社,1991:39-40
    [99]曾文冲.低电阻率油气层的类型、成因及评价方法的分析(上).地球物理测井,1991,15(1):6-12
    [100]曾文冲.低电阻率油气层的类型、成因及评价方法的分析(下).地球物理测井,1991,15(3):149-152
    [101]曾文冲.关于我国测井技术发展的几点意见[J].测井技术,2002,26(1):1-5
    [102]章成广,秦瑞宝.用毛管压力曲线解释原始含水饱和度[J].江汉石油学院学报,1999,21(4):18-25
    [103]邓少贵,谢关宝,范宜仁,等.多浓度下泥质砂岩电学性质实验研究[J].石油地球物理勘探,2003,38(5):543-546
    [104] Smits L J M. SP Log Interpretation in Shaly Sands[J]. AIME, 1968, 243: 123-136
    [105]任海涛,邓少贵,郭璇.毛细管理论在低阻油气层油气运移与聚集机理中的应用[J].测井技术,2002,28(2):104-107
    [106]孙建孟,陈钢花,杨玉征,等.低阻油气层评价方法[J].石油学报,1998,19(3):83-88
    [107]孙建孟,李召成,赵文杰,等.史南油田低阻油气层成因分析与评价[J].中国海上油气(地质),1999,13(1):63-66
    [108]高楚桥,袁云福,吴洪深,等.莺歌海盆地束缚水饱和度测井评价方法研究[J].天然气工业,2003,23(5):38-40
    [109]张丽艳,才巨宏,陈钢花.砂砾岩储集层含油性解释方法[J].测井技术,2002,26(2):134-136
    [110]张小莉.陕北三叠系延长组低阻油层特征及其形成机理分析[J].测井技术,1999,23(4):276-278
    [111]张玉兰,陈贤德,翟瑞国,等.复杂断块区低品质地震资料解释方法[J].石油与天然气地质,2000,21(4):330-332
    [112]赵澄林,朱筱敏.沉积岩石学[M].北京:石油工业出版社,2001:19-20
    [113]赵政璋,杜金虎,牛嘉玉,等.渤海湾盆地“中石油”探区勘探形势与前景分析[J].中国石油勘探,2005,10(3):1-7
    [114]赵佐安,何绪全,唐雪萍.低电阻率油气层测井识别技术[J].天然气工业,2002,22(4):34-37
    [115]黄志龙,蒲秀刚,良春秀,等.松辽盆地南部低阻储层特征及其形成机理[J].天然气工业,2006,26(8):27-29
    [116]周灿灿,程相志,周凤鸣,等.W-S模型中B参数的确定方法[J].测井技术,2000,24(3):179-182
    [117]冯业丽,伊二泉,冯卓利,等.ISODATA在油水层综合判别中的应用[J].大庆石油地质与开发,2005,24(5):87-89
    [118]邵维志,李浩,刘辉,等.大港白水头地区低阻油气层测井评价[J].测井技术,2001,25(2):127-130
    [119]周凤鸣,程相志,周灿灿.泥质砂岩薄膜电位与含油性的关系及其在测井中的应用[J].测井技术,2005,29(4):302-304
    [120]李德生.渤海湾含油气盆地的地质构造特征与油气田分布规律[J].海洋地质研究,1981,1(1):3-19
    [121]周海民,丛良滋.浅析断陷盆地多幕拉张与油气的关系—以南堡凹陷的多幕裂陷作用为例[J].地球科学—中国地质大学学报,1999,24(6):625-629
    [122]周海民.复杂断块油田精细开发:渤海湾盆地南堡凹陷精细开发实践与认识[M].北京:石油工业出版社,2004:35-41
    [123]周海民,董月霞,谢占安,等.断陷盆地精细勘探—渤海湾盆地南堡凹陷精细勘探实践与认识[M].北京:石油工业出版社,2004:12-19
    [124]周海明.复杂油气田勘探开发丛书复杂油气田[M].北京:石油工业出版社,2005:43-44
    [125]周海民,周凤鸣.冀东油田复杂砂岩储层测井评价对策与实践[J].石油学报,2006,26(3):138-142
    [126]周荣安.阿尔奇公式在碎屑岩储集层中的应用[J].石油勘探与开发,1998,25(5):80-82
    [127]周荣安,焦创斌,李志伟,等.鄂尔多斯盆地高电阻率水层的成因分析[J].测井技术,2005,29(4):333-336
    [128]周玉琦.复杂油气田勘探开发技术新进展文集[M].石油工业出版社,2003:25-26
    [129]朱家俊,耿斌,耿生臣,等.宏观导电机理下的泥质砂岩含水饱和度解释模型[J].石油勘探与开发,2003,30(4):75-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700