用户名: 密码: 验证码:
基于岩石物理的多元信息融合方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
横波速度是重要的测井物探联合反演标定参数,鉴于目前许多井缺乏横波速度资料、现有横波速度估算方法存在精度低、使用不便的困难,给出了更合理有效的波速等弹性参数估算方法。论文根据分析力学梳理了饱和流体孔隙介质的理论体系,比较了Biot模型和BISQ模型的差异,通过数值实验分析了不同相态组合条件下混合介质等效弹性参数估算方法的适用性,推导了饱和流体孔隙介质等效弹性参数与固-流两相弹性参数之间的关系。基于孔隙介质波动理论,分析了地层骨架矿物成分、孔隙大小、流体饱和度及波动频率等因素对波速的影响,比较了饱和流体孔隙介质不同速度模型的合理性。通过利用多元测井信息对储层进行多矿物和流体组分分析,选用VRH模型求取骨架颗粒和流体等效弹性模量,然后利用Biot-Gassmann方程、以纵波速度为约束条件估算横波速度。该方法物理意义明确,实际处理资料比较表明本文方法比著名的Xu-White模型更简便、经济和准确,估值平均相对误差限在5%左右,精度比Xu-White模型提高了一倍左右。
     煤系地层是油气勘探的重要目标之一。与Xu-White模型相比,上述多矿物分析波速估值方法虽然在煤层能得到更合理的估值,但由于煤层组分非常复杂,估值误差相对砂泥地层偏大。为此,通过对典型煤层测井响应特征和识别方法研究,利用多井资料建立了煤层纵横波之间,密度、中子和纵横波之间的回归模型,改善了多矿物分析方法对煤层波速估值误差较大的缺陷。通过建立煤层体积模型,给出了利用密度和中子测井资料求解煤层组分、利用双侧向资料迭代反演裂隙孔隙度的方法;根据碳分含量采用等温吸附方程给出了比经验公式更为合理的吸附气含量估算方法。最后,综合油气储层测井评价及多矿物分析弹性参数估算方法,设计了较完善的煤系地层评价流程,为煤系地层勘探提供了有效的地层组分、物性、流体性质及弹性参数定量计算方法和程序。通过对实际煤系地层测井资料的识别和处理,表明煤层具有显著的低速、低弹性模量和低波阻抗弹性特征,为煤系地层勘探提供了岩石物理基础。
The shear wave velocity of well log is one important parameter for mutual inversion. As lots of wells short of this data and present method can’t estimate the shear velocity precisely, this thesis gives a more accurate shear velocity estimation method. The paper summarized the theories of elastic-wave propagation in fluid-saturated porous media according to the analytic mechanics, compared the differences between Biot model and BISQ model, analyzed the applicability of different effective elastic modulus estimation methods for different phase combination conditions through numerical experiments, deduced the relations between effective elastic parameters of fluid-saturated porous media and its solid and liquid phase composites. Based on elastic-wave propagation theories in fluid-saturated porous media and rock physics, the main influence factors of velocity in porous media, such as mineral components, porosity and liquid saturation has been analyzed, and the rationality of different velocity models are compared. The method estimates the solid and liquid composites effective elastic modulus using VRH model via multi-mineral analysis from conventional well logs, and then calculates the shear wave velocity using Biot-Gassmann equations controlled by compressional velocity. The method has definite physical meaning, practice results show that this method is much more facility, economy and precise compared to the famous Xu-White method, its average absolute relative error between estimated values and measured values is about 5 percents, which is only half of Xu-White method.
     Although above multi-mineral analysis method can obtain a more reasonable wave velocity compared with the Xu-White model in the coal bed, the error of estimated wave velocity is greater than that of non-coal zones as the coal has complex components. Therefore, through the typical coal bed log responses characteristics and recognition methods study, the regression models between density and velocity, neutron porosity and velocity, shear velocity and compressional velocity are given by multi-well logs statistical analysis, so the precision of estimated share wave velocity of coal bed is improved. Through the coal bed volume model establishment, the coal components are calculated by density and neutron well logs, the cranny porosity is calculated using iterative inversion method with dual laterologs, and the adsorbed gas content is given using temperature adsorption equation according to coal bed carbon content which is more reasonable than empirical formula. Finally, combined with the oil gas reservoir log evaluation technique and multi-mineral analysis velocity estimate method for non coal zones, a systemic quantificational evaluation procedure for coal measure strata is given, which can provide the zone components, porosity, permeability, liquid property and elastic parameters. The application results show that the coal zone has distinct low velocity, low elastic moduli and low elastic impedance aspects,which provides the rock physical foundation for coal measure strata exploration.
引文
[1] Backus G.E. and Gilbert J.F.. Numerical application of a formalism for geophysical inverse problems[J]. Geophys. J. R. Astron. Soc., 1967, 13: 247-276.
    [2] Backus G.E. and Gilbert J.F.. The resolving power of gross earth data[J]. Geophys. J. R. Astron. Soc., 1968, 16: 169-205.
    [3] Backus G.E. and Gilbert J.F.. Uniqueness in the inversion of inaccurate gross earth data[J]. Phil. Trans. R. Soc., 1970, A266:123-192.
    [4]王家映.地球物理反演理论[M].北京:高等教育出版社,2002.12.
    [5] Gardner, G.H.F., Gardner, L.W., Gregory, A.R.. Formation velocity and density: The diagnostic basis for stratigraphic traps[J]. Geophysics, 1974, 39:770-780.
    [6] Pickett G.R.. Acoustic character logs and their applications in formation evaluation[J]. J. Petrol Tech., 1963, 15: 650~667.
    [7] Milholland, P., Manghnani, M.H., Schlanger, S.O., and Sutton, G..H.. Geoacoustic modeling of deep-sea carbonate sediments[J]. J. Acoust. Soc. Am., 1980, 68, 1351-1360.
    [8] Castagna, J.P., Batzle, M.L., and Eastwood, R.L.. Relationship between compressional-wave and shear-wave velocity in classic silicate rock[J]. Geophysics, 1985, 50, 571-581.
    [9] Castagna, J.P., Batzle, M.L., and Kan, T. K.. Rock physics: the link between rock properties and AVO response in Castagna J.P., and Backus, M. M., Eds.. Offset dependent reflectivity-Theory and practice of AVO analysis. SEG Investigations in Geophysics Series, 1993, 8:135-171.
    [10] Xu S., White R.E.. A new velocity model for clay-sand mixtures[J]. Geophys. Prospecting, 1995, (43):91-118.
    [11]楚泽涵,陈丰,刘祝萍等.估算地层横波速度的新方法[J].测井技术, 1995, Vol.19(5):313-319.
    [12]谢进庄,楚泽涵,李艳华.用声波弹性参数确定剩余油饱和度的方法探讨[J].测井技术. 2003,27(3): 181-184.
    [13] Hewett, T.A.. Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transport[J]. SPE, 1986, Paper No. 15386-MS:1-16.
    [14]毛宁波,桂志先,朱光生.井间储层参数分形预测及其应用[J].江汉石油学院学报,1995.6, 17(2):43-43.
    [15]鲁港,毛俊莉,李后强.分形理论在井间储层描述中的应用研究[J].中国海上油气(地质),1997, 11(5):369-374.
    [16]唐俊伟,沈平平.分形插值模拟渗透率及孔隙度平面分布(I)—理论分析[J].石油勘探与开发,1997.6,Vol.24(3):66-69.
    [17]唐俊伟,沈平平.分形插值模拟渗透率及孔隙度平面分布(I)—计算实例[J].石油勘探与开发,1997.8,Vol.24(4):38-41.
    [18]陈亮,熊琦华,纪发华.用正演井间分形克里格方法顶侧储集层的非均质性[J].石油勘探与开发, 1998, 25(1):62-64.
    [19]贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质, 1998.3, Vol.19(1):)15-22
    [20] A.Centilmen, T. Ertekin, and A.S. Grader. Applications of Neural Networks in Multiwell Field Development[J], SPE, 1999, Paper No. 56443 1-11.
    [21] M.格劳尔等著.地震岩性学[M].北京:石油工业出版社,1987.6.
    [22]张应波,张骥东.地震岩性预测新方法探索.石油地球物理勘探, 1999.12, 34(6): 711-722.
    [23]赵力民,邹伟宏,郎晓玲,郑宪,吕建飞.利用RM反演方法进行地层岩性油藏研究[J].石油学报, 2000.3, Vol.21(2):62-65.
    [24]赵力民,彭苏萍,郎晓玲,赵太良.利用Statimagic波形研究冀中探区大王庄地区岩性油藏[J].石油学报,2002.7,Vol .23(4):33-36.
    [25]张广娟,胡天跃.地震波AVO与地层岩性分析[J].石油地球物理勘探. 2002.12 , l37(6):578-584.
    [26] Wyllie M.R.J , Gregory A.R. and Gardner L.W.. Elastic wave velocity In heterogeneous and porous media[J]. Geophysics, 1956, 21(1): 41-70
    [27] Wyllie M.R.J.,Gregory A.R., Gardner G.H.F.. An experimental Investigation of factors affecting elastic wave velocities In porous media[J]. Geophysics,1958, 23(3):459-493.
    [28] Azzeldeen A. Saleh, John P. Castagna.. Revisiting the Wyllie time average equation in the case of near-spherical pores[J]. Geophysics, 2004, Vol. 69(1):45-55.
    [29] Nur A.. Seismic rock properties for reservoir description and monitoring[J]. G Nolet(ed). Seismic Tomogra-phy, 1987, 203-237。
    [30] Bourie T and Zinszner B.. Hydraulic and acoustic properties as a function of porosityin Fontainbleau sandston[J].J. Geophys. Res., 1985, 90, B13, 11524-11532..
    [31]张应波.地震孔隙率反演方法和应用[J].石油地球物理勘探, 1994.6, 29(3): 261-273.
    [32]徐文俊,王跃.流体饱和多孔介质(双相介质)物性参数反演[J].石油地球物理勘探, 1995, 30(5): 602-608.
    [33]张娥,高书琴,侯成福,刘爱香,罗永胜,王奇,张静.利用地震属性预测砂岩储集层厚度及含油饱和度[J].石油勘探与开发. 2000, 27(1):92-94
    [34]李来林,陈小宏,鲍彤.一种预测储层含油饱和度的新方法[J].大庆石油地质与开发, 2002, 21(3):72-73
    [35] HansB. Helle, Nam H. Pham and JoséM. Carcione. Velocity and attenuation in partially saturated rocks: poroelastic numerical experiments[J]. Geophysical prospecting, 2003, 51,551-566.
    [36] De-hua Han and Michael L. Batzle. Gassmann’s equation and fluid-saturation effects on seismic velocities[J]. Geophysics, 2004, Vol. 68(2):398-405.
    [37]何琰,彭文,殷军.利用地震属性预测渗透率[J].石油学报, 2001, 22(6): 34-36.
    [38]印兴耀,杨风丽,吴国忱.神经网络在CB油田储层预测和储层厚度计算中的应用[J].石油大学学报(自然科学版), 1998.4, Vol.22(2):18-20.
    [39]李燕生,马玉书.神经网络模式识别技术在井间储层参数预测中的应用[J].石油大学学报, 1998 .7, Vol22(3):102-104.
    [40] Doyen P M. Porosity from seismic data: A geostatistical approach[J].Geophysics,1988,53(10): 1263-1275.
    [41]杜世通等.探索用地震资料研究油藏参数的技术[G].石油大学(华东),物探教研室, 1991.
    [42] Gorell, S.B.. Creating 3-D reservoir models using areal geostatistical techniques combined with vertical well data[J]. SPE, 1995, Paper No. 29670: 547-556.
    [43] Deutsch, C.V., Srinivasan, S., and Mo, Y.. Geostatistical Reservoir Modeling Accounting for Precision and Scale of Seismic Data[J]. SPE, 1996, Paper No. 36497: 9-19.
    [44] Behrens, R.A., MacLeod, M.K., Tran, T.T. et al. Incorporating Seismic Attribute Maps in 3D Reservoir Models[J]. SPE, 1998, Paper No. 36499: 122-126.
    [45] Doyen, P.M., den Boer, L.D., and Pillet, W.R.. Seismic Porosity Mapping in theEkofisk Field Using a New Form of Collocated Cokriging[J]. SPE, 1996, Paper No. 36498: 21-30
    [46] Doyen, P.M., Psaila, D.E., den Boer, L.D., et al. Reconciling Data at Seismic and Well Log Scales in 3D Earth Modeling[J]. SPE, 1997, Paper No. 38698: 465-474.
    [47] Ronald A. Behrens and Thomas T. Tran. Incorporating Seismic Data of Intermediate Vertical Resolution Into 3D Reservoir Models[J]. SPE, 1999, Paper No. 49143: 1-11.
    [48] Mallat S G. A theory for Multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1989,Vol. 11(7):674-693.
    [49]崔锦泰著,程正兴译.小波分析导论[M].陕西:西安交通大学出版社,1995.1。
    [50] Ogden, R.T.. Essential Wavelets for Statistical Applications and Data Analysis[M]. Birkhauser Boston Inc. Cambridge, MA, USA, 1997.
    [51] Panda, M.N., Mosher, C., and Chopra, A.K.. Application of Wavelet Transforms to Reservoir Data Analysis and Scaling[C]. SPE, 1996, Paper No. 36516-MS: 6-9.
    [52] Chu, L., Schatzinger, R.A., and Tham, M.K.. Application of Wavelet Analysis to Upscaling of Rock Properties[J]. SPE, 1998, Paper No. 36517-PA:75-81,.
    [53] Pengbo Lu, Roland N. Horne. A Multiresolution Approach to Reservoir Parameter Estimation Using Wavelet Analysis[J]. SPE, 2000, Paper No. 62985-MS:1-15.
    [54] Pengbo Lu. Reservoir Parameter Estimation Using Wavelet Analysis[D]. California, USA: Stanford University, February 2001.
    [55] Ling-Yun Chiao, Wen-Tzong Liang. Multiresolution parameterization for geophysical inverse problems[J]. Geophysics, 2003, Vol.68(1):199-209.
    [56]马坚伟,朱亚平,杨慧珠.二维地震波形小波多尺度反演[J].工程数学学报, 2004. 2, Vol.21(1):109-113.
    [57]戈革等编.地震波动力学基础[M].北京:石油工业出版社, 1983.
    [58] Amos Nur等著,许云译.双相介质中波的传播[M].北京:石油工业出版社, 1986.
    [59]杜世通主编.地震波动力学[M].东营:石油大学出版社, 1996.
    [60]牛滨华,孙春岩.半空间介质与地震波传播[M].北京:石油工业出版社,2002, 10.
    [61] T.布尔贝, O.库索, B.甄斯纳著,许云译.孔隙介质声学[M].北京:石油工业出版社,1994.
    [62] Biot M. A.. Theory of elasticity and consolidation for a porous anisotropic solid [J]. Appl. Phys., 1955, 26: 182-185.
    [63] Biot M. A.. Theory of propagation of elastic waves in a fluid-saturated porous solid, I:Low-frequency range[J]. Acoust. Soc. Amer., 1956a, 28: 168-178.
    [64] Biot M. A.. Theory of propagation of elastic waves in a fluid-saturated porous solid, II: Higher-frequency range[J]. Acoust. Soc. Amer., 1956b, 28: 179-191.
    [65] Biot M. A.. Mechanics of Deformation and Acoustic Propagation in Porous Media[J]. Appl. Phys., 1962,Vol. 33(4): 1482-1498.
    [66]苏云荪编.理论力学[M].北京:高等教育出版社,1990.06.
    [67] Hovem, J.M., and Ingram, G.D.. Viscous attenuation of sound in saturated sand[J]. Acoust. Soc. Am., 1979, 66:1807-1812.
    [68] Stoll, R.D.. Acoustic waves in ocean sediments[J]. Geophys., 1977, 42:715-725.
    [69] Berryman, J.G.. Confirmation of Biot’s theory[J]. Appl. Phys Lett., 1980,37:382-384.
    [70] Jack Dvorkin, Amos Nur. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms[J]. Geophysics, 1993, Vol. 58(4): 524-533.
    [71] Jack Dvorkin, Gary Mavko and Amos Nur. Squirt flow in fully saturated rocks[J]. Geophysics, 1995, 60(1):97-107.
    [72] Hashin, Z., and Shtrikman, S.. A variational approach to the elastic behavior of multiphase materials[J]. J. Mech. Phys. Solids, 1963, 11:127-140.
    [73] Berryman, J.G.. Mixture theories for rock properties[EB/OL]. http://citeseer.ist.psu.edu/53692.html, 1995.
    [74] Hill, R.. The elastic behavior of a crystalline aggregate[J]. Proc. Phys. Soc., 1952, A 65: 349-354.
    [75] Hashin Z.. The elastic moduli of heterogeneous materials[J]. Appl. Mech., 1962, V. 29E:143-250.
    [76] Eshelby J.D.. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems[J]. Proceedings of the Royal Society, London, 1957, A241 (1226):376-396.
    [77] Kuster GT, Toks?z MN.. Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations[J]. Geophysics, 1974, 39: 587-606.
    [78] Berryman, J.G.. Long wave propagation in fluid-saturated porous media[J]. Acoust. Soc. Am., 1980b, 68:1089-1831.
    [79] Budiansky, B.. On the elastic moduli of some heterogeneous materials[J]. J. Mech. Phys. Solids, 1965, 13:223-227.
    [80] Hill, R.. A self-consistent mechanics of composite materials[J]. J. Mech. Phys. Solids, 1965, 13:213-222.
    [81] Wu, T.T.. The effect of inclusion shape on the elastic moduli of two-phase material[J]. Int. J. Solids Structures, 1966, 2:1-8.
    [82]傅祖芸,赵梅娜,丁岩等译,W. H. Press等著. C语言数值算法程序大全[M].北京:电子工业出版社, 1995.
    [83] Roscoe R. A.. The Viscosity of Suspensions of rigid Spheres[J]. Brit. J. Appl. Phys., 1952, 3:267-269.
    [84] Mclaughlin R.. A study of the differential scheme for composite masterials[J]. Int. J. Engng Sci., 1977, 15:237-246.
    [85] Berryman, J.G.. Single-scattering approximations for coefficients in Biot’s equations of poroelasticity[J]. Acoust. Soc. Am, 1992, 91:551-571.
    [86]杜善义,王彪.复合材料细观力学[M].北京:科学出版社, 1998:24-28.
    [87] Gary Mavko, Tapan Mukerji,Jack Dvorkin. The Rock Physics HandBook[M]. Cambridge UK.: Cambridge University Press, 2003.
    [88] Gassmann, F..über die elastizit?t por?ser Medien[J], Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 1951a, 96, 1-23.
    [89] Gassmann, F.. Elastic waves throught a packing of spheres[J]. Geophysics, 1951b, 16, 673-685. and 18: 269.
    [90] Geertsma, J., and Smit, D.C.. Some aspects of elastic wave propagation in fluid saturated porous solids[J]. Geophys., 1961,26:169-181.
    [91] Berryman J.G.. Elastic wave propagation in fluid-saturated porous media[J]. J. Acoust. Soc. Am., 1981,69(2):416-424.
    [92] Berryman J.G.. Elastic wave propagation in fluid-saturated porous media II [J]. J. Acoust. Soc. Am., 1981,70(6):1754-1756.
    [93] Korringa J. On the Biot-Gassmann equations for the elastic module of porous rocks (Critical comment on a paper by J. G. Beryman) [J]. Acoust. Soc. Am., 1981, 70:1752-1753.
    [94] H.-Y. Chen, L.W. Teufel, and R.L. Lee. Coupled Fluid Flow and Geomechanics in Reservoir Study-I.Theory and Governing Equations[J]. SPE, 1995, Paper No. 30752-MS:507-519.
    [95] Geertsma, J.. The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks[J]. SPE, 1957, Paper No. 728-G:331-340.
    [96] Brown, R.J.S. and Korringa, J.. On the Dependence of the Elastic Properties of a Porous Rock on the Compressibility of the Pore Fluid[J]. Geophysics, 1975,Vol.40:608-616.
    [97] Johnson, D.L., and Plona, T.J.. Acoustic slow waves and the consolidation transition[J]. J. Acoust. Soc. Am., 1982,72:556-565.
    [98] Wyllie M.R.J, Gardner , G.H.F., and Gregory, A.R. Studies of elastic wave attenuation in porous media[J]. Geophysics, 1963, 27:569-589.
    [99] Raymer L.L., Hunt E.R., Gardner J.S.. An improved sonic transit time-to-porosity transform[C]. SPWLA, July 1980, 21st Ann. Logg. Symp.:O.
    [100] Mark A. Knackstedt, Christoph H. Arns, W. Val Pinczewski. Velocity-porosity relationships, 1: Accurate Velocity model for clean consolidated sandstones[J]. Geophysics, 2003, Vol. 68(6):1822-1834.
    [101] Nur, A., Mavko, G., Dvorkin, J., and Gal, D.. Critical porosity: The key to relating physical properties to porosity in rocks, in Proc., 65th Ann. Int. Meeting. 1995 Soc. Expl. Geophysics, 878.
    [102] Krief M, Garat J, Stellingw erff J, et al. A petro-physical interpretation using the velocities of P and S waves (full-wave form sonic)[J]. The Log Analyst, 1990, 31:355-369.
    [103] Domenico, S.N.. Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale[J]. Geophys., 1974, Vol.39:759-769.
    [104] Gregory, A.R., Aspects of rock physics from laboratory and log data that are important to seismic interpretation[J]. In Seismic Stratigraphy - Applications to Hydrocarbon Exploration: AAPG Memoir, 1977, 26:15-45.
    [105] Tosaya, C., Nur A., Vo-Thanh, D., Da Prat. G.. Laboratory Seismic Methods for Remote Monitoring of Thermal EOR[J]. SPE, 1987, Paper No. 12744-PA:235-242.
    [106] William F.. Murphy. Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass[J]. Acoust. Soc. Am. June 1982, 71(6):1458-1468.
    [107] Faust L. Y.. A velocity function including lithologic variation [J]. Geophysics, 1953, 18(2): 271-288.
    [108]谢进庄,楚泽涵,李艳华.用声波弹性参数确定剩余油饱和度的方法探讨[J].测井技术,2003, 27(3):181-184.
    [109]雍世和,张超谟.测井数字处理与综合解释[M].东营:中国石油大学出版社, 1996.9.
    [110]王平全,李晓红.用热失重法确定水合粘土水分含量及存在形式[J].天然气工业,20006, 26(1):80-83.
    [111]夏宏泉,张贤辉.刘向君计算粘土束缚水含量和阳离子交换容量的新方法[J].西南石油学院学报, 2000, 22(1):55-58.
    [112] Clavier C, Coates G and Dumanoir J. The theoretical and experimental bases for the dual-water model for interpretation of shaly sands[J]. SPE, April 1984, 6859-PA: 153-168.
    [113] Broyden,C.G. 1965, Mathmatics of Computation. Vol.19:577-593.
    [114]陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社, 2001.9.
    [115]楚泽涵.声波测井原理[M].北京:石油工业出版社,1987.4.
    [116]高绪晨,张春才,段铁梁.煤层气测井资料解释初探[J].中国煤田地质, 2003.8, Vol.15(4):54-57.
    [117]陈家良,邵震杰,秦勇.能源地质学[M].徐州:中国矿业大学出版社, 2004:59-63.
    [118]张广洋,谭学术,杜贵云,胡跃华.煤的导电机理研究[J].湘潭矿业学院学报, 1995年3月, Vol.10(1):15~18.
    [119] D.J. Johnston, R.H. Gales, and U, Ahmed. A New Logging Method for Enhanced Coal Grading[J]. SPE, 1991, Paper No.21810: 63-70.
    [120]车吾卓.测井资料分析手册[M].北京:石油工业出版社,1995.12:295-296.
    [121] Faivre, O. Sibbit, A. M. The Dual Laterolog Response in Fracture Rocks[A]. SPWLA[C], Dallas, Texas, June, 1985, 26nd: 17-20.
    [122] Hoyer, Darrell. Evaluation of Coalbed fracture porosity from dual laterolog[A]. SPWLA[C], Midland, Tex., 1991, 32nd, Transactions, p:U1-U15.
    [123]李善军,肖承文,汪涵明,张庚骥.裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释[J].地球物理学报, 1996,Vol.39(6):845-852.
    [124] Aguilera R. Formation Evaluation of Coalbed Methane Reservoirs[J]. The Journal of Canadian Petroleum Technology, 1994, Vol. 33(9):22-28.
    [125]柳孟文,李能根,赵文光,王海华.煤层气综合评价技术初探[J].测井技术, 1999, Vol.23(2):99-102.
    [126] U. Ahmed, D, Johnston, and L. Colson. An Advanced and Intergrated Approach to Coal Formation Evaluation[J]. SPE, 1991, No. 22736:755-770.
    [127] Hawkins J M, Schraufnagel R A, Olszewski A J. Estimating coalbed gas content and sorption isotherm using well log data[J]. 1992, SPE 24905:491-500.
    [128]潘和平,刘国强.依据密度测井资料评估煤层的含气量[J].地球物理学进展, 1996, Vol.11(4):55-56.
    [129]章燕豪.物理化学[M].上海:上海交通大学出版社,1998.1:371-372.
    [130]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002: 37
    [131] Gtenn L. dowers. Pore Pressure Estimation From Velocity Data: Accounting for Overpressure Mechanisms Besides Undercompaction[J]. SPE, 1995, SPE No. 27488-PA: 89-95.
    [132]潘和平,刘国强.用测井资料确定煤层气储层孔隙度的方法[A].罗延钟.应用地球物理学进展[C].武汉:中国地质大学出版社, 1996: 46-51
    [133] John J. Kowalski, Milton E. Helter. Coal Analysis From Well Logs[J]. SPE, 1975, Paper No. 5503:1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700