用户名: 密码: 验证码:
梯级电站系统的地震危险性评价方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究目标是:以大渡河干流梯级电站系统为分析实例,考虑汶川8.0级地震后地震环境的变化,研究复杂地震环境对梯级电站工程系统地震危险性的影响特征,在对梯级电站大坝以及梯级电站系统进行一些简化和假定的基础上,将全部梯级电站作为一个整体,考虑上游大坝对下游相邻大坝的附加危险性影响,提出梯级电站系统地震危险性评价的新方法。
     本文充分收集了西南地区现代地震实际资料,统计、转换得出了西南地区地震烈度、基岩地震动衰减关系。充分收集近年来地震安全性评价工作中取得的资料和成果,广泛、深入地吸收汶川8.0级地震后取得的新资料、新认识,对大渡河流域及邻区的地震构造环境和地震活动特征进行了深入研究。根据区域地震活动、地质构造的具体特点,在较小的空间尺度上划分了甘南川北地震带、川滇块体地震带和四川盆地地震带3个地震带,统计求出了相应的地震活动性参数。采用小尺度的地震带划分方案,可以更加真实地反映区域的地震活动的水平,较好体现控制建筑物抗倒塌的地震作用的水平。
     本文开创性地提出了双场点地震危险性分析方法,用以计算在相同地震构造环境中,在相同的地震作用下,相邻两个工程场点同时超越给定地震动参数的概率。该方法是确定系统的危险段落、场点遭受的附加地震危险的有效工具。
     大坝单元的地震危险性来源分析表明,其联合地震危险性由以下2部分构成:(1)在给定的地震环境中,该大坝单元遭遇超标地震作用而获得的自身地震危险性;(2)上游大坝破坏失效后,由于灾难性库水溢出的传递,而对该大坝单元产生的附加地震危险性。考虑到库容因素,本文引入一个调洪系数来衡量水库对上游洪水的承接消减能力。文中还对附加地震危险性的来源和计算方法进行了详细研究。把梯级电站系统简化为串联系统,计算得出梯级电站系统的地震危险性。此外,根据梯级电站系统各大坝单元的联合地震危险性,可以确定梯级电站系统的薄弱环节。
     在众多影响梯级电站系统地震危险性的因素中,本文只考虑地震因素引起的大坝失效,重点关注结构破坏、垮坝、漫顶等3种很可能直接导致灾难性库水溢出的失效模式。根据美国西部大坝的抗震设防目标和标准、在地震作用下的失效概率,以及我国大坝年平均溃决概率与美国西部大坝年平均溃决概率基本持平的事实,分析得出大坝在遭遇超标地震时发生失效的条件概率为P(F|E)=3.137×10-2。在梯级电站系统的地震危险性评价的基础上,本文对梯级电站系统的地震失效风险进行了初步研究。
     对大渡河干流梯级水电站系统的实例研究发现,在当前的地震环境下,各个大坝的地震危险性与原设计目标有一定的差别。通过大坝的联合地震危险性发现,危险程度最高的几个电站依次是:铜街子、沙坪、龚嘴、老鹰岩、龙头石、卜寺沟、达维、硬梁包等。进一步分析表明,上游大坝的附加地震危险性对梯级电站系统地震危险性评价结果有重大影响,必须予以考虑。提高梯级电站系统最薄弱的几个电站的设防参数,是提高系统地震安全性的最有效的途径。
By taking the cascade hydropower station system(CHSS) in the mainstream of Dadu River(MSDR) as a case study and considering the change of seismic background after Wenchuan 8.0 earthquake in 2008, this paper investigate the influence of complicated geoseismic environment upon the seismic hazard of CHSS. The paper also make some supposes and simplifications to cascade hydropower station dam and CHSS. By considering the additional hazard from upstream dams upon the nearby downstream dam and taking all the cascade hydropower station dams as one whole system, the paper submits a new method to assess seismic hazard of CHSS.
     The paper fully collects available investigation data of modern destructive earthquakes in Southwest China and establishes the attenuation relations for seismic intensity and acceleration motion on bed rock by regression and conversion. The paper deeply absorbs the new data and results of the seismic hazard assessment for significant construction programs in recent years. The paper also takes advantage of the new information and knowledge of Wenchuan 8.0 earthquake. Then the paper carefully study the seismotectonics background and seismicity features around MSDR. According to the characteristics of regional seismotectonics and seismicity, the paper divides out three seismic belts in relative smaller spatial scale, i.e. Southern Ganshu-Northern Sichuan belt, Sichuan-Yunnan-block-area belt and Sichuan Basin belt. The paper also calculates out the seismic parameters of all the seismic belts at the same time. The paper further indicates that small-belt scheme shows better performance in presenting actual regional seismicity level and possible earthquake action for anti-collapse design of buildings.
     The paper creatively proposes a bisite seismic hazard analysis method to calculate the exceedance probability of two nearby sites located in a same seismotectonics environment and suffered seismic acceleration exceeding their given values within a same earthquake. This new method is an effective tool for determining the dangerous segment of a linear spread system and calculating the additional seismic hazard from its neighbor site upon a given site.
     The paper analyses the seismic hazard components of a dam and find out that the united seismic hazard is composed by self seismic hazard and additional seismic hazard. The self seismic hazard is the exceedance probability which seismic acceleration great than its design acceleration for a dam in a give seismic background. The additional seismic hazard comes from upstream dam seismic hazard and is passed by the catastrophic overflow flood of upstream dam failure. Considering of reservoir capacity, the paper leads in a flood adjustment coefficient to measure the reservoir ability of bearing and reduction the overflow flood from upstream. Furthermore, the paper detailed study out the source and calculation method of additional seismic hazard. The paper then establishes a method to assess the seismic hazard for CHSS by simplifying CHSS as a series system. Moreover, the weak link in CHSS can be determined by its united seismic hazard.
     There are many factors that play important role on seismic risk of CHSS. The paper only focuses its aim on the dam failure caused by earthquake and mainly takes account of three failure modes, i.e. dam structure failure, arch collapse and overtopping, which may directly cause catastrophically sudden, rapid, and uncontrolled release of impounded water. Based upon the achievement of dam antiseismic design target, regulation and dam failure probability caused by earthquake in USA dams, and also upon the fact that the annual dam failure probability in China is the same as that in USA, the paper derives out the conditional failure probability of P(F|E)=3.137×10-2 when dam is suffered a seismic load over its design parameter. Then the paper gives out a preliminary seismic risk assessment for CHSS.
     Taking CHSS in MSDR as a case study, the paper finds out that the seismic hazard for each dam in present seismic background is somewhat different from its original design value. From the dam united seismic hazard, the paper points out the most dangerous dams in MSDR are as follows in order:Tongjiezhi, Shaping, Gongzhui, Laoyingyan, Longtoushi, Busigou, Dawei, Yinliangbao, et al. The paper further finds out that the additional seismic hazard has significant effect on the seismic hazard assessment for CHSS and then must be taken into account. It is the most effective path to enhance the seismic safety of CHSS by promoting the seismic design parameters of a few weakest dams.
引文
陈达生,刘汉兴.1989.地震烈度椭圆衰减关系.华北地震科学,7(3):31~42
    陈达生.1996.地震烈度衰减关系.见:国家地震局.中国地震烈度区划图(1990)概论.北京:地震出版社,137~144
    陈富斌.1992.横断山系的新构造研究.成都:成都地图出版社
    陈厚群.1996.高拱坝抗震安全关键技术问题.世界产品与技术,(6):32-34
    陈厚群.2005.大坝的抗震设防水准及相应性能目标.工程抗震与加固改造,27(增刊):1~6
    陈厚群.2008.水工混凝土结构抗震研究进展的回顾与展望.中国水利水电科学研究院学报,6(4):245~257
    陈厚群.2009.汶川地震后对大坝抗震安全的思考.中国工程科学,11(6):44~53
    陈棋福,郑大林,车时,等.2002.中国震例(1992-1994).北京:地震出版社.
    陈棋福,郑大林,刘桂萍,等.2002.中国震例(1995-1996).北京:地震出版社.
    陈学波,吴耀强,杜平山,等.龙门山构造带两侧地壳速度结构特征.见:国家地震局科技监测司,编.中国大陆深部构造的研究与进展.北京:地震出版社,1988.97—113
    陈智梁,沈凤,刘家平,等.1998.青藏高原东部地壳运动的GPS测量.中国科学,(5):32-35
    邓起东,于贵军,叶文华,等.1992.地震地表破裂参数与震级关系研究.活动断裂研究理论与应用(2).北京:地震出版社
    邓起东,陈社发,赵小麟,等.1994.龙门山及其邻区的构造地层活动及动力学.地震地质,16(4),389~403
    杜平山.2000.则木河断裂带的走滑位移及滑动速率.四川地震,(1):49-64
    高孟潭.1986.地震危险性分析方法概述.国际地震动态,(11):10~13.
    高孟潭.1988.关于地震年平均发生率的探讨.国际地震动态,(1):1~5
    高孟潭.1993.空间线性展布系统的地震危险性分析方法.地震学报,15(3):347~452
    高孟潭.2003.新的中国地震区划图.地震学报,25(6):630~636
    高孟潭,卢寿德.2006.关于下一代地震区划图编图原则与关键技术的初步探讨.震灾防御技术,1(1):1~6
    高社生,张玲霞.2002.可靠性理论与工程应用.北京:国防工业出版社,48~51
    谷继成,魏富胜.1987.论地震活动定量化:地震活动度.中国地震,3(增刊)
    国家地震局.1981.中国地震烈度区划报告.北京:地震出版社,5-6
    国家地震局.1996.中国地震烈度图(1990)概论.北京:地震出版社,11~16,64~88,145~155
    国家地震局兰州地震研究所.1989.甘肃省地震资料汇编.北京:地震出版社.
    国家电力公司成都勘测设计研究院.2004.四川省大渡河干流水电规划调整报告(内部报告)
    国家技术监督局,中华人民共和国建设部.1994.水利水电工程结构可靠度设计统一标准(GB50199-94).北京:中国计划出版社,6
    胡幸贤.1988.地震工程学.北京:地震出版社,476~487
    胡聿贤.1999.地震安全性评价技术教程.北京:地震出版社,282~320
    胡聿贤,高孟潭,杜玮,等.2001.《中国地震动参数区划图》(GB18306-2011)宣贯教材.北京:中国标准出版社,1-15,36-39
    黄玮琼,时振梁,曹学锋,等.1989.b值统计中的影响因素及危险性分析中b值的选取.地震学报,11(4):351~361
    黄伟,周荣军,何玉林,等.2000.四川玉农希断裂的新活动与1975年康定、九龙间6.2级地震.中国地震,16(1):53~59
    霍俊荣,胡聿贤.1992a.地震动峰值参数衰减规律的研究.地震工程与工程振动,12(2):1~11
    霍俊荣,胡聿贤,冯启民,等.1992b.关于通过烈度资料估计地震动的研究.地震工程与工程振动,12(3):1~15
    雷建成,高孟潭,俞言祥,等.2006.西南地区近代地震的震中烈度与有感地震的统计研究.震灾防御技术,1(2),137~145
    雷建成,高孟潭,俞言祥,等.2007.四川及邻区地震动衰减关系[J].地震学报,29(5):500-511
    雷建成,高孟潭,吴健,等.2010a.双场点地震危险性分析方法及其应用.地震学报,32(3):310~319
    雷建成,高孟潭,吕红山,等.2010b.地震带划分方案对地震活动性参数的影响.地震学报,32(4):457~465
    雷建成,张耀国,唐荣昌,等.1997.地震空间分布函数的确定方法研究.中国地震, 13(1):65~73
    李传友,宋方敏.1994.龙门山断裂带及其邻区的构造和地震活动及动力学.地震地质,16(4):389~403
    李雷,王仁钟,盛金保,等.2006.大坝风险评价与风险管理.北京:中国水利水电出版社,1~58
    李善邦.1957.中国地震烈度区域划分图说明.地球物理学报,6(2):127~158
    李天绍,杜其芳,游泽李,等.1997.鲜水河断裂带及强震危险性评估.成都:成都地图出版社
    李小军.2006.工程场地地震安全性评价工作的相关技术问题.震灾防御技术,1(1):15~24
    李勇,曾允孚,伊海生,等.1995.龙门山前陆盆地沉积及构造演化.成都:成都科技出版社
    林皋.2004.混凝土大坝抗震技术的发展现状与展望(Ⅰ).水科学与工程技术,(6):1~3
    林皋.2005.混凝土大坝抗震技术的发展现状与展望(Ⅱ).水科学与工程技术,(1):1~3
    刘瑞丰,陈云泰,Peter Bormann,等.2006.中国地震台网与美国地震台网测定震级的对比(Ⅱ)一面波震级.地震学报,28(1):1~7
    吕大刚,李晓鹏,王光远.2006.基于可靠度和性能的结构整体地震易损性分析.自然灾害学报,15(2):107~114
    马杏垣.1989.中国岩石圈动力学图集.北京:中国地图出版社
    潘桂棠,王培生,徐耀荣,等.1990.青藏高原新生代构造演化.北京:地质出版社
    潘家铮,何璟.2000.中国大坝50年.北京:中国水利水电出版社
    钱洪.1989.鲜水河断裂带的断错地貌及其地震学意义.地震地质,11(4):43~49
    钱洪、周荣军,马声浩,等.1999.岷江断裂南段与1933年叠溪地震研究.中国地震,15(4):333~338
    沈怀至,金峰,张楚汉.2008.基于功能的混凝土重力坝抗震风险模型研究.岩土力学,29(12):3323~3328
    沈建文,余湛,邱瑛,等.2007.地震安评中地震活动性的统计区域与b值.国际地震动态,(3):1~6
    沈斯伟.1989.云贵地区公元886-1986年M≥4.7地震简目.见:闵子群主编.云贵地区 地震危险性研究文集.昆明:云南四川科学技术出版社.101~104.
    时振梁,李裕澈.2001.中国地震区划.中国工程科学,3(6):65~68
    时振梁,鄢家全,高孟潭,等.1991.地震区划原则和方法研究—以华北地区为例.地震学报,13(4):179~189
    苏有锦,刘祖荫.1997.丽江7.0级地震震源环境及其破裂过程讨论,20(1):66~71
    四川省地质局,四川省地震局地质编图组.1980.四川省构造体系与地震分布规律图说明书(内部资料)
    四川省地震局地震简目编辑组,云南省地震局地震简目编辑组,西藏自治区地震办公室地震简目编辑组.1988.西南地震简目(川、滇、黔、藏).成都:四川科学技术出版社.
    《四川地震资料汇编》编辑组.1981.四川地震资料汇编第二卷(1949年-1979年).成都:四川人民出版社.
    《四川地震资料汇编》(第三卷)编辑组,《四川地震志》编辑组.2000.四川地震资料汇编第三卷(1979年6月-1999年12月).成都:成都地图出版社.
    唐荣昌,韩渭宾.1993.四川活动断裂与地震.北京:地震出版社
    唐荣昌,黄祖智.1983.鲜水河断裂带的地震地质基本特征及其研究现状.国际地震动态,(3)
    汪素云,时振梁.1993.有感半径与震级的关系及其应用.见:国家地震局震害防御司主编.中国地震区划文集.北京:地震出版社,179~184
    汪素云,吴戈,时振梁,等.1998.《中国近代地震目录(公元1912年~1990年,Ms≥4.7)》简介.中国地震,14(3):83~87
    汪素云,俞言祥,高阿甲,等.2000.中国分区地震动衰减关系的确定.中国地震.16(2):99~106
    汪小刚.2004.高坝大库震灾机理及安全寿命基础研究.中国水利,(22):16~18
    王新民.1987,1786年康定—泸定地震,四川地震,增刊
    王新民,裴锡瑜.1998.康定—泸定地区主要活断层与地震裂缝.四川地震,(1):46-56
    闻学泽.1989.鲜水河断裂带未来首发强震危险性的研究综述.国际地震动态,(7):1~5
    闻学泽.2000.四川西部鲜水河—安宁河一则木河断裂带的地震破裂分段特征.地震地质,22(3):239~249
    闻学泽,杜平山,龙德雄,等.2000.安宁河断裂带小相岭段古地震的新证据及最晚事件的年代.地震地质,22(1):1~8
    闻学泽,徐锡伟.2001.磨西断裂的晚第四纪活动性与大地震复发间隔.见:卢演俦主编.新构造与环境.北京:地震出版社,255-266
    向宏发,徐锡伟,虢顺民,等.2002.丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义.地震地质,24(2):188~197
    许志琴,卢一仑,汤耀庆,等.1986.东秦岭复合山链的形成.北京:中国环境科学出版社
    许志琴,侯立玮,王宗秀,等.1992.中国松潘—甘孜造山带的造山过程.北京:地质出版社
    徐锡伟,陈桂华,于贵华,等.2010.5.12汶川地震地表破裂基本参数的再论证及其构造内涵分析.地球物理学报,53(10):2321~2336
    徐锡伟,闻学泽,于贵华,等.2005.川西理塘断裂带平均滑动速率、地震破裂分段与复发特征.中国科学D辑地球科学,35(6):540~551
    徐锡伟、闻学泽,陈桂华,等.2008.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义.中国科学D辑地球科学,38(5):529~542
    徐锡伟,闻学泽,叶建青,等.2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,30(3):597~629
    徐锡伟,张培震,闻学泽,等.2005.川西及其邻近地区地震活动构造基本特征与强震复发模型. 地震地质,27(3):446~461
    鄢家全.2005.地震危险性分析的困惑与希望.国际地震动态,(6):14~24
    杨晓平,蒋溥,宋方敏,等.1999.龙门山断裂带南段断错晚更新世以来地层的证据.地震地质,21(4):341~345
    俞言祥,汪素云.2002.美国西部水平向基岩加速度反应谱衰减关系.见:中国地震局地球物理研究所,中国地震局工程力学研究所,中国地震局工程地震研究中心,等主编.新世纪地震工程与防震减灾.北京:地震出版社,559~565
    俞言祥,汪素云.2004.青藏高原东北地区水平向基岩加速度峰值与反应谱衰减关系.地震学报,26(6):591~600
    俞言祥,汪素云.2006.中国东部和西部地区水平向基岩加速度反应谱衰减关系.震灾防御技术,1(3):206~216
    云南省地震局.1988.云南省地震资料汇编.北京:地震出版社.
    云南省地震工程院.2000.云贵地区地震等震线图集.地震研究.23(增刊)
    张楚汉.2005.高坝—水电站工程中的关键科学问题.三峡大学学报(自然科学版),26(3)193~197
    张楚汉,金峰,潘坚文,等.2009.论汶川地震后我国高坝抗震标准问题.水利水电技术,40(8):74~79
    张国民,马宏生,王辉,王新岭.2005.中国大陆活动地块边界带与强震活动.地球物理学报,48(3):602~610
    张力方,吕悦军,彭艳菊,等.2008.用空间光滑方法评估弱地震活动区的地震活动性参数.震灾防御技术,3(1):27~36
    章在墉,陈达生.1982.二滩水电站坝区场地地震危险性分析.地震工程与工程振动,2(3):1~15
    张肇诚,罗兰格,李海华等.1990.中国震例(1976-1980).北京:地震出版社.
    张肇诚,罗兰格,李海华等.1990.中国震例(1981-985).北京:地震出版社.
    张肇诚,郑大林,徐京华.1999.中国震例(1986-1988).北京:地震出版社.
    张肇诚,郑大林,徐京华.2000.中国震例(1989-991).北京:地震出版社.
    赵从俊.1984.四川盆地构造垂向变异特征类型及其管理探讨.石油学报,5(4)
    赵从俊,杨日畅,田晓燕,等.1989.川东构造应力场与油气富集规律探讨.石油学报,10(2):19~30
    赵小麟,邓起东,陈社发,等.1994.岷江隆起的构造地貌学研究.地震地质,16(4):429~439
    郑文俊,李传友.2008.汶川M8.0地震陡坎(北川以北段)探槽的记录特征.地震地质,30(4):697~706
    中国地震局地球物理研究所,中国地震局地质研究所,中国地震局工程力学研究所,等.2001.《中国地震动参数区划图编制》.中国地震局95-05-03课题报告
    中国地震局震害防御司.1999.中国近代地震目录(公元1912年~1990年,Ms≥4.7).北京:中国科学技术出版社
    中华人民共和国国家经济贸易委员会.2001.水工建筑物抗震设计规范(DL5073-2000).北京:中国电力出版社:2
    中华人民共和国国家质量监督检疫检验总局,中国国家标准化管理委员会.2005.工程场地地震安全性评价(GB17741-2005).北京:中国标准出版社:6~8
    周荣军,何玉林,杨涛,等.2001.鲜水河—安宁河断裂磨西—冕宁段的滑动速率与强 震位错.中国地震,17(3):253~262
    周荣军,何玉林,黄祖智,等.2001.鲜水河断裂乾宁—康定段的滑动速率与强震复发间隔.地震学报,23(2):251~261
    周荣军,黎小刚,黄祖智,等.2002.四川大凉山断裂带的晚第四纪平均滑动速率.地震研究,26(2):191~196
    周荣军,蒲晓虹,何玉林,等.2000.四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关系.地震地质,22(3):285~294
    周荣军,唐荣昌,钱洪,等.1997.地震构造类比法的应用—以川东地区华蓥山断裂带为例.地震研究,20(3):316~322
    周荣军,叶友清,李勇,等.2007.理塘断裂带沙湾段的晚第四纪活动性.第四纪研究,27(1):45~53
    Algeimissen S T and Perkins D M.1976. A probabilistic estimate of maximum acceleration in rock in the contiguous United States. U.S. Geol. Surv. Open-File Report.76-416
    Basham P W and Weichert D H and Anglin F M and Berry M J.1985.New probabilistic strong seismic ground motion map of Canada. Bull Seism Soc Am,75(2):563-595
    Chandra U.1979.Attenuation of intensities in the United States. Bull Seism Soc Am, 69(6):2003-2024
    Chen C. and Burchfiel B.C. and Liu Y., et al.2000. Global Position system measurements from eastern Tibet and their implications for Indial Eurasia intercontinental deformation. J.G.R.,105 (B7):16,d15-16,227
    Chen Houqun.2008.Consideration of dam safety after Wenchuan earthquake in China. Proceedings of the 14th WCEE, Paper No. C001. Beijing. China
    Cornell C.A.1968.Engineering seismic risk analysis. Bull Seism Soc Am,58(5):1583-1606
    Field E.H.2007.A summary of previous working groups on California earthquake probabilities. Bull Seism Soc Am,97(4):1033-1053
    Der Kiureghian A and Ang A H-S.1977.A fault-rupture model for seismic risk analysis. Bull Seism Soc Am,67(4):1173-1194.
    Federal Emergency Management Agency.1979.Federal guidelines for dam safety (FEMA 93):5
    Federal Emergency Management Agency.2005.Federal guidelines for dam safety:earthquake analyses and design of dams(FEMA 65):5-11
    Frankel D. and Petersen M.D. and Mueller C.S., et al.2002.Documentation for the 2002 update of the National Seismic-Hazard Maps. U.S. Geol. Surv. Open-File Report 02-420
    International Commission on Large Dams (ICOLD).1989.Guidelines for selecting seismic parameters for large dams (Bulletin 72).23-29
    Joe Tatalovich and David W. Harris.1998. Comparison of failure modes from risk assessment and historical data for Bureau of Reclamation dams. U.S. Department of Interior, Bureau of Reclamation, Dam Safety Office DSO-98-01:1-9
    Jones and L.M. and Weibin Han, Hauksson E., et al.1984. Focal mechanisms and aftershock locations of the Songpan earthquake of August 1976 in Sichuan, China. J.Geophys.Res, 89(B9):7697-7707
    Kirby E.2000.Neotectonic of the Min Shan,China:Implications for mechanisms driving Quaternary deformation along the eastern margin of Tibetan Plateau. GSA Bulletetin,112(3):375-393
    McGuire P K.1976. EQRISK-evaluation of earthquake risk to site. U.S. Geol. Surv. Open-File Report:67-76
    Petersen M D and Frankel A D and Harmsen S C, et al.2008.Documentation for the 2008 update of the United States national seismic hazard maps. U.S. Department of the Interior and U.S. Geol. Surv. Open-File Report 2008-1128:4-6
    She Fa Chen.C.J.L.Wilson and Qidong Deng and Xiaolin Zhao, et al.1994. Active faulting and block movement associated with large earthquake in the Min Shan and Longmen Mountains, northeastern Tibetan Plateau. J.G.R.,99(B12):24025—24038
    Stirling M.W. and McVerry G.H. and Berryman K.R., et al.2002.A New Seismic Hazard Model for New Zealand. Bull Seism Soc Am,92(5):1878-1903
    U.S. Army Corps of Engineers.1994.Arch dam design(ER 1110-2-2201).7-3
    U.S. Army Corps of Engineers.1995.Gravity dam design(ER 1110-2-2200).5-2,5-3.
    U.S. Army Corps of Engineers.2007.Earthquake design and evaluation of concrete hydraulic structures(ER 1110-2-6053).2-1, B-4
    Wang E. Burchfiel D.C.and Royden L. H. and Chen Liangzhong, et al.1998.Late Cenozoic Xianshuihe-Xiaojiang, Red River and Dali Fault Systems of Southwestern Sichuan and Central Yunnan. China:Boulder, Colorado,Geological Society of America Special Paper 327
    Wesnousky S G and Scholz C H and Shimazaki K, et al.1984.Integration of geological and seismological data for the analysis of seismic hazard:a case study of Japan. Bull Seism Soc Am,74(2):687-708
    Wieland M. and H.F. Benedict.2004. The activities of the International Commission on Large Dams (ICOLD) in the earthquake safety of large dams. Proceedings of the 13th WCEE, Paper No.5051, Vancouver, B.C., Canada
    Wieland M.2006. Earthquake safety of existing dams. The 1st Conference on Earthquake Engineering and Seismology, Paper No. K10, Geneva, Switzerland.
    Wieland M.2008.Large dams the first structures designed systematically against earthquakes. Proceedings of the 14th WCEE, Paper No. S13-049, Beijing, China.
    Working Group on California Earthquake Probabilties.2003.Earthquake probabilities in the San Francisco Bay Region:2002-2031. U.S.Geol.Surv. Open-File Report 03-214, Chapter5:1-21
    Zhou R. and He Y. and Huang Z., et al.2000. Slip rate and recurrence interval of Strong Earthquake of Qianning—Kangding segment on Xianshuihe fault. Acta Seismologica Sinica,23(2):251-261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700